Skip to main content
Log in

Cartesian Genetic Programming for Image Analysis of the Developing Drosophila Eye

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Methods of automatic feature extraction attract increasing attention when solving modern image processing problems. Confocal images of the single-layer epithelium of the developing eye of the fruit fly drosophila are a convenient model system for the development of methods for the identification of complex features. The aim of this study was to use Cartesian genetic programming to identify the boundaries of ommatidia, the photosensitive units of the developing eye. The use of Cartesian genetic programming to analyze the expression patterns of the Fasciclin III marker showed good results. This provides interesting prospects for further application of this technology for the automatic analysis of images obtained using confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. I. A. Rusanova, in Collection of Papers of the All-Russian School-Seminar, Ed. by D. A. Usanov (Saratovskii Istochnik, Saratov, 2018), pp. 78–81.

    Google Scholar 

  2. K. N. Kozlov, E. V. Golubkova, L. A. Mamon, et al., Biofizika 67, 283 (2022). https://doi.org/10.31857/S0006302922020119

    Article  Google Scholar 

  3. J. P. Kumar, Dev. Dyn. 241, 136 (2012). https://doi.org/10.1002/dvdy.23707

    Article  Google Scholar 

  4. S. Surkova, J. Görne, S. Nuzhdin, et al., Dev. Biol. 476, 41 (2021). https://doi.org/10.1016/j.ydbio.2021.03.005

    Article  Google Scholar 

  5. J. Y. Roignant and J. E Treisman, Int. J. Dev. Biol. 53, 795 (2009). https://doi.org/10.1387/ijdb.072483jr

    Article  Google Scholar 

  6. J. E. Treisman, Wiley Interdiscip. Rev.: Dev. Biol. 2, 545 (2013). https://doi.org/10.1002/wdev.100

    Article  Google Scholar 

  7. S. Ali, S. A. Signor, K. Kozlov, et al., Evol. Dev. 21, 157 (2019). https://doi.org/10.1111/ede.12283

    Article  Google Scholar 

  8. L. Liu, L. Shao and X. Li, Inf. Sci. 316, 567 (2015). https://doi.org/10.1016/j.ins.2014.06.030

    Article  Google Scholar 

  9. A. Lensen, H. Al-Sahaf, M. Zhang, et al., in EuroGP 2016. LNCS, Ed. by M. I. Heywood, J. McDermott, M. Castelli (Springer-Verlag, Cham, 2016), Vol. 9594, pp. 51–67. https://doi.org/10.1007/978-3-319-30668-1_4

    Book  Google Scholar 

  10. S. Ruberto, V. Terragni, and J. Moore, in Parallel Problem Solving from Nature. Lecture Notes in Computer Science Image Feature Learning with Genetic Programming (Springer-Verlag, Cham, 2020), pp. 63–78. https://doi.org/10.1007/978-3-030-58115-2_5

    Book  Google Scholar 

  11. C. B. Perez and G. Olague, Intell. Data Anal. 17, 561 (2013). https://doi.org/10.3233/IDA-130594

    Article  Google Scholar 

  12. W. A. Albukhanajer and J. A. Briffa, IEEE Trans. Cybern. 45, 1757 (2015).https://doi.org/10.1109/TCYB.2014.2360074

  13. J. F. Miller, P. Thomson, and T.C. Fogarty, in Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, Ed. by D. Quagliarella, J. Periaux, C. Poloni, and G. Winter (Wiley, 1998), pp. 105–131.

    Google Scholar 

  14. M. A. Kramer, AIChE J. 37, 233 (1991). https://doi.org/10.1002/aic.690370209

    Article  Google Scholar 

  15. A. Makhzani and B. J. Frey, in Advances in Neural Information Processing Systems, Ed. by C. Cortes, N. Lawrence, D. Lee, et al. (2015), pp. 2791–2799

  16. P. Vincent, H. Larochelle, Y. Bengio, et al., in Proceedings of the International Conference on Machine Learning, ICML 2008 (2008), pp. 1096–1103. https://doi.org/10.1145/1390156.1390294

  17. P. M. Snow, A. J. Bieber, and C. S. Goodman, Cell 59, 313 (1989). https://doi.org/10.1016/0092-8674(89)90293-6

    Article  Google Scholar 

  18. K. Kozlov, A. Pisarev, J. Kaandorp, et al., in Proceedings of the 9th International Conference on Systems Biology (Goteborg, 2008).

Download references

Funding

The work was carried out with the financial support of the Russian Foundation for Basic Research, project no. 20-04-01047-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Surkova.

Ethics declarations

The authors declare that there is no conflicts of interest.

This paper does not describe any studies using humans and animals as objects.

Additional information

Translated by E. Puchkov

Abbreviation: CGP, Cartesian genetic programming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, N.A., Kozlov, K.N., Surkova, S.Y. et al. Cartesian Genetic Programming for Image Analysis of the Developing Drosophila Eye. BIOPHYSICS 68, 462–467 (2023). https://doi.org/10.1134/S0006350923030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923030077

Keywords:

Navigation