Skip to main content

A Grammar-based Genetic Programming Hyper-Heuristic for Corridor Allocation Problem

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Abstract

Layout problems are the physical arrangement of facilities along a given area commonly used in practice. The Corridor Allocation Problem (CAP) is a class of layout problems in which no overlapping of rooms is allowed, no empty spaces are allowed between the rooms, and the two first facilities (one on each side) are placed on zero abscissa. This combinatorial problem is usually solved using heuristics, but designing and selecting the appropriate parameters is a complex task. Hyper-Heuristic can be used to alleviate this task by generating heuristics automatically. Thus, we propose a Grammar-based Genetic Programming Hyper-Heuristic (GGPHH) to generate heuristics for CAP. We investigate (i) the generation of heuristics using a subset of the instances of the problem and (ii) using a single instance. The results show that the proposed approach generates competitive heuristics, mainly when a subset of instances are used. Also, we found a single instance that can be used to generate heuristics that generalize to other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/rafaelfreesz/capPG.git.

References

  1. Ahonen, H., de Alvarenga, A.G., Amaral, A.R.: Simulated annealing and tabu search approaches for the corridor allocation problem. Eur. J. Oper. Res. 232(1), 221–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amaral, A.R.: An exact approach to the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amaral, A.R.: The corridor allocation problem. Comput. Oper. Res. 39(12), 3325–3330 (2012)

    Article  MATH  Google Scholar 

  4. Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discret. Optim. 2(2), 113–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4), 611–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Meth. Softw. 24(4–5), 805–817 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbosa, H.J.C., Bernardino, H.S., Barreto, A.M.S.: Using performance profiles to analyze the results of the 2006 CEC constrained optimization competition. In: Evolutionary Computation (CEC), 2010 IEEE Congress on, pp. 1–8. IEEE (2010)

    Google Scholar 

  8. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  9. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring hyper-heuristic methodologies with genetic programming. In: Mumford, C.L., Jain, L.C. (eds.) Computational Intelligence. Intelligent Systems Reference Library, vol. 1, pp. 177–201. Springer, Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-642-01799-5_6

    Chapter  Google Scholar 

  10. Cellin, B.D.P.: Métodos para Resolução eficiente de Problemas de Layout. Master’s thesis, Universidade Federal do Espírito Santo, Vitória (2017)

    Google Scholar 

  11. Chung, J., Tanchoco, J.: The double row layout problem. Int. J. Prod. Res. 48(3), 709–727 (2010)

    Article  MATH  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  13. de Freitas, J.M., de Souza, F.R., Bernardino, H.S.: Evolving controllers for mario AI using grammar-based genetic programming. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  14. Ghosh, D., Kothari, R.: Population heuristics for the corridor allocation problem. Technical report, Indian Institute of Management at Ahmedabad, Research and Publication Department (2012)

    Google Scholar 

  15. Harris, S., Bueter, T., Tauritz, D.R.: A comparison of genetic programming variants for hyper-heuristics. In: Proceedings of the Companion Publication of the Conference on Genetic and Evolutionary Computation, pp. 1043–1050 (2015)

    Google Scholar 

  16. Herrán, A., Colmenar, J.M., Duarte, A.: An efficient variable neighborhood search for the space-free multi-row facility layout problem. Eur. J. Oper. Res. 295(3), 893–907 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kothari, R., Ghosh, D.: A scatter search algorithm for the single row facility layout problem. J. Heuristics 20(2), 125–142 (2014)

    Article  Google Scholar 

  18. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  19. Kusiak, A., Heragu, S.S.: The facility layout problem. Eur. J. Oper. Res. 29(3), 229–251 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lozano, M., Molina, D., García-Martínez, C.: Iterated greedy for the maximum diversity problem. Eur. J. Oper. Res. 214(1), 31–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simmons, D.M.: One-dimensional space allocation: an ordering algorithm. Oper. Res. 17(5), 812–826 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  23. Whigham, P.A.: Grammatically-based genetic programming. In: Rosca, J.P. (ed.) Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pp. 33–41. University of Rochester, Tahoe City, USA (1995)

    Google Scholar 

  24. Yang, T., Peters, B.A.: A spine layout design method for semiconductor fabrication facilities containing automated material-handling systems. Int. J. Oper. Prod. Manage. 17(5), 490–501 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by CNPq, Capes, FAPEMIG, and UFJF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael F. R. Correa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Correa, R.F.R., Bernardino, H.S., de Freitas, J.M., Soares, S.S.R.F., Gonçalves, L.B., Moreno, L.L.O. (2022). A Grammar-based Genetic Programming Hyper-Heuristic for Corridor Allocation Problem. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics