Skip to main content

Inferring Phylogenetic Trees Using Evolutionary Algorithms

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature — PPSN VII (PPSN 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2439))

Included in the following conference series:

Abstract

We consider the problem of estimating the evolutionary history of a collection of organisms in terms of a phylogenetic tree. This is a hard combinatorial optimization problem for which different EA approaches are proposed and evaluated. Using two problem instances of di.erent sizes, it is shown that an EA that directly encodes trees and uses ad-hoc operators performs better than several decoder-based EAs, but does not scale well with the problem size. A greedy-decoder EA provides the overall best results, achieving near 100%-success at a lower computational cost than the remaining approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Cao, N. Okada, and M. Hasegawa. Phylogenetic position of guinea pigs revisited. Molecular Biology and Evolution, 14(4):461–464, 1997.

    Google Scholar 

  2. X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and its application in genome comparisons. Genome Informatics, 10:51–61, 1999.

    Google Scholar 

  3. C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop problems. Evolutionary Computation, 6(1):25–44, 1998.

    Article  Google Scholar 

  4. J. Hein. A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. Molecular Biology and Evolution, 6:649–668, 1989.

    Google Scholar 

  5. S. Holmes. Phylogenies: An overview. In Halloran and Geisser, editors, Statistics and Genetics, pages 81–119. Springer-Verlag, New York NY, 1999.

    Google Scholar 

  6. D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast converging method for phylogenetic tree reconstruction. Journal of Computational Biology, 6(3):369–386, 1999.

    Article  Google Scholar 

  7. S Koziel and Z. Michalewicz. A decoder-based evolutionary algorithm for constrained parameter optimization problems. In T. Bäeck, A.E. Eiben, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature V-LNCS 1498, pages 231–240. Springer-Verlag, Berlin Heidelberg, 1998.

    Chapter  Google Scholar 

  8. H. Matsuda. Protein phylogenetic inference using maximum likelihood with a genetic algorithm. In Proceedings of the Pacific Symposium on Biocomputing, pages 512–523. World Scientific, 1996.

    Google Scholar 

  9. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  10. A. Moilanen. Searching for the most parsimonious trees with simulated evolution. Cladistics, 15:39–50, 1999.

    Article  Google Scholar 

  11. C.-K. Ong, S. Nee, A. Rambaut, H.-U. Bernard, and P.H. Harvey. Elucidating the population histories and transmission dynamics of papillomaviruses using phylogenetic trees. Journal of Molecular Evolution, 44:199–206, 1997.

    Article  Google Scholar 

  12. N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems, 5:183–205, 1991.

    MATH  MathSciNet  Google Scholar 

  13. A. Reyes, C. Gissi, G. Pesole, F.M. Catzeflis, and C. Saccone. Where do rodents fit? Evidence from the complete genome of Sciurus vulgaris. Molecular Biology and Evolution, 17(6):979–983, 2000.

    Google Scholar 

  14. Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Approximation and exact algorithms for constructing minimum ultrametric trees from distance matrices. Journal of Combinatorial Optimization, 3(2):199–211, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cotta, C., Moscato, P. (2002). Inferring Phylogenetic Trees Using Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, HG., Schwefel, HP., Fernández-Villacañas, JL. (eds) Parallel Problem Solving from Nature — PPSN VII. PPSN 2002. Lecture Notes in Computer Science, vol 2439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45712-7_69

Download citation

  • DOI: https://doi.org/10.1007/3-540-45712-7_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44139-7

  • Online ISBN: 978-3-540-45712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics