Skip to main content

Advertisement

Log in

A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Meningitis is an inflammation of the protective membranes covering the brain and the spinal cord. Meningitis can have different causes, and discriminating between meningitis etiologies is still considered a hard task, especially when some specific clinical parameters, mostly derived from blood and cerebrospinal fluid analysis, are not completely available. Although less frequent than its viral version, bacterial meningitis can be fatal, especially when diagnosis is delayed. In addition, often unnecessary antibiotic and/or antiviral treatments are used as a solution, which is not cost or health effective. In this work, we address this issue through the use of machine learning-based methodologies. We consider two distinct cases. In one case, we take into account both blood and cerebrospinal parameters; in the other, we rely exclusively on the blood data. As a result, we have rules and formulas applicable in clinical settings. Both results highlight that a combination of the clinical parameters is required to properly distinguish between the two meningitis etiologies. The results on standard and clinical datasets show high performance. The formulas achieve 100% of sensitivity in detecting a bacterial meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Affenzeller M (2009) Genetic algorithms and genetic programming: modern concepts and practical applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Attia J, Hatala R et al (1999) The rational clinical examination. Does this adult patient have acute meningitis? JAMA 282(2):175–181

    Google Scholar 

  • Bansal R, Gaur N et al (2016). Outlier detection: applications and techniques in data mining. In: 2016 6th international conference: cloud system and big data engineering (Confluence)

  • Bonadio WA (1992) The cerebrospinal fluid: physiologic aspects and alterations associated with bacterial meningitis. Pediatr Infect Dis J 11(6):423–431

    Google Scholar 

  • Bonsu BK, Harper MH (2004) Differentiating acute bacterial meningitis from acute viral meningitis among children with cerebrospinal fluid pleocytosis: a multivariable regression model. Pediatr Infect Dis J 23(6):7

    Google Scholar 

  • Chalmers AC, Aprill BS et al (1990) Cerebrospinal fluid and human immunodeficiency virus: findings in healthy, asymptomatic, seropositive men. Arch Intern Med 150(7):1538–1540

    Google Scholar 

  • Choi C (2001) Bacterial meningitis in aging adults. Clin Infect Dis 33(8):1380–1385

    Google Scholar 

  • Chonmaitree T, Baldwin CD et al (1989) Role of the virology laboratory in diagnosis and management of patients with central nervous system disease. Clin Microbiol Rev 2(1):1–14

    Google Scholar 

  • Connolly KJ, Hammer SM (1990) The acute aseptic meningitis syndrome. Infect Dis Clin N Am 4(4):599–622

    Google Scholar 

  • Conrad AJ, Schmid P et al (1995) Quantifying HIV-1 RNA using the polymerase chain reaction on cerebrospinal fluid and serum of seropositive individuals with and without neurologic abnormalities. J Acquir Immune Defic Syndr Hum Retrovirol 10(4):425–435

    Google Scholar 

  • Curtis S, Stobart K et al (2010) Clinical features suggestive of meningitis in children: a systematic review of prospective data. Pediatrics 126(5):952–960

    Google Scholar 

  • D’Angelo G, Rampone S (2014a) Diagnosis of aerospace structure defects by a HPC implemented soft computing algorithm. In: 2014 IEEE international workshop on metrology for aerospace (Metroaerospace). pp 408–412

  • D’Angelo G, Rampone S (2014b) Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications. BMC Bioinform 15:S2

    Google Scholar 

  • D’Angelo G, Rampone S (2015) Shape-based defect classification for non destructive testing. In: 2015 2nd IEEE international workshop on metrology for aerospace (Metroaerospace). pp 406–410

  • D’Angelo G, Rampone S, et al (2015a) An artificial intelligence-based trust model for pervasive computing. In: 2015 10th international conference on P2p, parallel, grid, cloud and internet computing (3pgcic). pp 701–706

  • D’angelo G, Palmieri F et al (2015) An uncertainty-managing batch relevance-based approach to network anomaly detection. Appl Soft Comput 36:408–418

    Google Scholar 

  • D’Angelo G, Rampone S (2016) Feature extraction and soft computing methods for aerospace structure defect classification. Measurement 85:192–209

    Google Scholar 

  • D’Angelo G, Laracca M et al (2016a) Automated eddy current non-destructive testing through low definition lissajous figures. In: 2016 IEEE metrology for aerospace (Metroaerospace). pp 280–285

  • D’Angelo G, Rampone S et al (2016b) Developing a trust model for pervasive computing based on Apriori association rules learning and Bayesian classification. Soft Comput 21:6297–6315

    Google Scholar 

  • D’Angelo G, Pilla R et al (2017) Toward a soft computing-based correlation between oxygen toxicity seizures and hyperoxic hyperpnea. Soft Comput 22:1–7

    Google Scholar 

  • Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning. ACM: Pittsburgh, pp 233–240

  • Dubos F, Lamotte B et al (2006) Clinical decision rules to distinguish between bacterial and aseptic meningitis. Arch Dis Child 91(8):647–650

    Google Scholar 

  • Duffy J, Engle-Warnick J (2002) Using symbolic regression to infer strategies from experimental data. In: Chen S-H (ed) Evolutionary computation in economics and finance. Physica-Verlag, Heidelberg, pp 61–82

    Google Scholar 

  • Durand ML, Calderwood SB et al (1993) Acute bacterial meningitis in adults: a review of 493 episodes. N Engl J Med 328(1):21–28

    Google Scholar 

  • Echevarria JM, Casas I et al (1994) Detection of varicella-zoster virus-specific DNA sequences in cerebrospinal fluid from patients with acute aseptic meningitis and no cutaneous lesions. J Med Virol 43(4):331–335

    Google Scholar 

  • Feigin RD, McCracken GH Jr et al (1992) Diagnosis and management of meningitis. Pediatr Infect Dis J 11(9):785–814

    Google Scholar 

  • Francois O, Leray P (2007) Generation of incompliete test-data using Bayesinan networks. In: 2007 international joint conference on neural networks

  • Freedman SB, Marrocco A, Pirie J, Dick PT (2001) Predictors of bacterial meningitis in the era after Haemophilus influenzae. Arch Pediatr Adolesc Med 155(12):7

    Google Scholar 

  • Gaschignard J, Levy C et al (2011) Neonatal bacterial meningitis: 444 cases in 7 years. Pediatr Infect Dis J 30(3):212–217

    Google Scholar 

  • Geiseler PJ, Nelson KE et al (1980) Community-acquired purulent meningitis: a review of 1316 cases during the antibiotic era, 1954–1976. Rev Infect Dis 2(5):725–745

    Google Scholar 

  • Glimaker M, Johansson B et al (2015) Adult bacterial meningitis: earlier treatment and improved outcome following guideline revision promoting prompt lumbar puncture. Clin Infect Dis 60(8):1162–1169

    Google Scholar 

  • Gnann JW (2004) Meningitis and encephalitis caused by mumps virus. In: Sheld WM, Whitley RJ, Marra CM (eds) Infections of the central nervous system. 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp. 231–241

    Google Scholar 

  • Gorse GJ, Thrupp LD et al (1984) Bacterial meningitis in the elderly. Arch Intern Med 144(8):1603–1607

    Google Scholar 

  • Gray LD, Fedorko DP (1992) Laboratory diagnosis of bacterial meningitis. Clin Microbiol Rev 5(2):130–145

    Google Scholar 

  • Guerra-Romero L, Tauber MG et al (1992) Lactate and glucose concentrations in brain interstitial fluid, cerebrospinal fluid, and serum during experimental pneumococcal meningitis. J Infect Dis 166(3):546–550

    Google Scholar 

  • Hansson LO, Axelsson G et al (1993) Serum C-reactive protein in the differential diagnosis of acute meningitis. Scand J Infect Dis 25(5):625–630

    Google Scholar 

  • Hasbun R, Abrahams J et al (2001) Computed tomography of the head before lumbar puncture in adults with suspected meningitis. N Engl J Med 345(24):1727–1733

    Google Scholar 

  • Hautamaki V, Karkkainen I et al (2004) Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004

  • Hayden RT, Frenkel LD (2000) More laboratory testing: greater cost but not necessarily better. Pediatr Infect Dis J 19(4):290–292

    Google Scholar 

  • Hollander H, Levy JA (1987) Neurologic abnormalities and recovery of human immunodeficiency virus from cerebrospinal fluid. Ann Intern Med 106(5):692–695

    Google Scholar 

  • Hollander H, Stringari S (1987) Human immunodeficiency virus-associated meningitis: clinical course and correlations. Am J Med 83(5):813–816

    Google Scholar 

  • Hussein AS, Shafran SD (2000) Acute bacterial meningitis in adults: a 12-year review. Medicine (Baltimore) 79(6):360–368

    Google Scholar 

  • Huy NT, Thao NT et al (2010) Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care 14(6):R240

    Google Scholar 

  • Jaeger F, Leroy J et al (2000) Validation of a diagnosis model for differentiating bacterial from viral meningitis in infants and children under 3.5 years of age. Eur J Clin Microbiol Infect Dis 19(6):418–421

    Google Scholar 

  • Jain AK, Mao J et al (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Google Scholar 

  • Kang H (2013) The prevention and handling of the missing data. Korean J Anesthesiol 64(5):402–406

    Google Scholar 

  • Kennedy DH, Fallon RJ (1979) Tuberculous meningitis. JAMA 241(3):264–268

    Google Scholar 

  • Kim KS (2010) Acute bacterial meningitis in infants and children. Lancet Infect Dis 10(1):32–42

    Google Scholar 

  • Kleine TO, Zwerenz P et al (2003) New and old diagnostic markers of meningitis in cerebrospinal fluid (CSF). Brain Res Bull 61(3):287–297

    Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on Artificial intelligence, vol 2. Morgan Kaufmann Publishers Inc., Montreal, pp 1137–1143

  • Konar A (2000) Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain. CRC Press Inc., Boca Raton

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • La Scolea LJ Jr., Dryja D (1984) Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J Clin Microbiol 19(2):187–190

    Google Scholar 

  • Lewis DD (1998) Naive (Bayes) at forty: the independence assumption in information retrieval. In: Proceedings of the 10th European conference on machine learning, Springer, New York, pp 4–15

    Google Scholar 

  • Maxson S, Lewno MJ et al (1994) Clinical usefulness of cerebrospinal fluid bacterial antigen studies. J Pediatr 125(2):235–238

    Google Scholar 

  • McArthur JC (1987) Neurologic manifestations of AIDS. Medicine (Baltimore) 66(6):407–437

    Google Scholar 

  • Morales Casado MI, Moreno Alonso F et al (2016) Ability of procalcitonin to predict bacterial meningitis in the emergency department. Neurologia 31(1):9–17

    Google Scholar 

  • Mylonakis E, Hohmann EL et al (1998) Central nervous system infection with Listeria monocytogenes: 33 years’ experience at a general hospital and review of 776 episodes from the literature. Medicine (Baltimore) 77(5):313–336

    Google Scholar 

  • Ni H, Knight AI et al (1992) Polymerase chain reaction for diagnosis of meningococcal meningitis. Lancet 340(8833):1432–1434

    Google Scholar 

  • Nigrovic LE, Kuppermann N, Malley R (2002) Development and validation of a multivariable predictive model to distinguish bacterial from aseptic meningitis in children in the post-Haemophilus influenzae era. Pediatrics 110(4):8

    Google Scholar 

  • Pai M, Flores LL et al (2003) Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis 3(10):633–643

    Google Scholar 

  • Pratt RD, Nichols S et al (1996) Virologic markers of human immunodeficiency virus type 1 in cerebrospinal fluid of infected children. J Infect Dis 174(2):288–293

    Google Scholar 

  • Quinlan JR (1993) C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc, Burlington

    Google Scholar 

  • Radstrom P, Backman A et al (1994) Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy. J Clin Microbiol 32(11):2738–2744

    Google Scholar 

  • Ramers C, Billman G et al (2000) Impact of a diagnostic cerebrospinal fluid enterovirus polymerase chain reaction test on patient management. JAMA 283(20):2680–2685

    Google Scholar 

  • Revett K (2006) A neural network based classifier for acute meningitis. In: Reljin B, Stankovic S (eds) Proceedings of 8th seminar on neural network applications in electrical engineering, NEUREL-2006, September 25–27 2006, IEEE, Belgrade

  • Revett K, Gorunescu F et al (2006). A machine learning approach to differentiating bacterial from viral meningitis

  • Romero JR (2002) Diagnosis and management of enteroviral infections of the central nervous system. Curr Infect Dis Rep 4(4):309–316

    Google Scholar 

  • Rotbart HA, Sawyer MH et al (1994) Diagnosis of enteroviral meningitis by using PCR with a colorimetric microwell detection assay. J Clin Microbiol 32(10):2590–2592

    Google Scholar 

  • Şahin DÖ, Ateş N et al (2016) Feature selection in text classification. In: 2016 24th signal processing and communication application conference (SIU)

  • Sakushima K, Hayashino Y et al (2011) Diagnostic accuracy of cerebrospinal fluid lactate for differentiating bacterial meningitis from aseptic meningitis: a meta-analysis. J Infect 62(4):255–262

    Google Scholar 

  • Sánchez-Maroño N, Alonso-Betanzos A et al (2007) Filter methods for feature selection: a comparative study. In: Yin H, Tino P, Corchado E, Byrne W, Yao X (eds) Intelligent data engineering and automated learning—IDEAL 2007: 8th international conference, Birmingham, proceedings. Springer, Berlin, pp 178–187

    Google Scholar 

  • Saravolatz LD, Manzor O et al (2003) Broad-range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clin Infect Dis 36(1):40–45

    Google Scholar 

  • Sawyer MH, Holland D et al (1994) Diagnosis of enteroviral central nervous system infection by polymerase chain reaction during a large community outbreak. Pediatr Infect Dis J 13(3):177–182

    Google Scholar 

  • Schlech WF 3rd, Ward JI et al (1985) Bacterial meningitis in the United States, 1978 through 1981: The National bacterial meningitis surveillance study. JAMA 253(12):1749–1754

    Google Scholar 

  • Schuchat A, Robinson K et al (1997) Bacterial meningitis in the United States in 1995: active surveillance team. N Engl J Med 337(14):970–976

    Google Scholar 

  • Searson DP (2015) GPTIPS 2: an open-source software platform for symbolic data mining. In: Gandomi AH et al (eds) Handbook of genetic programming applications, vol 22. Springer, New York

    Google Scholar 

  • Sessa J, Syed D (2016) Techniques to deal with missing data. In: 2016 5th international conference on electronic devices, systems and applications (ICEDSA)

  • Shoji H, Honda Y et al (1992) Detection of varicella-zoster virus DNA by polymerase chain reaction in cerebrospinal fluid of patients with herpes zoster meningitis. J Neurol 239(2):69–70

    Google Scholar 

  • Sinner SW, Tunkel AR (2002) Approach to the diagnosis and management of tuberculous meningitis. Curr Infect Dis Rep 4(4):324–331

    Google Scholar 

  • Spanos A, Harrell FE Jr et al (1989) Differential diagnosis of acute meningitis: an analysis of the predictive value of initial observations. JAMA 262(19):2700–2707

    Google Scholar 

  • Sutinen J, Sombrero L et al (1998) Etiology of central nervous system infections in the Philippines and the role of serum C-reactive protein in excluding acute bacterial meningitis. Int J Infect Dis 3(2):88–93

    Google Scholar 

  • Taha A, Hegazy OM (2010) A proposed outliers identification algorithm for categorical data sets. In: 2010 the 7th international conference on informatics and systems (INFOS)

  • Tarafdar K, Rao S et al (2001) Lack of sensitivity of the latex agglutination test to detect bacterial antigen in the cerebrospinal fluid of patients with culture-negative meningitis. Clin Infect Dis 33(3):406–408

    Google Scholar 

  • Tedder DG, Ashley R et al (1994) Herpes simplex virus infection as a cause of benign recurrent lymphocytic meningitis. Ann Intern Med 121(5):334–338

    Google Scholar 

  • Thigpen MC, Whitney CG et al (2011) Bacterial meningitis in the United States, 1998–2007. N Engl J Med 364(21):2016–2025

    Google Scholar 

  • Thwaites GE, Caws M et al (2004) Comparison of conventional bacteriology with nucleic acid amplification (amplified mycobacterium direct test) for diagnosis of tuberculous meningitis before and after inception of antituberculosis chemotherapy. J Clin Microbiol 42(3):996–1002

    Google Scholar 

  • Thwaites GE, Lan NT et al (2005) Effect of antituberculosis drug resistance on response to treatment and outcome in adults with tuberculous meningitis. J Infect Dis 192(1):79–88

    Google Scholar 

  • Tunkel AR (2001) Bacterial meningitis. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Tunkel AR, Hartman BJ et al (2004) Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 39(9):1267–1284

    Google Scholar 

  • Tzanakaki G, Tsopanomichalou M et al (2005) Simultaneous single-tube PCR assay for the detection of Neisseria meningitidis, Haemophilus influenzae type b and Streptococcus pneumoniae. Clin Microbiol Infect 11(5):386–390

    Google Scholar 

  • van de Beek D, de Gans J et al (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351(18):1849–1859

    Google Scholar 

  • Viallon A, Pouzet V et al (2000) Rapid diagnosis of the type of meningitis (bacterial or viral) by the assay of serum procalcitonin. Presse Med 29(11):584–588

    Google Scholar 

  • Viallon A, Botelho-Nevers E et al (2016) Clinical decision rules for acute bacterial meningitis: current insights. Open Access Emerg Med 8:7–16

    Google Scholar 

  • Vipin Kumar SM (2014) Feature selection: a literature review. Smart Comput Rev 4(3):19

    Google Scholar 

  • Wenger JD, Hightower AW et al (1990) Bacterial meningitis in the United States, 1986: report of a multistate surveillance study: the bacterial meningitis study group. J Infect Dis 162(6):1316–1323

    Google Scholar 

  • Witten IH, Frank E et al (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers Inc, Burlington

    MATH  Google Scholar 

  • Zugar A (2004) Tuberculosis of the central nervous system. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Rampone.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by V. Loia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, G., Pilla, R., Tascini, C. et al. A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees. Soft Comput 23, 11775–11791 (2019). https://doi.org/10.1007/s00500-018-03729-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-03729-y

Keywords

Navigation