Skip to main content

Force and Topography Reconstruction Using GP and MOR for the TACTIP Soft Sensor System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9716))

Abstract

Sensors take measurements and provide feedback to the user via a calibrated system, in soft sensing the development of such systems is complicated by the presence of nonlinearities, e.g. contact, material properties and complex geometries. When designing soft-sensors it is desirable for them to be inexpensive and capable of providing high resolution output. Often these constraints limit the complexity of the sensing components and their low resolution data capture, this means that the usefulness of the sensor relies heavily upon the system design. This work delivers a force and topography sensing framework for a soft sensor. A system was designed to allow the data corresponding to the deformation of the sensor to be related to outputs of force and topography. This system utilised Genetic Programming (GP) and Model Order Reduction (MOR) methods to generate the required relationships. Using a range of 3D printed samples it was demonstrated that the system is capable of reconstructing the outputs within an error of one order of magnitude.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tenzer, Y., Jentoft, L.P., Howe, R.D.: Inexpensive and easily customized tactile array sensors using mems barometers chips. IEEE Robot. Autom. Mag. (2014)

    Google Scholar 

  2. Sato, K., et al.: Finger-shaped gelforce: sensor for measuring surface traction fields for robotic hand. IEEE Trans. Haptics 3(1), 37–47 (2010)

    Article  Google Scholar 

  3. Xu, D., Loeb, G.E., Fishel, J.A.: Tactile identification of objects using Bayesian exploration. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3056–3061. IEEE (2013)

    Google Scholar 

  4. Wettles, N., Santos, V.J., Johansson, R.S., Loeb, G.E.: Biomimetic tactile sensor array. Adv. Robot. 22, 829–849 (2008)

    Article  Google Scholar 

  5. Assaf, T., et al.: Seeing by touch: evaluation of a soft biologically-inspired artificial fingertip in real-time active touch. Sensors 14(2), 2561–2577 (2014)

    Article  Google Scholar 

  6. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: International Conference on Advanced Robotics, ICAR 2009, 22 Jun 2009, pp. 1–6. IEEE (2009)

    Google Scholar 

  7. Winstone, B., Griffiths, G., Melhuish, C., Pipe, T., Rossiter, J.: TACTIP – tactile fingertip device, challenges in reduction of size to ready for robot hand integration. In: Proceedings of the 2012 IEEE, International Conference on Robotics and Biomimetics, Guangzhou, China, 11–14 December 2012

    Google Scholar 

  8. Assaf, T., Chorley, C., Rossiter, J., Pipe, T., Stefanini, C., Melhuish, C.: Realtime processing of a biologically inspired tactile sensor for edge following and shape recognition. In: Towards Autonomous Robotic Systems (TAROS) Conference, Plymouth, UK (2010)

    Google Scholar 

  9. Roke, C., Melhuish, C., Pipe, T., Drury, D., Chorley, C.: Deformation-based tactile feedback using a biologically-inspired sensor and a modified display. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 114–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Winstone, B., Griffiths, G., Pipe, T., Melhuish, C., Rossiter, J.: TACTIP - tactile fingertip device, texture analysis through optical tracking of skin features. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 323–334. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Koza, J.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  12. Terence, S., Heckendorn, R.: A practical platform for on-line genetic programming for robotics. In: Riolo, R., Vladislavleva, E., Ritchie, M.D., Moore, J.H. (eds.) Genetic Programming Theory and Practice X, pp. 15–29. Springer, New York (2013)

    Google Scholar 

  13. Chih-Hung, W., et al.: Target position estimation by genetic expression programming for mobile robots with vision sensors. IEEE Trans. Instrum. Meas. 62(12), 3218–3230 (2013)

    Article  Google Scholar 

  14. Pedro, S., et al.: Automatic generation of biped locomotion controllers using genetic programming. Robot. Auton. Syst. 62(10), 1531–1548 (2014)

    Article  Google Scholar 

  15. Kordon, A., Smits, G., Jordaan, E., Rightor, E.: Robust soft sensors based on integration of genetic programming, analytical neural networks, and support vector machines. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 1, 12–17 May 2002, pp. 896–901 (2002)

    Google Scholar 

  16. Suraj, S., Tambe, S.: Soft-sensor development for biochemical systems using genetic programming. Biochem. Eng. J. 85, 89–100 (2014)

    Article  Google Scholar 

  17. Alexandridis, A.: Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 23(06), 1350029 (2013)

    Article  Google Scholar 

  18. Shi, J., Xing-Gao, L.: Product quality prediction by a neural soft-sensor based on MSA and PCA. Int. J. Autom. Comput. 3(1), 17–22 (2006)

    Article  Google Scholar 

  19. Buljak, V.: Inverse Analyses with Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics. Computational Fluid and Solid Mechanics. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  20. Zu-Qing, Q.: An efficient modelling method for laminated composite plates with piezoelectric sensors and actuators. Smart Mater. Struct. 10(4), 807–818 (2001)

    Article  Google Scholar 

  21. Kudryavtsev, M., et al.: A compact parametric model of magnetic resonance micro sensor. In: 2015 16th International Conference on Thermal, Mechanical and Multi-physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE (2015)

    Google Scholar 

  22. Searson, D.: GPTIPS. https://sites.google.com/site/gptips4matlab/. Accessed 15 Feb 2016

Download references

Acknowledgements

We would like to thank The Leverhulme Trust (Grant number: RPG-2014-381) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. de Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

de Boer, G., Wang, H., Ghajari, M., Alazmani, A., Hewson, R., Culmer, P. (2016). Force and Topography Reconstruction Using GP and MOR for the TACTIP Soft Sensor System. In: Alboul, L., Damian, D., Aitken, J. (eds) Towards Autonomous Robotic Systems. TAROS 2016. Lecture Notes in Computer Science(), vol 9716. Springer, Cham. https://doi.org/10.1007/978-3-319-40379-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40379-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40378-6

  • Online ISBN: 978-3-319-40379-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics