Skip to main content

Refining Mutation Variants in Cartesian Genetic Programming

  • Conference paper
  • First Online:
  • 334 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13627))

Abstract

In this work, we improve upon two frequently used mutation algorithms and therefore introduce three refined mutation strategies for Cartesian Genetic Programming. At first, we take the probabilistic concept of a mutation rate and split it into two mutation rates, one for active and inactive nodes respectively. Afterwards, the mutation method Single is taken and extended. Single mutates nodes until an active node is hit. Here, our extension mutates nodes until more than one but still predefined number n of active nodes are hit. At last, this concept is taken and a decay rate for n is introduced. Thus, we decrease the required number of active nodes hit per mutation step during CGP’s training process. We show empirically on different classification, regression and boolean regression benchmarks that all methods lead to better fitness values. This is then further supported by probabilistic comparison methods such as the Bayesian comparison of classifiers and the Mann-Whitney-U-Test. However, these improvements come with the cost of more mutation steps needed which in turn lengthens the training time. The third variant, in which n is decreased, does not differ from the second mutation strategy listed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The code as well as its datasets preprocessing can be found in the following GitHub repository: https://github.com/CuiHen/Refining-Mutation-in-CGP.git.

References

  1. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000). https://doi.org/10.1093/bioinformatics/16.5.412

    Article  Google Scholar 

  2. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bentley, P.J., Lim, S.L.: Fault tolerant fusion of office sensor data using cartesian genetic programming. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

    Google Scholar 

  4. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.uci.edu/ml

  5. Goldman, B.W., Punch, W.F.: Length bias and search limitations in cartesian genetic programming. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 933–940. GECCO ’13, Association for Computing Machinery, New York, NY, USA (2013)

    Google Scholar 

  6. Goldman, B.W., Punch, W.F.: Reducing Wasted Evaluations in Cartesian Genetic Programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş, Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6

    Chapter  Google Scholar 

  7. Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programming’s evolutionary mechanisms. IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

    Article  Google Scholar 

  8. Harding, S., Graziano, V., Leitner, J., Schmidhuber, J.: MT-CGP: mixed type cartesian genetic programming. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 751–758 (2012)

    Google Scholar 

  9. Harding, S.L., Miller, J.F., Banzhaf, W.: Self-modifying cartesian genetic programming. In: Miller, J. (ed.) Cartesian Genetic Programming, pp. 101–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_4

    Chapter  Google Scholar 

  10. Hodan, D., Mrazek, V., Vasicek, Z.: Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design. Genetic Programm. Evol. Mach. 22(4), 539–572 (2021)

    Article  Google Scholar 

  11. Husa, J., Kalkreuth, R.: A comparative study on crossover in cartesian genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) Genetic Programming, pp. 203–219. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_13

    Chapter  Google Scholar 

  12. Kalkreuth, R.: Towards advanced phenotypic mutations in cartesian genetic programming. arXiv preprint arXiv:1803.06127 (2018)

  13. Kalkreuth, R., Rudolph, G., Droschinsky, A.: A new subgraph crossover for cartesian genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) Genetic Programming, pp. 294–310. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3_19

    Chapter  Google Scholar 

  14. Kaufmann, P., Kalkreuth, R.: On the parameterization of cartesian genetic programming. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020)

    Google Scholar 

  15. Leitner, J., Harding, S., Forster, A., Schmidhuber, J.: Mars terrain image classification using cartesian genetic programming. In: Proceedings of the 11th International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS 2012, pp. 1–8. European Space Agency (ESA) (2012)

    Google Scholar 

  16. Margraf, A., Stein, A., Engstler, L., Geinitz, S., Hahner, J.: An evolutionary learning approach to self-configuring image pipelines in the context of carbon fiber fault detection. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 147–154. IEEE (2017)

    Google Scholar 

  17. Miller, J., Smith, S.: Redundancy and computational efficiency in cartesian genetic programming. Evol. Comput. IEEE Trans. 10, 167–174 (2006)

    Article  Google Scholar 

  18. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

    Chapter  Google Scholar 

  19. Miller, J., Thomson, P., Fogarty, T., Ntroduction, I.: Designing electronic circuits using evolutionary algorithms, arithmetic circuits: a case study. Genetic Algorithms Evol. Strateg. Eng Comput. Sci. (1999)

    Google Scholar 

  20. Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 2. pp. 1135–1142. GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

    Google Scholar 

  21. Miller, J.F.: Cartesian genetic programming: its status and future. Genetic Programm. Evol. Mach. 21(1), 129–168 (2020)

    Article  Google Scholar 

  22. Möller, F.J.D., Bernardino, H.S., Gonçalves, L.B., Soares, S.S.R.F.: A reinforcement learning based adaptive mutation for cartesian genetic programming applied to the design of combinational logic circuits. In: Cerri, R., Prati, R.C. (eds.) Intelligent Systems, pp. 18–32. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-61380-8_2

    Chapter  Google Scholar 

  23. Turner, A.J., Miller, J.F.: Neutral genetic drift: an investigation using cartesian genetic programming. Genetic Programm. Evol. Mach. 16(4), 531–558 (2015). https://doi.org/10.1007/s10710-015-9244-6

    Article  Google Scholar 

  24. White, D., et al.: Better GP benchmarks: community survey results and proposals. Genetic Programm. Evol. Mach. 14, 3–29 (2013)

    Article  Google Scholar 

  25. Wilson, D.G., Miller, J.F., Cussat-Blanc, S., Luga, H.: Positional cartesian genetic programming. arXiv preprint arXiv:1810.04119 (2018)

  26. Yu, T., Miller, J.: Neutrality and the evolvability of Boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45355-5_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, H., Margraf, A., Hähner, J. (2022). Refining Mutation Variants in Cartesian Genetic Programming. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2022. Lecture Notes in Computer Science, vol 13627. Springer, Cham. https://doi.org/10.1007/978-3-031-21094-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21094-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21093-8

  • Online ISBN: 978-3-031-21094-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics