Skip to main content

Advertisement

Log in

Computational Simulation of CO2 Sorption in Polymeric Membranes Using Genetic Programming

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A statistical model based on genetic programming was developed to study the solubility of CO2 in different polymers including polystyrene, poly(vinyl acetate), polybutylene succinate and poly(butylene succinate-co-adipate). The proposed genetic model can predict the CO2 solubility with the average relative deviation of 0.095, 0.0503, 0.0312, 0.039% and R2 values of greater than 0.98. The results showed efficient applicability of the model and its outperformance in predicting the CO2 solubility compared with other modeling approaches. Therefore, the proposed model contributes to enhancing better understanding of gas/polymer systems and aids in alleviating the difficulties arising in the prediction of gas solubilities during the design and optimization of the relevant processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

ARD:

Average relative deviation

CK-SOFT:

Original statistical associating fluid theory

EDMS:

Extended dual-mode sorption

EOSs:

Equation of states

GA:

Genetic algorithm

GP:

Genetic programming

MAE:

Mean absolute error

MSB:

Magnetic suspension balance

MSE:

Mean square error

PBS:

Polybutylene succinate

PBSA:

Poly(butylene succinate-co-adipate)

PC-SAFT:

Perturbed-chain SAFT

PPO:

2,6-Dimethyl-1,4-phenylene ether

PS:

Polystyrene

PVAc:

Poly(vinyl acetate)

R 2 :

Squared correlation coefficient

SAFT:

Statistical associating fluid theories

SL:

Sanchez–Lacombe

SS:

Simha–Somcynsky

STD:

Standard deviation

SWP:

Sako–Wu–Prausinitz

References

  1. Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I.: Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20, 14–27 (2008)

    Article  Google Scholar 

  2. Younas, M.; Rezakazemi, M.; Daud, M.; Wazir, M.B.; Ahmad, S.; Ullah, N.; Inamuddin,; Ramakrishna, S.: Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progr. Energy Combust. Sci. 80, 100849 (2020)

    Article  Google Scholar 

  3. Sohaib, Q.; Muhammad, A.; Younas, M.; Rezakazemi, M.: Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures. Sep. Purif. Technol. 241, 116677 (2020)

    Article  Google Scholar 

  4. Rizzuto, C.; Caravella, A.; Brunetti, A.; Park, C.H.; Lee, Y.M.; Drioli, E.; Barbieri, G.; Tocci, E.: Sorption and diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: a molecular investigation. J. Membr. Sci. 528, 135–146 (2017)

    Article  Google Scholar 

  5. Mirqasemi, M.S.; Homayoonfal, M.; Rezakazemi, M.: Zeolitic imidazolate framework membranes for gas and water purification. Environ. Chem. Lett. 18, 1–52 (2020)

    Article  Google Scholar 

  6. Rezakazemi, M.; Darabi, M.; Soroush, E.; Mesbah, M.: CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor. Sep. Purif. Technol. 210, 920–926 (2019)

    Article  Google Scholar 

  7. Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T.: Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci. 66, 1–41 (2018)

    Article  Google Scholar 

  8. Lei, Z.; Dai, C.; Chen, B.: Gas solubility in ionic liquids. Chem. Rev. 114, 1289–1326 (2013)

    Article  Google Scholar 

  9. Galizia, M.; Smith, Z.P.; Sarti, G.C.; Freeman, B.D.; Paul, D.R.: Predictive calculation of hydrogen and helium solubility in glassy and rubbery polymers. J. Membr. Sci. 475, 110–121 (2015)

    Article  Google Scholar 

  10. Doghieri, F.; De Angelis, M.G.; Baschetti, M.G.; Sarti, G.C.: Solubility of gases and vapors in glassy polymers modelled through non-equilibrium PHSC theory. Fluid Phase Equilib. 241, 300–307 (2006)

    Article  Google Scholar 

  11. Feng, W.; Wen, H.; Xu, Z.; Wang, W.: Perturbed hard-sphere-chain theory modeling of vapor–liquid equilibria of high concentration polymer and coploymer systems. Fluid Phase Equilib. 183, 99–109 (2001)

    Article  Google Scholar 

  12. Lee, Y.; Rangaiah, G.; Chiew, Y.: A perturbed Lennard–Jones chain equation of state for polymer mixtures: applications to vapor–liquid and liquid–liquid equilibria. Fluid Phase Equilib. 189, 135–150 (2001)

    Article  Google Scholar 

  13. Chen, Z.-H.; Cao, K.; Yao, Z.; Huang, Z.-M.: Modeling solubilities of subcritical and supercritical fluids in polymers with cubic and non-cubic equations of state. J. Supercrit. Fluids 49, 143–153 (2009)

    Article  Google Scholar 

  14. Aionicesei, E.; Škerget, M.; Knez, Ž.: Mathematical modelling of the solubility of supercritical CO2 in poly(l-lactide) and poly(d,l-lactide-co-glycolide). J. Supercrit. Fluids 50, 320–326 (2009)

    Article  Google Scholar 

  15. Li, G.; Li, H.; Turng, L.; Gong, S.; Zhang, C.: Measurement of gas solubility and diffusivity in polylactide. Fluid Phase Equilib. 246, 158–166 (2006)

    Article  Google Scholar 

  16. Louli, V.; Tassios, D.: Vapor–liquid equilibrium in polymer–solvent systems with a cubic equation of state. Fluid Phase Equilib. 168, 165–182 (2000)

    Article  Google Scholar 

  17. Zhong, C.; Masuoka, H.: Modeling of gas solubilities in polymers with cubic equation of state. Fluid Phase Equilib. 144, 49–57 (1998)

    Article  Google Scholar 

  18. Nalawade, S.P.; Picchioni, F.; Janssen, L.: Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog. Polym. Sci. 31, 19–43 (2006)

    Article  Google Scholar 

  19. Peng, C.; Liu, H.; Hu, Y.: Gas solubilities in molten polymers based on an equation of state. Chem. Eng. Sci. 56, 6967–6975 (2001)

    Article  Google Scholar 

  20. Li, D.-C.; Liu, T.; Zhao, L.; Yuan, W.-K.: Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure–decay method. Ind. Eng. Chem. Res. 48, 7117–7124 (2009)

    Article  Google Scholar 

  21. Sato, Y.; Takikawa, T.; Takishima, S.; Masuoka, H.: Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. J. Supercrit. Fluids 19, 187–198 (2001)

    Article  Google Scholar 

  22. Li, G.; Leung, S.; Hasan, M.; Wang, J.; Park, C.; Simha, R.: A thermodynamic model for ternary mixture systems—gas blends in a polymer melt. Fluid Phase Equilib. 266, 129–142 (2008)

    Article  Google Scholar 

  23. Khajeh, A.; Modarress, H.; Rezaee, B.: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36, 5728–5732 (2009)

    Article  Google Scholar 

  24. Khajeh, A.; Modarress, H.; Mohsen-Nia, M.: Solubility prediction for carbon dioxide in polymers by artificial neural network. Iran. Polym. J. 16, 759 (2007)

    Google Scholar 

  25. Arabloo, M.; Shokrollahi, A.; Gharagheizi, F.; Mohammadi, A.H.: Toward a predictive model for estimating dew point pressure in gas condensate systems. Fuel Process. Technol. 116, 317–324 (2013)

    Article  Google Scholar 

  26. Rafiee-Taghanaki, S.; Arabloo, M.; Chamkalani, A.; Amani, M.; Zargari, M.H.; Adelzadeh, M.R.: Implementation of SVM framework to estimate PVT properties of reservoir oil. Fluid Phase Equilib. 346, 25–32 (2013)

    Article  Google Scholar 

  27. Asghari, M.; Dashti, A.; Rezakazemi, M.; Jokar, E.; Halakoei, H.: Application of neural networks in membrane separation. Rev. Chem. Eng. 36, 265–310 (2020)

    Article  Google Scholar 

  28. Azizi, N.; Rezakazemi, M.; Zarei, M.M.: An intelligent approach to predict gas compressibility factor using neural network model. Neural Comput. Appl. 31, 55–64 (2019)

    Article  Google Scholar 

  29. Rostamizadeh, M.; Rezakazemi, M.; Shahidi, K.; Mohammadi, T.: Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int. J. Hydrog. Energy 38, 1128–1135 (2013)

    Article  Google Scholar 

  30. Rezakazemi, M.; Mohammadi, T.: Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int. J. Hydrog. Energy 38, 14035–14041 (2013)

    Article  Google Scholar 

  31. Farno, E.; Rezakazemi, M.; Mohammadi, T.; Kasiri, N.: Ternary gas permeation through synthesized PDMS membranes: experimental and CFD simulation based on sorption-dependent system using neural network model. Polym. Eng. Sci. 54, 215–226 (2013)

    Article  Google Scholar 

  32. Soroush, E.; Mesbah, M.; Hajilary, N.; Rezakazemi, M.: ANFIS modeling for prediction of CO2 solubility in potassium and sodium based amino acid Salt solutions. J. Environ. Chem. Eng. 7, 102925 (2019)

    Article  Google Scholar 

  33. Rezakazemi, M.; Shirazian, S.: Gas-liquid phase recirculation in bubble column reactors: development of a hybrid model based on local CFD—adaptive neuro-fuzzy inference system (ANFIS). J. Non-Equilib. Thermodyn. 44, 29–42 (2019)

    Article  Google Scholar 

  34. Rezakazemi, M.; Shirazian, S.: Development of a 3D hybrid intelligent-mechanistic model for simulation of multiphase chemical reactors. Chem. Eng. Technol. 41, 1982–1993 (2018)

    Article  Google Scholar 

  35. Jafari, M.; Bayati Chaleshtari, M.H.: Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. Eur. J. Mech. A/Solids 66, 1–14 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jafari, M.; Hoseyni, S.A.M.; Altenbach, H.; Craciun, E.-M.: Optimum design of infinite perforated orthotropic and isotropic plates. Mathematics 8, 569 (2020)

    Article  Google Scholar 

  37. Rezakazemi, M.; Razavi, S.; Mohammadi, T.; Nazari, A.G.: Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J. Membr. Sci. 379, 224–232 (2011)

    Article  Google Scholar 

  38. Adib, H.; Sharifi, F.; Mehranbod, N.; Kazerooni, N.M.; Koolivand, M.: Support vector machine based modeling of an industrial natural gas sweetening plant. J. Nat. Gas Sci. Eng. 14, 121–131 (2013)

    Article  Google Scholar 

  39. Li, M.; Huang, X.; Liu, H.; Liu, B.; Wu, Y.; Xiong, A.; Dong, T.: Prediction of gas solubility in polymers by back propagation artificial neural network based on self-adaptive particle swarm optimization algorithm and chaos theory. Fluid Phase Equilib. 356, 11–17 (2013)

    Article  Google Scholar 

  40. Khajeh, A.; Modarress, H.: Prediction of solubility of gases in polystyrene by adaptive neuro-fuzzy inference system and radial basis function neural network. Expert Syst. Appl. 37, 3070–3074 (2010)

    Article  Google Scholar 

  41. Jafari, M.; Moussavian, H.; Chaleshtari, M.H.B.: Optimum design of perforated orthotropic and laminated composite plates under in-plane loading by genetic algorithm. Struct. Multidiscipl. Optim. 57, 341–357 (2018)

    Article  MathSciNet  Google Scholar 

  42. Moussavian, H.; Jafari, M.: Optimum design of laminated composite plates containing a quasi-square cutout. Struct. Multidiscipl. Optim. 55, 141–154 (2017)

    Article  Google Scholar 

  43. Jafari, M.; Mahmodzade Hoseyni, S.: Optimization of infinite orthotropic plates with hypotrochoid cutout under tensile loading using genetic algorithm. J. Reinforc. Plast. Compos. 36, 360–376 (2017)

    Article  Google Scholar 

  44. Vandezande, P.; Gevers, L.E.; Weyens, N.; Vankelecom, I.F.: Compositional optimization of polyimide-based SEPPI membranes using a genetic algorithm and high-throughput techniques. J. Comb. Chem. 11, 243–251 (2008)

    Article  Google Scholar 

  45. Russell, S.J.; Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)

    MATH  Google Scholar 

  46. Paul, D.R.: Polymeric Gas Separation Membranes. CRC Press, London (2018)

    Book  Google Scholar 

  47. Sodeifian, G.; Raji, M.; Asghari, M.; Rezakazemi, M.; Dashti, A.: Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin. J. Chem. Eng. 27, 322–334 (2019)

    Article  Google Scholar 

  48. Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E.: Membrane technologies for CO2 separation. J. Membr. Sci. 359, 115–125 (2010)

    Article  Google Scholar 

  49. Sato, Y.; Takikawa, T.; Sorakubo, A.; Takishima, S.; Masuoka, H.; Imaizumi, M.: Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Ind. Eng. Chem. Res. 39, 4813–4819 (2000)

    Article  Google Scholar 

  50. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4, 87–112 (1994)

    Article  Google Scholar 

  51. Jafari, M.; Rohani, A.: Optimization of perforated composite plates under tensile stress using genetic algorithm. J. Compos. Mater. 50, 2773–2781 (2016)

    Article  Google Scholar 

  52. Tsekouras, G.E.; Tsimikas, J.: On training RBF neural networks using input–output fuzzy clustering and particle swarm optimization. Fuzzy Sets Syst. 221, 65–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Searson, D.: GPTIPS Genetic Programming and Symbolic Regression for MATLAB User Guide (2009)

  54. Dashti, A.; Harami, H.R.; Rezakazemi, M.: Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int. J. Hydrog. Energy 43, 6614–6624 (2018)

    Article  Google Scholar 

  55. Dashti, A.; Asghari, M.; Solymani, H.; Rezakazemi, M.; Akbari, A.: Modeling of CaCl2 removal by positively charged polysulfone-based nanofiltration membrane using artificial neural network and genetic programming. Desalin. Water Treat. 111, 57–67 (2018)

    Article  Google Scholar 

  56. Dashti, A.; Asghari, M.; Dehghani, M.; Rezakazemi, M.; Mohammadi, A.H.; Bhatia, S.K.: Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. J. Mol. Liq. 265, 53–68 (2018)

    Article  Google Scholar 

  57. Rezakazemi, M.; Dashti, A.; Asghari, M.; Shirazian, S.: H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrog. Energy 42, 15211–15225 (2017)

    Article  Google Scholar 

  58. Shen, Z.; McHugh, M.; Xu, J.; Belardi, J.; Kilic, S.; Mesiano, A.; Bane, S.; Karnikas, C.; Beckman, E.; Enick, R.: CO2-solubility of oligomers and polymers that contain the carbonyl group. Polymer 44, 1491–1498 (2003)

    Article  Google Scholar 

  59. Kemmere, M.F.; Meyer, T.: Supercritical Carbon Dioxide: In Polymer Reaction Engineering. Wiley, New York (2006)

    Google Scholar 

  60. Soroush, E.; Shahsavari, S.; Mesbah, M.; Rezakazemi, M.; Zhang, Z.E.: A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions. Chin. J. Chem. Eng. 26, 740–746 (2018)

    Article  Google Scholar 

  61. Hilic, S.; Boyer, S.A.; Pádua, A.A.; Grolier, J.P.E.: Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling. J. Polym. Sci. Part B: Polym. Phys. 39, 2063–2070 (2001)

    Article  Google Scholar 

  62. Li, M.; Huang, X.; Liu, H.; Liu, B.; Wu, Y.; Wang, L.: Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means. RSC Adv. 5, 45520–45527 (2015)

    Article  Google Scholar 

  63. Ru-Ting, X.; Xing-Yuan, H.: Predictive calculation of carbon dioxide solubility in polymers. RSC Adv. 5, 76979–76986 (2015)

    Article  Google Scholar 

  64. Sato, Y.; Yurugi, M.; Fujiwara, K.; Takishima, S.; Masuoka, H.: Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilib. 125, 129–138 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shirazian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashti, A., Raji, M., Azarafza, A. et al. Computational Simulation of CO2 Sorption in Polymeric Membranes Using Genetic Programming. Arab J Sci Eng 45, 7655–7666 (2020). https://doi.org/10.1007/s13369-020-04783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04783-1

Keywords

Navigation