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Abstract

Adapted waveform analysis is used exten-

sively in audio, speech, and video coding.

In this context, the basic problem is to �nd

out the best representation for a given sig-

nal. The strategy is to decompose the signal

into time-frequency atoms. The main analy-

sis tool is the expansion of the signal in or-

thonormal bases whose elements have good

time-frequency localizations. We show that

genetic algorithms can be exploited to search

libraries of bases for atomic pattern recog-

nition in noisy signals. The proposed al-

gorithm generates best basis decomposition

trees through the evolution of well-adapted

genetic sequences. Two new types of con-

straint operators are introduced to guaran-

tee that valid genetic sequences are gener-

ated. The approach behaves as an atomic

analyzer for signal processing. A test envi-

ronment is proposed to assess recognition of

time-frequency atoms in signal spaces.

1 Introduction

One of the main goals of signal analysis in recent years

has been the development of signal representations in

terms of elementary waveforms well localized in time

and frequency, called time-frequency atoms. Adapted

waveform analysis is used extensively, in audio, speech,

and video coding. The objective is to �nd out the best

representation for a given signal, and the strategy is to

decompose a signal into time-frequencies atoms. The

time-frequency plane is a two-dimensional space useful

for idealizing two important properties associated to

transient signals: localization in time of transient phe-

nomena, and presence of speci�c frequencies. A signal

may be represented in this plane in a number of ways.

Each of the elementary waveforms resides mostly in

a well-de�ned area in the time-frequency plane. A

waveform is represented by a rectangle in this plane

with its sides parallel to the time and frequency axes.

Such a rectangle is often referred to as an information

cell. The amplitude of a waveform can be encoded by

darkening the rectangle in proportion to its waveform's

energy. The idealized time-frequency plane closely re-

sembles a musical score, and the information cells play

the role of notes. The main signal analysis tool is the

expansion of the signal in orthonormal bases whose

elements have good time-frequency localizations. Fea-

tures in this context are just the basis elements which

contribute large components to the expansion; they

are detectable from their size. When we �nd a large

component, we can mark the time-frequency location

of its basis element to build a time-frequency picture

of the analyzed signal. Currently, two main classes of

time-frequency atoms are in use. The �rst, wavelet

packets, splits the signal �rst in frequency and then

in time, whereas the second, local cosine packet bases,

does the opposite,i.e., it slices �rst in time and then in

frequency.

In this paper, we show how genetic algorithms can

be used for component analysis. By component anal-

ysis we mean a methodology for decomposing a sig-

nal into an "optimal" superposition of dictionary el-

ements. Adapted waveform analysis uses libraries of

orthonormal basis and an e�cient functional to match

a basis to a given signal or family of signals. The evolu-

tionary computation approach permits to search larger

libraries of bases for best basis selection than those

considered in current signal processing approaches. A

test environment was devised to assess recognition of

well-adapted time-frequency atoms in signal spaces.

Several classes of synthetic applications of increasing

complexity are introduced, in which noisy signals are

constructed from atoms randomly generated from col-

lections of waveforms. The idealized time-frequency



plane was selected to visualize atomic signal decom-

position [Wickerhauser, 1994]. The proposed test en-

vironment substantiates the claim that time-frequency

diagrams and residual error measures can be used as

a new kind of �tness landscape to assess the compar-

ative performance of genetic algorithms. The genetic

algorithm uses variable length integer sequences as the

basic genotype. In evolutionary terms, the objective

is to select best basis decomposition trees through the

evolution of well-adapted genetic sequences in terms

of some suitable information criterion. A well-built

decomposition tree for adaptive analysis purposes is

generated by imposing appropriate constraints to the

genetic sequences. Two new types of constraint op-

erators are introduced to guarantee that valid genetic

sequences are generated. In addition, these operators

produce a more uniform sampling of the tree search

space than other similar operators. A brief review

of fundamental results in wavelet theory and time-

frequency analysis is presented in section 2. The evo-

lutionary formulation and model speci�cation is pre-

sented in section 3. The application of the genetic pro-

gram to signal decomposition and atomic recognition

is presented in section 4. Finally, some conclusions are

o�ered in section 5.

2 Time-Frequency Analysis

2.1 Wavelets and Wavelet Packets

A given function f can be represented in terms of or-

thonormal basis functions. The family of orthonor-

mal basis functions is generated from a single func-

tion  , called mother wavelet. The orthogonal ba-

sis of compactly supported wavelets of L2 is formed

by the dilation and translation of a function  (x)
[Wickerhauser, 1994],

 j;k(x) = 2�j=2 (2�jx� k);

where j; k 2 Z. The function has a companion, the

scaling function �(x), and these functions satisfy the

following relations:

�(x) =
p
(2)

L�1X

k=0

hk�(2x� k); (1)

 (x) =
p
(2)

L�1X

k=0

gk�(2x� k); (2)

where gk = (�1)khL�k�1, k = 0; 1; : : : ; L � 1, andR +1
�1

�(x)dx = 1. The wavelet basis induces a mul-

tiresolution analysis on L2 (R), i.e., the decomposition

of the Hilbert space into a chain of closed subspaces

: : : � V2 � V1 � V0 � V
�1 � V

�2 : : : :

On each �xed scale j, the wavelets f j;k(x)gk2Z
form an orthonormal basis of Wj and the functions

f�j;k(x) = 2�j=2�(2�jx � k)gk2Z form an orthonor-

mal basis of Vj . The coe�cient H = fhkgk=L�1k=0 and

G = fgkgk=L�1k=0 in (1) and (2) are quadrature mirror

�lters. Once the �lter H has been chosen, it com-

pletely determines the functions  and �. Discrete

wavelet transformations map data from the time do-

main (the original or input data vector) to the wavelet

domain. The discrete wavelet transformation may be

summarized by the well-known pyramid scheme,

fs0kg �! fs1kg �! fs2kg �! fs3kg : : :
& & & (3)

fd1kg fd2kg fd3kg : : :

where the coe�cients s0k for k = 1; 2; : : : ; N are given

by

sjk =

n=L�1X

n=0

hns
j�1
n+2k�1;

djk =

n=L�1X

n=0

gns
j�1
n+2k�1

and sjk and djk are periodic sequences with the period

2n�j ; j = 0; : : : ; n. In the pyramid scheme, on each

scale j we compute one vector of di�erences fdjkg
k=2n�j

k=1

and one vector of averages fsjkg
k=2n�j

k=1 . Wavelet pack-

ets are linear combinations of wavelet functions and

represent a powerful generalization of standard or-

thonormal wavelet bases. A wavelet packet basis of

L2 is an orthogonal basis selected from the library of

packet functions. Each basis is indexed by a subset

of indices: j - the scaling parameter, n - the sequence

parameter, and k - the translation parameter. Two

examples of mother wavelets of the Daubechies-8 and

Antonini families respectively, are shown in Figure 1.

Atoms of a given family are just rescaled and trans-

lated versions of the respective mother wavelet.

2.2 Extended Wavelet Packets and Local

Cosine Packets

One well-known disadvantage of the discrete wavelet

and wavelet packet transforms is the lack of shift in-

variance. Recently, several authors proposed inde-

pendently to extend the library of bases in which

the best representations are searched for, by in-

troducing additional degrees of freedom that ad-

just the time-localization of the basis functions

[Liang and Parks, 1996]. One such extension is the

shift-invariant wavelet packet transform. The added

dimension in the case of shift-invariant decompositions



0 50 100 150 200 250

−
0.

1
0.

0
0.

1
0.

2

Index

D
au

be
ch

ie
s−

8

0 50 100 150 200 250

−
0.

2
−

0.
1

0.
0

0.
1

Index

A
nt

on
in

i

Figure 1: Daubechies-8 (left) and Antonini (right)

wavelets

is a relative shift, between a given parent-node and its

relative children nodes. Shifted versions of these trans-

forms for a given input signal, represent new bases

to be added to the library of bases, which may fur-

ther improve our ability to �nd the "best" adapted

basis. These modi�cations of the wavelet transform

and wavelet packet decompositions, lead to orthonor-

mal best basis representations which are shift-invariant

and characterized by lower information cost function-

als.

Localized cosine functions can also be combined into

a library of orthonormal bases [Wickerhauser, 1994].

The bases consist of cosines multiplied by smooth,

compactly supported cuto� functions. Elements of the

library are windowed bases and we adapt the window

sizes by choosing an appropriate window-determining

partition of the line. As in the case of wavelet pack-

ets, this library can be made into a tree. Two ad-

jacent intervals I and J span the space of windowed

functions over I [ J . Wavelet packets as well as lo-

cal cosine packets libraries are searchable for the "best

basis". The importance of best basis lies mainly in

the fact that they yield parsimonious representations

of waveforms or L2 functions. An important ques-

tion is how to select from a large number of bases in

the dictionary a basis which performs "best" for one's

task. In order to measure the performance of each

basis, we need a measure of e�ciency or �tness of a

basis for the task at hand. For this purpose, several

so-called information cost functionals have been pro-

posed [Wickerhauser, 1994]. The following Minimum

Description Length (AMDL) information cost func-

tional [Vidakovic, 1999] was used in the applications

described in section 4,

AMDL(k;m) =
3k

2
log2n+

n

2
log2 k dm � d�m k2;

where n is the sample size, dm is the vector of coe�-

cients in the basis Bm, and d
�

m is the hard-thresholded

vector dm (see section 2.3) with exactly k non-zero

coe�cients.

2.3 Denoising and Regression

In the following we will reference the standard

wavelet regression procedure used in signal denoising

[Donoho and Johnstone, 1995]. Similar considerations

apply to signals from local cosine packets dictionar-

ies. Suppose the function f is sampled at n = 2M

equally spaced points, but is observed with additive

white noise, yi = f(i=n) + ��i; i = 0; 1; : : : ; n � 1,

where �i, i = 0; 1; : : : ; n � 1, are iid standard normal

random variables, and � is unknown. For estimation of

f , we use the usual `2n norm to evaluate performance.

Let f = ff(xi)gni=1 and f̂ = ff̂(xi)gni=1 be the vectors
of true and estimated function values. Performance is

measured by the mean squared error,

R(f̂ ; f) =
1

n
k f̂ � f k22;n=

1

n

nX

i=1

[f̂(xi)� f(xi)]
2:

Our goal is to �nd the estimate f̂ that minimizes this

risk. The procedure to calculate f̂ involves three steps:
wavelet decomposition, thresholding, and reconstruc-

tion. After the noisy signal y is decomposed, an ap-

propriate thresholding value t is needed to reduce the

noise, such that after reconstruction from the thresh-

olded coe�cients, the corresponding f̂ makes R(f̂ ; f)
as small as possible. Given a wavelet coe�cient w and

a thresholded value t, the hard-thresholded Th is de-

�ned by, Th(w; t) = wI(j w j> t), where I is the usual
indicator function. Thus "hard" means "keep or kill".

3 Evolutionary Formulation

In an orthogonal adapted waveform analysis, the user

is provided with a collection of standard libraries of

waveforms or dictionaries (wavelets, wavelet packets

and local cosine packets basis), which can be combined

to �t speci�c classes of signals. Libraries of bases rep-

resent the population from which we want to select the

best-�t individuals. The proposed approach generates

a population of solutions based on basis expansions in

two basic dictionaries: wavelet packets and local co-

sine packets. The genetic algorithm operates on the

population to evolve the best solution according to

an objective function speci�ed in terms of the AMDL

functional. A steady state algorithm using overlapping

populations was used to drive the optimization process

[Wall, 1996].



3.1 Representation

A variable length integer sequence was used as the

basic genotype. The technique used to initialize

the population is based on generating an initial

random integer sequence, according to the values

of the allele sets speci�ed for the individual genes

[Wall, 1996, Goldberg, 1989]. The initial genotype se-

quence which codi�es the wavelet tree matches the

complete breadth-�rst (BF) sequence required to gen-

erate a complete binary tree, up to a pre-speci�ed

maximum depth. We refer to these sequences as tree-

mapped sequences. A well-built decomposition tree

for wavelet analysis purposes, is generated by impos-

ing appropriate constraints to the genotype sequence

as speci�ed in Sect. 3.2. The imposition of the con-

straints yields variable length code sequences after re-

sizing. An alphabet A = f0; 1; 2g is used to codify the

wavelet tree nodes according to their types as speci�ed

in Sect. 3.3, thus enabling us to map any tree struc-

ture into a code sequence. The mapping of a code se-

quence to a complete BF tree traversal yields an initial

sequence with length l = 2L� 1, for a tree of depth L.
The length l is also the number of nodes in a complete

binary tree of depth L. When coding a complete bi-

nary tree using a complete BF sequence, the last level

of terminal nodes is redundant and may be omitted. In

addition, after the application of the constraints com-

plete BF sequences may be pruned, yielding shorter ge-

netic sequences. The chromossomes are constructed as

follows. The �rst gene assumes integer values g0 2 F,

where F is the set of possible �lter types used in the im-

plementation. The remaining genes are used to codify

the wavelet decomposition tree [da Silva, 1999].

3.2 Constraints

There are several methods for generating trees which

can be used to initialize the population. The full,

grow and ramped half-and-half methods of tree gen-

eration were introduced in the �eld of genetic pro-

gramming [Koza, 1992]. These methods are based on

tree depth. The ramped half-and-half method is the

most commonly used method of generating random

parse trees because of its relative higher probability of

generating subtrees of varying depth and size. How-

ever, these methods do not produce a uniform sam-

pling of the search space. We de�ned new constrained

genetic operators to correct the application of stan-

dard genetic operators that initialize or modify ge-

netic sequences. Two types of constraint operators

have been used to guarantee that valid tree-mapped

genetic sequences are generated: (1) top-down opera-

tor, and (2) bottom-up operator. In addition, by ap-

plying these operators we look for a uniform sampling

of the tree search space. In terms of binary tree data

structures, the top-down constraint guarantees that if

a node ti has null code ci = 0 then its two sons ti;0
and ti;1 must have null code ci;0 = 0 and ci;1 = 0. The

bottom-up constraint guarantees that if at least one

of the sons ti;0 and ti;1 of a node ti has non-null code,
then the parent ti;0 must have non-null code ci 6= 0.

The null code references a terminal node. These con-

straint operators are biased in opposite ways. Starting

from a uniform random code sequence, the bottom-up

constraint operator constructs valid genetic sequences

which are biased towards complete, full-depth trees.

By the same token, the top-down constraint operator

constructs valid genetic sequence which is biased to-

wards null, minimum depth trees. To get a more uni-

form sampling of the sequence space for sequences of

maximum length s = 2L � 1, we used an initialization

procedure which randomly combines the operation of

those two constraint operators [da Silva, 2000]. By re-

sizing (pruning) constrained code sequences we allow

for genetic sequences of variable length, hence tree rep-

resentations of variable depth.

3.3 Speci�cation

The collection of wavelet packets comprises a library of

functions with a binary tree structure. To obtain the

wavelet packet analysis of a function, or data set in the

discrete case, we �rst �nd its coe�cient sequence in the

root subspace, then follow the branches of the wavelet

packets tree to �nd the expansion in the descendent

subspaces. Assigning to each tree node a wavelet split

value si 2 f0; 1; 2g we may enumerate all possible bi-

nary tree structures. The value sw = 1 references un-

shifted interior nodes, i.e., nodes with left and right

children subtrees associated with unshifted decompo-

sitions. The value sw = 2 references time shifted inte-

rior nodes, i.e, shifted transforms. The value sw = 0

references terminal nodes. This tree codi�cation is

often called a joint tree, since it guides the process

of generating not only wavelet packet transforms but

also shifted wavelet packet transforms [da Silva, 1999].

Therefore, the approach of organizing libraries of bases

as a tree has been extended to construct joint decom-

position trees for enlarged basis collections. Similar

considerations apply to the construction of local cosine

packet trees. Libraries of bases represent the popula-

tion from which we want to select the best-�t individ-

uals. The genotype sequence G allows for three opti-

mization parameters: best �lter, best wavelet packet

basis and best shifted basis. The genetic representa-

tion is used to create an initial population and evolve

potential solutions to the optimization problem. The



genotype is made up of the genes which guide the

discrete wavelet or local cosine decomposition of each

waveform, in accordance with the joint tree represen-

tation. A cost functional is then applied to the coef-

�cients, and its value is used to derive the �tness of

the individual. In terms of entropy, the optimization

problem amounts to evolve a minimum-entropy geno-

type. Using entropy, the best individual would be the

one with minimum evolved entropy in a given library

space. The �rst gene g0 in G is responsible for the

optimization of the �lter used in the decomposition.

We have used in the implementation 16 possible types

of di�erent �lters, thus g0 = f0; : : : ; 15g. The �lters

considered in the implementation were the Haar �l-

ter, the Daubechies �lters D4, D6 and D8, and several

biorthogonal �lters commonly used in image analysis

as implemented in [Davis, 1997]. The analysis phase of

the (discrete) shift wavelet packet transform is codi�ed

in the genetic sequence G.

4 Atomic Recognition

We are interested in �nding the best representation for

a given signal by decomposing a signal into elementary

waveforms well localized in time and frequency, called

time-frequency atoms. A given signal is reproduced,

up to a certain approximation, by summing up the in-

dividual atoms. We consider three transformed spaces

from which the most important atomic coe�cients for

representing a given signal can be selected: wavelet

packets, multi-�lter shifted wavelet packets, and lo-

cal cosine spaces. Once we have selected an atomic

coe�cient in a signal transformed space, the applica-

tion of the appropriate inversion transform according

to the coe�cient dictionary generates an atom of the

analyzing signal. We provide simulation examples of

noisy synthetic signals to substantiate the estimation

capabilities of the evolutionary computation for signal

component analysis. A synthetic signal is generated by

randomly selecting from a dictionary, or collection of

dictionaries, a speci�ed number of atoms and summing

them up. By analogy with other science �elds, we will

call such a synthetic signal a molecule or molecular sig-

nal. This molecular signal is then corrupted by gaus-

sian noise with a user-speci�ed signal-to-noise (snr)
ratio. The objective of the algorithm is to correctly

identify the atoms presented in the randomly gen-

erated noisy molecule. The idealized time-frequency

plane is a suitable tool to visualize atomic signal de-

composition and atomic recognition. An atomic coe�-

cient is represented by a single information cell in this

plane with its sides parallel to the time and frequency

axes. The amplitude of the atomic coe�cient is en-

coded by darkening the information cell in proportion
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Figure 2: Molecular test signal (top), and its noisy

counterpart (bottom)

Figure 3: Test basis tree (class 1)

to the coe�cient's energy. Di�erent partitions of the

plane produce information cells with di�erent features,

in terms of their shape and localization in the plane.

By the same token, di�erent information cell's features

generate atomic waveforms with di�erent signal adap-

tation capabilities.

4.1 Class 1: recognition in wavelet packet

dictionaries

Figure 2 depicts the molecular test signal generated

by composition of 20 atomic waveforms randomly se-

lected from the wavelet packets dictionary. A dis-

(a) Test (b) Evolved

Figure 4: Time-frequency decompositions (class 1)



Figure 5: Evolved basis tree (class 1)
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Figure 6: Reconstructed signal (class 1)

crete signal size N = 128, and the Antonini �lter

[Antonini et al., 1992] were used in this test signal. A

snr = 7 was applied to the test signal to produce the

noisy test signal counterpart, also depicted in Figure

2. Here, the signal-to-noise ratio is de�ned as the ratio

of standard deviations of signal and noise. The time-

frequency representation of the molecular test signal

f (without noise) is represented in Figure 4(a). This

representation is associated with the basis tree of Fig-

ure 3. The atomic coe�cients' energy was normalized

to 1. The evolutionary program was applied to the

noisy test signal to select the best basis representa-

tion. The information cost measure AMDL was used

in �tness evaluation. A hard threshold with universal

cost measure
p
2logN [Donoho and Johnstone, 1995]

was applied to the wavelet packet coe�cients produced

by the best evolved basis. The thresholded coe�cients

were used to draw the time-frequency representation of

the evolved signal in the transformed space, as shown

in Figure 4(b). This �gure shows that all atomic co-

e�cients have been correctly identi�ed, even though

the evolved basis tree (Figure 5) is di�erent from the

original one. The 20 evolved atoms produced the re-

constructed signal f̂ represented in Figure 6. Notice

that the cells in the diagram of Figure 4(b) have energy

(color) close to the energy of the corresponding cells

in the test diagram. The estimation process needs to

�lter the noise introduced in the original signal to get

a closer representation of the original signal. The snr
value a�ects the precision of the identication process

itself.
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Figure 7: Molecular test signal (top), and its noisy

counterpart (bottom) (class 2)

(a) Test (b) Evolved

Figure 8: Time-frequency decompositions (class 2)

4.2 Class 2: recognition in multi�lter, shifted

wavelet packet dictionaries

A test procedure similar to the one described in sec-

tion 4.1 was applied to signals randomly synthesized

from a multi�lter shifted wavelet dictionary. In this

case, in addition to the best wavelet packet basis, the

evolved genome has to correctly "guess" the best �l-

ter to use, and the best shift to apply at each wavelet

packet tree node. The number of atoms used in the

test signal, as well as the snr value and the informa-

tion cost measure were the same as those referred to

in section 4.1. Figures 7 through 10, have interpreta-

tions similar to the ones presented in section 4.1. In

Figure 9, shifted wavelet packet transforms at a given

transformation step are represented by thicker lines in

the basis decomposition tree. Thinner lines represent

unshifted wavelet packet transforms. By the same to-

ken, Figures 8(a) and 8(b) allow for the representation

of time-shifted partitions of the time-frequency plane.

As in section 4.1 the evolutionary program was able

to correctly recognize the 20 atomic coe�cients in the

test signal.



Figure 9: Evolved time-shifted basis tree (class 2)
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Figure 10: Reconstructed signal (class 2)
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Figure 11: Composite test signal (top), and recon-

structed signal (bottom) (class 3)

(a) Test (b) Evolved

Figure 12: Composite time-frequency decompositions

(class 3)

4.3 Class 3: recognition with multiple

dictionaries

As a �nal example, we consider atoms taken from two

dictionaries: wavelet packets and local cosine pack-

ets. To generate the test signal we took randomly

six atoms, three from each of the above two dictio-

naries. The synthetic molecular signal with N = 64

and snr = 7 is represented in the top panel of Fig-

ure 11. The composite time-frequency diagram for

the composite test signal is depicted in Figure 12(a),

by graphical superposition of two time-frequency dia-

grams: wavelet packets and local cosine packet time-

frequency diagrams. In this case, both the wavelet

packets dictionary and the local cosine packets dictio-

nary alone were unable to identify all the atoms in

the test signal. The best evolved time-frequency di-

agrams for the above two dictionaries when taken in

isolation, are represented in Figures 13(a) and 13(b).

Clearly, these diagrams do not match the diagram in

Figure 12(a). To estimate the atoms in the composite

molecule we evolved a composite genome, built from

the best evolved genomes from the above two dic-

tionaries. The evolved composite genome was then

used to generate the composite time-frequency dia-

gram shown in Figure 12(b). Six atoms were correctly

identi�ed. We can represent the contribution of each

dictionary for the composite signal. Figure 14 (top

picture) shows the wavelet part of the reconstructed

signal, formed by the three atoms of the wavelet pack-

ets dictionary which were used to build up the re-

constructed signal. Similarly, the bottom picture in

Figure 14 depicts the local cosine component (three

atoms' molecule) present in the evolved composite sig-

nal. The composite reconstructed signal f̂ is shown

in Figure 11 (bottom). Table 1 presents the `2 recon-

struction errors k f � f̂ k2 for the test signals used in

section 4. For the composite signal of class 3, the re-

construction errors when a single dictionary was used

in the estimation process are referenced by 3 � WP
and 3� CP , for the wavelet packets and cosine pack-

ets dictionary, respectively.

5 Conclusions

The combination of elementary waveforms from mul-

tiple dictionaries is important for the proper analy-

sis of complex signals. Traditional signal processing

algorithms have di�culty in �nding well-adapted sig-

nal representations in increasingly larger and overcom-

plete dictionaries. The proposed genetic algorithm ex-

tends the scope and enhances the 
exibility of stan-

dard best basis algorithms in order to �nd better adap-

tive signal representations. A statistical analysis of the



(a) Wavelet packets (b) Cosine packets

Figure 13: Time-frequency decompositions by dictio-

nary (class 3)
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Figure 14: Reconstructed parts by dictionary (class 3)

component identi�cation process may be conducted to

de�ne a statistical measure of the misidenti�cation er-

ror rates for di�erent signal classes. This is especially

signi�cant for analysis of complex signals derived from

combinations of waveforms from multiple dictionar-

ies. In our view, signal component analysis provides a

suitable test environment for comparative performance

of di�erent algorithms. The following characteristics

of this environment are worth noting. Synthetic test

functions are easily generated. The complexity of the

environment may be controlled by de�ning dictionaries

and combination of dictionaries from which test signals

may be drawn. The di�culty of the component anal-

ysis process may be controlled by de�ning appropriate

signal-to-noise ratios. Visual tools and numeric error

measures are available to assess performance. Statisti-

cal misidenti�cation error criteria are readily available.
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