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a b s t r a c t 

Predicting the properties of materials like concrete has been proven a difficult task given the complex 

interactions among its components. Over the years, researchers have used Statistics, Machine Learning, 

and Evolutionary Computation to build models in an attempt to accurately predict such properties. High- 

quality models are often non-linear, justifying the study of nonlinear regression tools. In this paper, we 

employ a traditional multiple linear regression method by ordinary least squares to solve the task. How- 

ever, the model is built upon nonlinear features automatically engineered by Kaizen Programming, a 

recently proposed hybrid method. Experimental results show that Kaizen Programming can find low- 

correlated features in an acceptable computational time. Such features build high-quality models with 

better predictive quality than results reported in the literature. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The production of concrete is an important technique in Civil

onstructing, and High-Performance Concrete (HPC) is a mate-

ial that has been widely used in structural applications such as

ridges, high-rise buildings, and pavement construction. As HPC

esults in good workability, high-strength and low permeabil-

ty, it has replaced high-strength concrete [1] in several applica-

ions. Such concrete characteristics are directly related to long-

erm durability, making HPC more reliable [2] . HPC’s compressive

trength is considered its most important quality [3,4] , while the

lump flow – the diameter of slumped fresh concrete 1 – can be

sed as a measure for its workability [5] . 

The production of HPC aims at reducing the porosity within the

ydrated cement, which is the major difference to conventional

oncrete, achieving high compressive strength or a low water-to-

inder ratio [3] . In order to achieve such characteristics, several

hemical and mineral ingredients must be applied to the mixture
∗ Corresponding author. 

E-mail addresses: vinicius.melo@unifesp.br , dr.vmelo@gmail.com (V. Veloso de 

elo), banzhaf@msu.edu (W. Banzhaf). 
1 The slump test is a means of assessing the consistency of fresh concrete. It is 

sed, indirectly, as a means of checking that the correct amount of water has been 

dded to the mix. The test is carried out in accordance with BS EN 12350-2, Testing 

resh concrete. http://www.concrete.org.uk/fingertips-nuggets.asp?cmd=display&id= 

59 . 
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925-2312/© 2017 Elsevier B.V. All rights reserved. 
uring production, which requires industrial know-how because of

he interactions/relationships among them [1,6] . 

Aiming at developing increasingly better materials, the concrete

ust be produced and tested after some time has elapsed. Nat-

rally, this step is costly and time-consuming. Researchers, there-

ore, have investigated methods to model the material behavior [1] ,

hich can later be optimized to give the best mixture for a par-

icular material property. Using the putatively optimized mixture,

he material can be produced and analyzed, with the measurement

esults inserted into the dataset as a new example. Then a new

odel can be created and optimized, and the cycle repeats. This

ay, material engineers can obtain increasingly better mixtures. 

Concrete compressive strength (CCS) has been predicted by lin-

ar or non-linear regression methods [7] , but given its non-linear

haracteristics, Machine Learning (ML) techniques – mainly Arti-

cial Neural Networks (ANNs [8] ) – have been investigated [1,9] .

lump has been successfully predicted by ANNs [5,6] and Evolu-

ionary Computation (EC) methods [3,10] . 

ML techniques such as ANNs and Support Vector Machines

SVMs [11] ) produce models that are considered black-boxes, i.e.,

hey are hard (if not impossible) to understand. Therefore, EC algo-

ithms such as Genetic Programming (GP, [12,13] ), have been em-

loyed to generate smaller models by means of Symbolic Regres-

ion (SR [14–16] ) that are easier to interpret [3,10,17,18] 

According to Schmidt and Lipson [19] : “Symbolic regression

s a method for searching the space of mathematical expressions

http://dx.doi.org/10.1016/j.neucom.2016.12.077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.12.077&domain=pdf
mailto:vinicius.melo@unifesp.br
mailto:dr.vmelo@gmail.com
mailto:banzhaf@msu.edu
http://www.concrete.org.uk/fingertips-nuggets.asp?cmd=display&id=559
http://dx.doi.org/10.1016/j.neucom.2016.12.077
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Fig. 1. Basic flowchart of KP for feature engineering [24] . 
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while minimizing various error metrics. Unlike traditional linear and

nonlinear regression methods that fit parameters to an equation of

a given form, SR methods search both the parameters and the form

of equations simultaneously. This process automatically forms math-

ematical equations that are amenable to human interpretation and

help explicate observed phenomena .” Therefore, the main reason for

choosing SR over other regression methods such as SVMs or ANNs

is interpretability, while a welcome side effect can be the auto-

matic discovery of the exact equation that generates the response

value. Such an equation may not be discovered by other methods

because they only search for optimized coefficients. For instance,

suppose that the desired equation is y = 

x 
sin (3 . 1415+ x ) . SVMs and

ANNs can generate a model that approximates the response sur-

face; however, they are unable to find that ground-truth equation

because their approach is not to find formulae, but to optimize co-

efficients. 

Generally, EC algorithms try to mimic the evolution of organ-

isms through improving solutions in a series of generations. A

group of individuals (a population) generates offspring with the

help of evolutionary operators called crossover (which recom-

bines the genetic material of two parent individuals) and mutation

(which adds variability in the genetic material of the offspring).

Each individual is a complete solution to the problem being inves-

tigated, and its quality (fitness) is a score of how well it solves the

problem (given by the objective function). Selection procedures are

employed to select the parents and, later, the group of individuals

that will pass to the next generation. In Genetic Programming (GP),

the EC algorithms mostly used for SR, an individual is a group of

instructions (such as a computer program) that must be executed

to solve the problem. Such programs, as explained before, can be

interpreted as mathematical equations composed of operators and

operands. Operators can be arithmetic functions such as + and 

∗ or

others, while operands/arguments are the constants and variables

to be used in the formulae, e.g., −1 . 0 , 3.14, x , and y . A widespread

representation for GP operates on a tree-based structure, with op-

erators as internal (non-terminal) nodes and operands as leaf (ter-

minal) nodes of the tree. Another widespread representation (lin-

ear GP, [20] ) uses a sequence of instructions as its genetic material.

Generally, GP must optimize the individuals in order to obtain the

best possible program. 

In an attempt to develop an SR method that requires a

smaller number of objective function evaluations and still pro-

duces high-quality, interpretable models, De Melo proposed a hy-

brid approach named Kaizen Programming (KP, [21] ), based on the

Kaizen [22] and the Plan-Do-Check-Act (PDCA [23] ) methodologies.

The basic idea is to use global search algorithms to perform auto-

matic feature engineering and statistical methods to build models

in a cycle of feature generation followed by feature selection (see

Fig. 1 ). These steps will be explained in more detail later. 
Because the features have to be used in the same model, they

ust complement each other; thus, the approach is truly collab-

rative instead of competitive. KP is guided by the importance of

he partial solutions, not by the quality of the complete solution,

hich makes the search more efficient. KP relies on determinis-

ic and efficient methods to build the model, while most similar

ethods rely on evolution. 

A similar approach was proposed by Icke and Bongard [25] us-

ng a technique named Fast Function Extraction (FFX, [26] ) to cre-

te features for a linear regression model. There, a hybrid algo-

ithm uses features generated by an FFX run, which are passed

nto a GP system for another step in model building. The authors

ypothesized that such an approach would increase the chances of

P to succeed by letting FFX extract informative features while GP

ould build more complex models out of them. In this case, GP

s the method supposed to solve the problem; this is exactly the

pposite idea of our approach. 

Given the promising results of KP shown in [21] , here we ex-

end the preliminary study of de Melo and Banzhaf [27] for fea-

ure engineering on real-world datasets of HPC concrete. The main

ontributions of this paper are as follows: 

1. we present a novel KP implementation for feature generation

applied to an SR problem. This implementation uses Simulated

Annealing (SA [28] ) to solve the combinatorial optimization

problem; 

2. we explicitly deal with multicollinearity, trying to assure that

the resulting set of features, for the training set, has a maxi-

mum user-defined correlation value; 

3. we use the Akaike Information Criterion (AIC, [29] ) as cost (en-

ergy) function, which can be employed for model comparison

and for reducing overfitting; 

4. we apply a post-processing procedure to fix unrealistic predic-

tion values; 

5. we present several comparisons with EC, statistics, and ML

methods on a series of experiments, including processing time. 

The remainder of the paper is organized as follows.

ection 2 presents many related works. Section 3 introduces

aizen Programming for feature constructing. In Section 4 , we

escribe the approach proposed in this work. Experimental re-

ults are shown in Section 5 . Finally, Section 6 has a summary,

onclusions, and future work. 

. Related work 

In this section, we first present some work related to KP and

hen introduce related work from the literature that investigated

eature construction to improve prediction of HPC compressive

trength. Most work is based on EC algorithms such as GP. Unfortu-

ately, the other authors did not use exactly the same dataset, but

ome important characteristics of the methods will be highlighted.

.1. Symbolic regression methods with optimization of constants 

Stinstra et al. [30] describe an SR method based on Pareto Sim-

lated Annealing (PSA) to build meta-models. The solution is a set

f transformations (new features) put together into a multiple lin-

ar regression model. The authors do not mention the constant op-

imization method, but it is probably the Ordinary Least Squares

OLS). In order to ensure the consistency of a model and to prevent

verfitting, they use interval arithmetic and a complexity mea-

ure. The algorithm works with a tree data structure and randomly

odifies a single feature at a time. The constants in the equations,

alled Ephemeral Random Constants (ERCs), are randomly gener-

ted by PSA during the optimization process. Experiments on two

enchmark function problems showed that PSA was better than
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riging (a popular statistical regression method, [31] ) and GP in

pproximating the functions. The differences to our method will

ecome clear in the next sections. 

Fast Function Extraction (FFX, [26] ) uses path-wise regular-

zed linear learning techniques to create generalized linear mod-

ls, i.e., a composition of nonlinear basis functions (formulas) with

inearly-learned coefficients. The basis functions for a given com-

lexity (tree depth) are all created and evaluated at once, and com-

lexity increases in the course of iterations, resulting in an expo-

ential growth in the amount of basis functions. Also, as all com-

inations are created at once, there is no learning to identify poor

asis functions, which are greedily selected by a stepwise proce-

ure. Many models are built with different levels of complexity

nd are filtered using a multi-objective Pareto domination proce-

ure. 

Arnaldo et al. [32] proposed the Multiple Regression Genetic

rogramming (MRGP) method, which decouples and linearly re-

ombines a program’s subexpressions via multiple linear regres-

ion on the target variable. MRGP uses Least-Angle Regression

LARS, [33] ) in place of OLS to efficiently optimize the weights of

ach node in the tree. Instead of using the output of the original

ndividual, the fitness is calculated by the output of this new mul-

iple linear regression model. Nevertheless, the importance of the

ubexpressions in the new model is not heuristically exploited to

enerate better expressions in further generations. In released soft-

are, the authors replaced LARS by the Least Absolute Shrinkage

nd Selection Operator (LASSO, [34] ). 

GPTIPS [35] is a free open source MATLAB based software plat-

orm for symbolic data mining. GPTIPS uses a Multi-Gene Genetic

rogramming approach where an individual is a group of trees, in-

tead of a single tree, which are used as features in a multiple lin-

ar regression model optimized via OLS. Multiple objectives may

e treated via Pareto tournament selection, helping the search for

igh-quality yet low-complexity models. To avoid multicollinearity

ssues, it uses the Moore–Penrose pseudo-inverse instead of stan-

ard matrix inversion. Following the traditional EC approach, the

ultiple trees may eventually collaborate. 

Castelli et al. [36] introduced the Geometric Semantic Genetic

rogramming with Local Search (GSGP-LS) to speed up the search

rocess of GSGP by optimizing the values of the numerical con-

tants present in the individual. They show that GSGP is slow but

oes not suffer from overfitting. GSGP-LS, on the other hand, is fast

ut overfits. Thus, they suggested a hybrid version (GSGP-LSH) that

s fast and does not overfit. Such a hybrid runs the local search at

he beginning of the optimization process (during the first g gener-

tions) for fast approximation of a high-quality solution, and then

ontinues with the standard GSGP. A well-known issue regarding

SGP is that it grows expression trees with unlimited depth, thus

ltimately generating black-boxes. 

.2. High-performance concrete prediction via symbolic regression 

Regarding HPC prediction in particular, datasets of this do-

ain are investigated in many contributions in the literature using

ethods from statistics, ANNs, fuzzy logic, and EC [1,4,6,7,9,37–41] .

he objective of EC researchers is to not only demonstrate the ef-

ectiveness of their regression techniques but also to report the ob-

ained formulae. For that reason, they usually focus on datasets of

 single domain instead of trying multiple datasets from multiple

omains. 

Baykaso ̆glu et al. [3] applied Gene Expression Program-

ing (GEP) to construct a single feature of a dataset with 104 in-

tances and six input variables. It is the same regression problem

nvestigated in this work, but with a different dataset. There is no

ndication of separation into folds nor training and test sets. GEP

as compared with a Multilayer Perceptron neural network (MLP),
 Generalized Feedforward Neural Network (GF), and Stepwise Lin-

ar Regression (LR). The authors report that the best results con-

erning the Mean Squared Error (MSE) were obtained by the MLP

lgorithm and that GEP was better than LR. While GEP achieved

orse results than MLP, the authors argue that a short equation

an be preferred over an ANN. Unfortunately, the authors provide

o information concerning the processing time. 

Tsai and Lin [10] studied a GP algorithm in which every term

s weighted by a Genetic Algorithm (GA), naming it Weighted GP

WGP). This weighting results in a non-linear optimization, differ-

nt from the linear optimization used in our work. When com-

ared with the results in [3] , WGP showed better prediction abil-

ty by reaching lower Root Mean Squared Error (RMSE). A relevant

nformation is the processing time, which varied from 4018 s to

7,529 s. 

Chen and Wang [17] modeled the strength of HPC with GEGA,

 Grammatical Evolution combined with a Genetic Algorithm. In-

tead of using a binary or integer genome in GE, they used a real-

oded GA arguing that it can better refine ERCs during the search.

he results of RMSE on a dataset with 1140 samples show that

EGA outperformed GP, MLP, and Regression Analysis (RA). Unfor-

unately, there is no comparison with standard GE. 

Castelli et al. [18] used a canonical GSGP implementation to

odel HPC CCS. Their main comparison was GSGP versus a stan-

ard GP. Results showed that GSGP was faster and more precise

han GP, confirmed by a significance test. They also performed

omparisons with well-known ML methods, such as LR, SVM, and

LP. The statistical analysis showed that the results obtained by

SGP were significantly better than those of the other methods. 

Cheng et al. [42] proposed the Genetic Weighted Pyramid

peration Tree (GWPOT) for HPC CCS prediction. An Operation

ree (OT) is a hierarchical tree structure that represents the archi-

ecture of a mathematical formula; in fact, it is an array of integers,

here each position corresponds to a specific location in the tree

nd each integer is mapped into a terminal or non-terminal ele-

ent. The algorithm evolves multiple trees, one at a time, to com-

lement the previous ones. Also, it works similarly to WGP [10] by

dding weights to each tree node. Results were compared to those

f an ANN, an SVM, and the Evolutionary Support Vector Machine

nference Model (ESIM). The authors report that GWPOT found

imilar or better solutions than the other methods, but provides

n explicit formula. 

Chen et al. [43] used a Parallel Hyper-cubic Gene Expres-

ion Programming (PHGEP) to predict the slump flow of high-

erformance concrete. The hyper-cube sides have subpopulations

nd are used to differentiate exploration from exploitation. Also,

ifferent corners have different degrees of exploration or exploita-

ion. The results of PHGEP were compared to those of GEP, RA, and

 Back-Propagation Neural Network (BPNN). The best solutions on

he validation set, in terms of RMSE, were achieved by the methods

n the following order: PHGEP, BPNN, GEP, and RA. These results

ndicate that PHGEP was better than GEP in exploring the search

pace and escaping from local optima. 

The methods presented above evaluate hundreds of thousands

f models because they use populations with hundreds of individ-

als running for hundreds or thousands of generations. The size of

he final models, in number of nodes, is usually not reported. Also,

nly one of the authors reports processing time 

In this paper, we propose a technique that can be efficient in

olution quality, solution complexity, and processing time. 

. Kaizen Programming for feature construction 

Kaizen Programming (KP), a hybrid approach based on a Kaizen

vent with PDCA methodology, is used to guide a continuous im-

rovement process. Both Kaizen and PDCA have many tools to
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solve problems. KP is proposed as an abstraction of these two

methodologies, not a simulation. We start this section introducing

KP terms, and later use traditional metaheuristics, statistics, and

ML terms to simplify the reading. 

A real Kaizen event has experts that propose and test ideas to

solve a business issue. The current complete solution for the prob-

lem is known as the standard , which contains several ideas. By

using PDCA, modifications in a business process are planned, ex-

ecuted, checked, and new actions are taken based on the results.

The PDCA cycle is repeated until a goal, such as waste reduction, is

achieved. Each action performed on the problem can be evaluated

according to its effectiveness in helping to solve the issue; thus, at

each cycle the team acquires more knowledge on the problem to

avoid harmful actions and guide the search towards a better stan-

dard. 

Three basic modules are necessary to solve problems using KP.

For solving regression, KP performs (1) Feature Generation to ex-

pand the current feature set; (2) Feature Selection ; and (3) Model

generation . Algorithm 1 presents a high-level version of the KP al-

Algorithm 1 High-level algorithm of KP using ML terms. 

1. Generate the initial set with n f CurrentFeatures 
2. Evaluate CurrentFeatures 
3. BestFeatures ← CurrentFeatures 
4. BestFeaturesQuality ← CurrentFeaturesQuality 
5. Loop while target is not achieved 

(a) PLAN: Generate n v new variations of CurrentFeatures 
(b) DO: Create ExpandedFeatures containing CurrentFeatures and their

variations 
(c) CHECK: 

• Build a model on ExpandedFeatures , and calculate the importance
of each feature 

• Select the n f most important features into SelectedFeatures 
• Build a new model on SelectedFeatures and calculate its quality 

(d) ACT: 

• Update CurrentFeatures if the new model is better 
• Update BestFeatures if the new model is better 
• Restart if necessary, generating new CurrentFeatures , and keeping

BestFeatures 

6. Return BestFeatures , BestFeaturesQuality 

gorithm applied here, and below we explain more details. 

The first module contains the experts (data structure + proce-

dures) that propose the ideas to solve the problem using, for in-

stance, variations of the current best solution (the standard, which

contains various ideas). For the problem investigated in this paper,

an idea is an arbitrary mathematical expression used as a new fea-

ture, for instance, f eature = x 2 + (0 . 39 − x ) . 

The second module calculates the new ideas (resulting in an

actual partial solution) and joins these trial solutions with those

from the current standard into a single structure of partial solu-

tions. Afterward, it calculates the importance of each partial solu-

tion in helping to solve the problem. As the partial solutions must

help each other, independent quality measures for partial solutions

must not be used; clearly, a measure must consider the depen-

dency among partial solutions. Traditional EC algorithms do not

have this problem, because they work with individuals that each

are complete solutions. 

Finally, the third module is responsible for calculating the qual-

ity of the complete solution. A single complete solution is created

after selecting the most important partial solutions from the set.

Then, a scoring function returns the solution quality. The proce-

dure or technique used to solve the problem must be able to use

all partial solutions at once. 

The objective of the PDCA cycle is that the experts provide ideas

which make sense to the method that should solve the problem

because it is the importance measurements that guide the search,

not the quality of the complete solution. Hence, it is advisable that
he methods used in the second and third modules are the same

r at least related to each other (use the same criteria to choose

he features to build the model), i.e., the method used to solve the

roblem is also employed to calculate the importance of the par-

ial solutions. If those two modules were independent, then the

deas important to the procedure employed in the second module

ould not to be important to the method that actually solves the

roblem. 

Because KP was proposed based on the Kaizen and PDCA

ethodologies, which focus on increasing knowledge of the sys-

em to guide the process to the goal, one must use techniques that

an provide such information. For that reason, KP is a hybrid and

ust use efficient high-quality statistical and ML methods. Other-

ise, KP would be no different from an EC algorithm, which relies

nly on the selection pressure to guide the search. 

.1. A toy example 

We now present a toy example of how KP can be used for auto-

atic feature engineering, with GP to provide the experts and OLS

s the model building method. This example uses the algorithm

resented in [27] . In the next section, we introduce the proposed

odifications. 

Suppose that y = x 3 + x, x ∈ R is our ground-truth response

unction. Clearly, the objective is to predict y from x . Let 
−→ 

x =
0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0.8, 0.9, 1.0] be a uniform se-

uence from 0.0 to 1.0. Solving a traditional linear model in the

orm y = β0 + β1 x, one obtains y = −0 . 189 + 1 . 928 x, for which the

alculated Root Mean Squared Error is RMSE = 0 . 1345 . 

Now, suppose that we are using GP for solving this re-

ression problem and that the population has three individ-

als, named ind1 = x 2 , ind2 = sqrt(x ) , and ind3 = log(x + 1) ,

hile the generated offspring are child1 = x 3 , child2 = x, and

hild3 = sqrt(log(x + 1)) . Using RMSE to calculate the fit-

ess of these individuals, one gets: f it(ind1) = 0 . 5188979 ,

f it(ind2) = 0 . 4121862 , f it(ind3) = 0 . 576697 , f it(child1) =
 . 591608 , f it(child2) = 0 . 4240932 , f it(child3) = 0 . 4862297 .

he selection mechanism chooses individuals ind2 = sqrt(x ) ,

hild2 = x, and child3 = sqrt(log(x + 1)) for the next population

ecause they are the three best solutions among parents and

hildren. Unfortunately, with such selection criterion, child 1 is lost.

bviously, the formula present in child 1 may be generated again in

he future, or another selection criteria may choose to keep child 1.

owever, the issue here is that an important part of the solution

as neglected. 

KP, on the other hand, works by combining partial solutions. Let

s assume that KP is using GP as a global search method and with

he same population (number of features, n f = 3 ). 

In the PLAN step, the experts propose new ideas based on the

urrent standard and generate the same offspring found by GP.

he DO step parses these individuals, evaluates them, and cre-

tes a newly expanded dataset containing the parents and the off-

pring. In the CHECK step, OLS builds a model on this dataset

or evaluating how each individual performs (see Table 1 ). The

odel shown in the table is y = β0 + β1 ind1 + β2 ind2 + β3 ind3 +
4 child1 + β5 child2 + β6 child3 , where Intercept = β0 , and the p -

alue for each variable regards the hypothesis test to verify

hether the coefficient ( β i ) is not statistically different from zero.

f p - value i < α ( α is the significance level of the hypothesis test,

raditionally 0.05), then we assume that the variable is important

o the model. 

As can be observed, the only important variables are the

ntercept (which is barely important), child 1, and child 2; thus,

he reduced model after performing feature selection is y = β0 +
1 child1 + β2 child2 . After recalculating the coefficients, the final

odel is y = 1 . 34 e −16 + 1 . 0 ∗ x + 1 . 0 ∗ x 3 , which is the perfect
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Table 1 

Summary table of the multiple linear regression model 

for the toy problem. The Intercept is β0 and the p -value 

indicates the importance of the variable to the model. 

Feature β p -value 

(Intercept) 1.18e −16 0.04 

ind1 = x 2 2.89e −13 0.15 

ind2 = sqrt(x ) 1.34e −12 0.14 

ind3 = log(x + 1) 1.13e −12 0.15 

child1 = x 3 1.0 0e + 0 0 5.07e −54 

child2 = x 1.0 0e + 0 0 1.41e −48 

child3 = sqrt(log(x + 1)) −1.32e −12 0.14 
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Algorithm 2 Simulated Annealing algorithm. 

1: function SA ( s 0, e 0, T0, Tmin, maxiter, cooling _ factor) 
2: s ← s 0 ; e ← E(s ) � Initial state, energy. 
3: sbest ← s ; ebest ← e � Initial “best” solution. 
4: T ← T 0 � Initial temperature. 
5: iter ← 0 � Iteration count. 
6: while it er < maxit er˜AND ̃T > T min do � Loop while permitted. 
7: snew ← neighbor(s ) � Generate a neighbor. 
8: enew ← E(snew ) � Compute its energy. 
9: � ← e − enew � Compute the difference. 

10: if � < 0˜OR ̃random (0 , 1) < exp(−�/T ) then � Accept the 
neighbor solution. 

11: s ← snew 

12: e ← enew 

13: if enew < ebest then � Update the best solution. 
14: sbest ← snew 

15: ebest ← enew 

16: end if 
17: end if 
18: T ← T × cooling _ factor � Update the temperature. 
19: it er ← it er + 1 
20: end while 
21: return sbest, ebest � Return the best solution found. 
22: end function 
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odel ( RMSE = 1 . 05 e −16 ), ignoring numerical issues. Thus, the op-

imum solution was found in a single iteration. If a termination

riterion is not reached, the ACT step performs corrective actions

o adjust the current standard. The new solution, built using only

he most important features, replaces the CurrentFeatures provided

t is better. A new cycle begins if the termination criterion is not

eached. Also, it replaces BestFeatures if it is better. If a specific cri-

erion is reached, then a restart occurs and new CurrentFeatures are

andomly generated. 

The algorithm described above ( Algorithm 1 ) has some impor-

ant characteristics. In the current implementation, the population

ize, which is the desired number of features ( nf ) has a fixed size

o avoid excessive growth. If the number of important features

s less than nf , then one must choose non-important features to

omplete the population. Also, because we are employing OLS, the

umber of variables in the model ( n f + n v ) must be fewer than the

umber of examples (rows) in the dataset. Finally, multicollinear-

ty must be properly treated to avoid singularities when solving

he linear system. 

As can be noticed, the approach used in KP to combine GP and

LS takes a different path from that of other work: in KP, the main

ethod builds the model (OLS, for local search), while GP’s evo-

utionary operators and the data structure are used to search for

eatures (the global search to provide good starting solutions for

he local search method). On the other hand, in other approaches,

he local search method is used to improve the solutions found by

P (or SA). In conclusion, while GP was used in [21,27] , it is not

ssential for KP to work. In order to demonstrate this statement,

ere we use a combinatorial global optimization method not in-

pired by biology to search for high-quality features. 

. Kaizen Programming with Simulated Annealing 

In this work, we replace tree-based GP by SA. SA works with a

ingle solution and performs a global search by evaluating neigh-

oring solutions stochastically. If a neighbor is better than the cur-

ent solution, it replaces the latter. On the other hand, a worse so-

ution can be accepted according to an acceptance function. Such

ehavior allows SA to escape from non-promising regions and ex-

lore the search space by moving to worse neighborhoods. The ac-

eptance probability function considers a parameter T , called tem-

erature, which decreases through SA iterations. At high tempera-

ures, the acceptance probability tends also to be high, while low

emperatures usually result in a low acceptance probability, turn-

ng SA into a hill-climbing local search approach. The cooling fac-

or must be tuned so that SA has enough iterations to explore the

earch space. Pseudo-code for SA is shown in Algorithm 2 . 

The candidate generating neighbor function takes the current

olution and returns a neighbor, generally a slightly modified so-

ution. A procedure that generates a neighbor is usually called a

ove, and SA can have several of them. Using the KP methodology

or feature engineering, each move is an expert and such neighbor

unction comprises the PLAN and DO steps, returning the Expand-
dFeatures set. Therefore, a single SA solution is a set of features,

nd a neighbor has variations of the CurrentFeatures . 

The SA energy function is the cost (objective) function to be

ptimized. It corresponds to the CHECK step of KP, which gives the

uality of the new solution. Finally, KP’s ACT step is the decision

tep of SA, when it decides whether to replace the current solu-

ion. 

In order to have SA replace GP applied in our previous work, we

odified the algorithm in the way explained in the next section. 

.1. Representation and initialization 

A KP expert is a data structure and the procedures to operate

n it. In [27] , KP used a traditional tree-based GP to provide the

xperts (crossover and mutation). Here, SA works on a linear data

tructure instead of a tree. This replacement facilitates not only the

pplication of SA but will be useful for other combinatorial opti-

ization algorithms applied in the future. 

Here, the programs consist of a fixed-size flat linear sequences

f operators and operands. Initial features are random sequences

f symbols from the operands and operators sets chosen for the

roblem. As it is not encoding a correct tree, any feature is valid,

or instance: 

f eature = [ x, + , x, x, x, sqrt, −] . 

In order to start with features that have a certain balance be-

ween terminals and non-terminals, and also to allow for interme-

iate neutral code, we are employing the following heuristic ini-

ialization: 

f eature = concat enat e ( 

choose (operands, 2 ∗ size ) , 

choose (concat enat e (operands, operators ) , size ) , 

choose (operators, 2 ∗ size )) 

here size is a random integer number between 1 and max _ size,

perands is the set of data inputs, operators is the set of func-

ions, and choose ( x , n ) is a function that randomly chooses n ele-

ents from x allowing repetition. Different initialization methods

ay provide better seeds for the search. This is an important as-

ect to be investigated in the future. 

It is important to be clear that a solution for KP is a group of

eatures, not a single feature. Nevertheless, it is a single complete

olution. 
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4.2. Parsing and evaluation 

As one may have noticed, the above representation is treated

in a postfix manner. Operands are pushed onto the stack, opera-

tions are applied to the elements popped from the stack, and the

resulting expression is pushed back on the stack. If the number of

elements in the stack is fewer than the operator’s arity, then the

operation is skipped. Finally, an empty stack returns a penalty con-

stant to mark the feature for removal. Similar postfix stack-based

representations have been used in related works such as Stack-

based GP [44] , PushGP [45] , and more recently ellenGP [46] . Oltean

et al. [47] provide a survey on such representation. Also, a related

prefix version using a binary GA has been proposed in [48] . 

An interesting aspect of the linear representation is the occur-

rence of neutral code that is not executed in the current solution,

but that may be enabled in a variant. Also, one may have indepen-

dent blocks of code in a single feature. Thus, we first parse the fea-

ture to extract the valid code in order to avoid unnecessary evalua-

tion and return the stack top. For instance, considering the feature

in the previous example, the final stack would be: 

stack = [[ x ] , [ x ] , [(sqrt(x ) − x )]] , 

because the first x is not used by posterior operators, the operator

‘+’ is skipped, the second x is not used either, and the remaining

elements are used together. The stack top, which is the parsed ex-

pression ready to be evaluated, is (sqrt(x ) − x ) . Clearly, if the top is

a single operand, then it is the final expression. On the other hand,

the parser returns + In f inity if the stack is empty (the feature has

only operators). 

4.3. Acceptance criterion 

Canonical SA explores the search space while the temperature

is high. However, when it starts the hill-climbing stage (at very low

temperature, meaning that only better neighbors are accepted), it

continues from the last solution, not from the best one. In fact, it

does not save the best solution found (something known in EC as

an “elitist” approach). We modified the traditional version to save

the best solution found so far. Once the minimum temperature al-

lowed ( T min ) is reached, T is set to 0.0 and the algorithm recovers

its best solution found so far and starts a hill-climbing (exploita-

tion) procedure from there. 

4.4. Moves (KP experts) 

To generate neighbors, SA uses the concept of moves we apply

three different ones: 

• Move 1: it randomly chooses a feature from the CurrentFeatures

set, makes a copy, and modifies several of its elements respect-

ing their arity. Operands can only be replaced by operands,

while operators can only be replaced by operators of the same

arity. The number of modifications is a parameter that de-

creases with the temperature. It starts with a random integer

from 1% to 20% of the length of the feature. When the hill-

climbing stage starts, the number of modifications is set to 1. 

• Move 2: it randomly chooses a solution from the CurrentFea-

tures set, makes a copy, and modifies several of its elements

ignoring their arity. Therefore, an operand can be replaced by

an operator with arity 2. This replacement makes sense because

the inserted operator may be bypassed, modifying the data flow

within the feature. The number of modifications is a parameter

that decreases with the temperature. It starts with a random

integer from 1% to 20% of the length of the feature. When the

hill-climbing stage starts, the number of modifications is set to

1 for refining. 
• Move 3: this expert proposes a new random feature. This move

is employed because a feature has a fixed size; thus, one may

have only small features in the group, but longer features may

be necessary to achieve better quality solutions. 

It is worth mentioning that all features have the same probabil-

ty of being chosen, as all of them are important. Therefore, there

s no selection pressure. The same is valid for the moves. 

.5. Dealing with multicollinearity 

In [27] , the DO step creates ExpandedFeatures which contain

urrentFeatures and the offspring generated by GP. Pearson correla-

ion is calculated among all pairs of variables and those highly cor-

elated (absolute value above max _ correlation ) are removed, keep-

ng only the first, from left to right. As the offspring are concate-

ated after CurrentFeatures , they are usually removed when high

ollinearity is detected. This behavior makes sense as one intends

o prioritize current features as long as they are the best found so

ar. However, if offspring are better, they will not be used. 

In order to have a better guarantee for choosing the best fea-

ures, we employ a double-check here: ExpandedFeatures_1 = Cur-

entFeatures + SA neighbors and ExpandedFeatures_2 = SA neighbors

 CurrentFeatures . One builds two expanded models and subse-

uently two reduced models that contain only the selected fea-

ures. Finally, the ACT step compares both reduced models with

he CurrentFeatures model and updates the latter with the best

esult. This way, one not only reduces the odds of a failing OLS,

ut also increases the chance of finding a high-quality set of low-

orrelated features. This aspect of KP is very important and differ-

ntiates it from other work. While this procedure tries to guaran-

ee low-correlated features in the training set, correlations in the

est set cannot be avoided and are therefore likely higher. 

.6. Reducing prediction issues 

In this section, we present the two methods employed to re-

uce prediction issues. 

.6.1. Optimization criterion 

In [27] , there is no procedure to avoid overfitting. Here, instead

f minimizing the RMSE, we minimize the well-known Akaike In-

ormation Criterion (AIC) defined as: 

IC = −2 log L + 2 D, (1)

here L is the maximized likelihood using all available data for

stimation and D is the number of variables in the model, equiv-

lent to nf in our implementation. Asymptotically, minimizing AIC

s equivalent to minimizing the leave-one-out cross-validation er-

or [49] . Thus, calculating AIC just once, for each model, should be

nough to compare them and select the best one. 

.6.2. Safe prediction 

When dealing with a real-world dataset in which the desired

utput values are expected to lie in a certain range, this informa-

ion can be used to prohibit the model from outputting unrealistic

redictions. 

Such safe predictions are bounded by considering background

nformation on the dataset or simply information extracted from

he training set output. For instance, if negative output values are

ot expected, the lower bound should be zero, and similarly for

he upper bound. Here, the safe prediction is calculated as: 

B = min (t raining _ out put ) − std, (2)

B = max (t raining _ out put ) − std, (3)
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Table 2 

Concrete strength dataset description (D1). 

Attribute Unit Minimum Maximum Average 

Cement kg/m 

3 102 .00 540 .00 281 .17 

Blast-furnace slag kg/m 

3 0 .00 359 .40 73 .90 

Fly ash kg/m 

3 0 .00 200 .10 54 .19 

Water kg/m 

3 121 .80 247 .00 181 .57 

Super-plasticizer kg/m 

3 0 .00 32 .20 6 .20 

Coarse aggregate kg/m 

3 801 .00 1145 .00 972 .92 

Fine aggregate kg/m 

3 594 .00 992 .60 773 .58 

Age of testing Day 1 365 45 .66 

Concrete compressive strength MPa 2 .33 82 .6 35 .82 

Table 3 

Flow, strength, and slump dataset description (D2). All data have age = 28. 

Attribute Unit Minimum Maximum Average 

Cement kg/m 

3 137 .00 374 .00 229 .89 

Fly ash kg/m 

3 0 .00 193 .00 77 .97 

Slag kg/m 

3 0 .00 260 .00 149 .01 

Water kg/m 

3 160 .00 240 .00 197 .17 

Superplasticizer kg/m 

3 4 .40 19 .00 8 .54 

Coarse aggregate kg/m 

3 708 .00 1049 .90 883 .98 

Fine aggregate kg/m 

3 640 .60 902 .00 739 .60 

SLUMP cm 0 .00 29 .00 18 .05 

FLOW cm 20 .00 78 .00 49 .61 

28-day compressive strength MPa 17 .19 58 .53 36 .04 
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Table 4 

Execution and SA parameters of KP. 

Parameter Value 

Number of features ( nf ) 10 

Number of variations ( nv ) 3 × nf 

max _ size (for feature creation) 5 

Cycles 10 0 0 (D1), 1300 (D2) 

max _ correlation 0.4, 0.8 

cooling _ factor 0.95 

T initial 10 0.0 0 0 

T min 1.0 

Solution quality AIC 
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a fe _ prediction = min (UB, max (LB, prediction )) , (4)

here std is the standard deviation of the training set outputs, LB

nd UB are the lower and upper bounds, respectively, and predic-

ion is the value returned by the model. Although simplistic, this

afe prediction serves our purpose. 

. Experimental results 

This section presents experimental results of KP using SA cou-

led with OLS to perform feature engineering and model fitting for

 regression problem. 

.1. The datasets 

Here we investigate the technique on the HPC data available

rom the UCI ML repository [50] , first presented by Yeh [1,6] . A

rief descriptive analysis of the datasets is shown in Tables 2 2 

nd 3 . The first dataset (D1) 3 contains eight numerical attributes

nd 1030 examples. There is no indication of missing values. 

The second dataset (D2) 4 contains seven predictive numerical

ttributes, three response variables, and 103 examples. There is

lso no indication of missing values. Besides coming from a dif-

erent sample that considers only measures taken within 28 days,

ome researchers (for instance [17] ) append this dataset to D1, us-

ng only the MPa response. Here, we decided to perform a separate

nalysis because many researchers investigate only D1. Moreover,

ne can observe later that the MPa predictions for D2 are substan-

ially better those for D1, which could inflate the prediction quality.

s D2 has three output variables, we investigate independent mod-

ls to predict the slump, the flow, and the compressive strength. 
2 This descriptive table has the correct values, while the corresponding table 

n [27] has typos. However, the datasets are the same and did not interfere with 

he results. 
3 D1 was downloaded from https://archive.ics.uci.edu/ml/datasets/Concrete+ 

ompressive+Strength . 
4 D2 was downloaded from https://archive.ics.uci.edu/ml/datasets/Concrete+ 

lump+Test . 
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.2. Implementation and configuration of the algorithms 

We implemented KP in Python, with the statistical parts of KP

the OLS method, p -values, among others) employing the statsmod-

ls package. All non-treated issues that occur during the model

uilding (singularity, overflow, etc.) are caught as exceptions and

egarded as poor quality models/features. Experiments were ex-

cuted on a system environment with an Intel(R) Xeon(R) CPU

5-2620@2.00 GHz, Ubuntu Linux 14.04, Kernel 3.13.0-30-generic

86_64, gcc (Ubuntu 4.8.2-19ubuntu1) 4.8.2, Python 2.7.6, numpy

.8.2, statsmodels 0.5.0, Java(TM) SE Runtime Environment (build

.7.0_67-b01), Weka 3.6.11 [51] . 

KP is compared to the following methods from the literature

hat perform symbolic regression and use linear regression to opti-

ize constants and were configured according to the original pub-

ications: 

• Geometric Semantic Genetic Programming with Local Search

(GSGP-LSH) [36] . Source code was generously provided by

Mauro Castelli; 

• Multiple Regression Genetic Programming (MRGP) [32] . Soft-

ware was downloaded from the FlexGP Project website. 5 

Here we compare different methods using run time instead of

he number of evaluations/models as termination criterion. This is

referable as the user can decide how much time he/she has avail-

ble to wait for the method to return results. We executed KP for a

pecific number of cycles and used execution time to configure the

umber of generations of the other two methods. For the larger

ataset (D1), KP took approximately 1 min to perform 10 0 0 cycles

nd achieved results similar to those found in the literature. As a

esult, we set 1 min as the time limit and adjusted the number of

ycles/generations to terminate at approximately that time. We are

gnoring the fact that GSGP-LSH is implemented in C++, MRGP is

mplemented in Java, and KP is implemented in Python. 

The configurations of KP, GSGP-LSH, and MRGP are shown in

ables 4 , 5 , and 6 respectively. For KP, we are using ten features

ecause this gave the best results in our earlier study [27] . One can

otice that we test two max _ correlation values during optimization.

ith this analysis, we intend to show the effect of that param-

ter. Other parameters were chosen empirically, where n f + n v <
umber of observ ations (OLS issue), the choice of cooling factor and

he temperatures are common values from the literature. Also, only

he four basic arithmetic functions ( + , ×, −, / (sa fe ) 6 ) are used, as

uggested in [18,36] . As GSGP-LSH encodes only these four func-

ions, KP and MRGP were configured in the same way for a fair

omparison. Furthermore, many researchers choose this function

et to investigate how the algorithm performs with limited tools.

ne is interested in solving problems for which an exact solution

s not available in the search space. 
5 http://flexgp.github.io/gp-learners/mrgp.html . 
6 safeDiv returns 0 if the denominator’s module is less than 1 e −10. 

https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
http://flexgp.github.io/gp-learners/mrgp.html
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Table 5 

Execution and evolutionary parameters of GSGP-LSH. Zero depth in- 

dicates if the initial population can have single-node individuals. 

Parameter Value 

Population size 200 

Max number of generations 410 (D1), 3250 (D2) 

Max linear regression generations 10 

Init type 2 

Crossover prob. 0.7 

Mutation prob. 0.3 

Max depth creation 6 

Tournament size 8 

Zero depth 0 

Mutation step 1 

Number of random constants 100 from −100.0 to 100.0 

Solution quality RMSE 

Table 6 

Execution and evolutionary parameters of 

MRGP. 

Parameter Value 

Population size 200 

Time limit 1 min 

Crossover prob. 0.7 

Mutation prob. 0.3 

Tree initial max depth 6 

Max depth creation 17 

Tournament size 8 

Solution quality RMSE 

Prediction model Most accurate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Mean of the maximum correlations obtained on the test set for 50 

independent runs. Pct is the training percentage. 

Dataset Pct max_correlation = 0.4 max_correlation = 0.8 

Mean Std. dev. Mean Std. dev. 

D1:MPa 0.5 0.46 0.09 0.71 0.08 

D1:MPa 0.7 0.48 0.08 0.72 0.07 

D1:MPa 0.9 0.54 0.12 0.75 0.09 

D2:Flow 0.5 0.59 0.18 0.77 0.07 

D2:Flow 0.7 0.70 0.18 0.79 0.08 

D2:Flow 0.9 0.88 0.09 0.87 0.07 

D2:MPa 0.5 0.60 0.15 0.79 0.06 

D2:MPa 0.7 0.67 0.13 0.82 0.05 

D2:MPa 0.9 0.84 0.12 0.88 0.06 

D2:Slump 0.5 0.62 0.18 0.79 0.08 

D2:Slump 0.7 0.70 0.15 0.79 0.08 

D2:Slump 0.9 0.89 0.09 0.89 0.06 

Table 8 

The median RMSE on the test set and two-sided Wilcoxon Rank Sum test against 

KP 0.8. The marks are for significance levels α = 0 . 001 (3 bullets), 0.01 (2 bullets), 

and 0.05 (one bullet). W / T / L means number of Wins/Ties/Losses. 

Dataset Pct N KP 0.8 GSGP-LSH KP 0.4 MRGP 

D1:MPa 0.5 50 6 .94 12 .02 ••• 7 .58 ••• 6 .95 

D1:MPa 0.7 50 6 .70 11 .89 ••• 7 .38 ••• 6 .42 ◦
D1:MPa 0.9 50 6 .65 11 .81 ••• 7 .34 ••• 6 .37 

D2:Flow 0.5 45 15 .62 14 .41 ◦ 18 .17 • 17 .04 • 
D2:Flow 0.7 50 13 .46 13 .15 16 .10 ••• 15 .63 • 
D2:Flow 0.9 50 12 .55 11 .90 14 .31 • 13 .90 •• 
D2:MPa 0.5 50 1 .37 3 .27 ••• 3 .82 ••• 2 .32 ••• 
D2:MPa 0.7 50 1 .24 2 .72 ••• 3 .55 ••• 1 .97 ••• 
D2:MPa 0.9 50 1 .06 2 .58 ••• 3 .14 ••• 1 .69 ••• 
D2:Slump 0.5 49 9 .11 8 .43 9 .79 9 .30 

D2:Slump 0.7 50 7 .79 8 .14 8 .75 ••• 8 .69 ••• 
D2:Slump 0.9 50 7 .42 6 .92 8 .79 ••• 7 .80 

W / T / L 1/5/6 0/1/12 1/4/7 

◦, • Statistically significant improvement or degradation. 
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The set of terminals (operands) is composed of the names of

the datasets’ features. GSGP-LSH and MRGP are allowed to evolve

ERCs, but our KP implementation has no such characteristic avail-

able. Finally, for MRGP we chose the most accurate model for pre-

dicting the test data. 

5.3. Evaluation 

We performed experiments on three different training and test

set splits: 50%/50%, 70%/30%, and 90%/10%. For each split, we ex-

ecuted 50 independent runs on three comparisons. The prediction

quality is the RMSE on the test set. We followed the methodology

used in related works. 

The first experiment compares the results of KP, GSGP-LS, and

MRGP. We present a summarized table containing median RMSE

(test data) and the two-sided Wilcoxon’s Rank Sum test compar-

ing all methods against KP. There are also charts with the dot and

violin (distribution) plots of the runs for visual comparison and a

more detailed descriptive analysis of the test RMSE (see Appendix).

Later we compare the results of KP with many other meth-

ods from the literature. These methods are evolutionary, statisti-

cal, or ML, performing a hypothesis test. Here, we did not investi-

gate whether the KP constructed features could be useful to other

regression techniques. Such experiments were performed in [27] ,

where we showed that most methods did benefit from the new

features. 

5.4. Results and discussion 

In this section, we present and discuss our experimental results

and finish with the best feature sets that were constructed for each

dataset. 

5.4.1. Assessing the behavior of the max_correlation parameter 

In this first experiment, KP was executed with

max _ correlation = 0 . 4 and max _ correlation = 0 . 8 . Using this param-

eter value, KP guarantees that the features generated during the

training have a maximum correlation. In Table 7 , we show the
ean of the maximum correlations obtained on the test set for

he 50 independent runs. 

One can observe that the maximum correlation increased along

ith the percentage of the training data; we are still investigating

his issue to understand when and why it happens. However, even

n the test data, the collinearity is not considerably higher than

ax _ correlation, except for P ct = 0 . 9 . We conclude that KP can find

ets of low-correlated features. Next, we evaluate if these sets pro-

ide high-quality models. 

.4.2. Comparison with EC methods 

In this section, we compare KP with GSGP-LSH and MRGP.

able 8 presents a summary of the median RMSE on the test set

nd the two-sided Wilcoxon Rank Sum test, where the baseline

s KP with max _ correlation = 0 . 8 . N is the number of runs that

orked. All failed runs were GSGP-LSH’s, and we did run the other

ethods the same number of times for a fair comparison. A failed

un means that the resulting RMSE was Inf, NaN, or NA. 

As expected, for all methods, an increase in Pct means a de-

rease in RMSE because larger training data simplifies the learn-

ng process and allows for the generation of more accurate mod-

ls. For D1:MPa, the biggest dataset, GSGP-LSH was unable to find

ood models within the 1 min timeframe. The best results were

btained by MRGP, which was better than KP 0.8 for P ct = 0 . 7 and

ot different for P ct = 0 . 5 and P ct = 0 . 9 . The low-correlation fea-

ure sets found by KP 0.4 provided better prediction models than

hose of GSGP-LSH, but worse than those of KP 0.8. Thus, a less

orrelated feature set showed less predictive power than a more

orrelated set. 

Considering D2:Flow, the best performing method was GSGP-

SH, but the models were only better than KP for Pct = 0.5. KP

as better than MRGP on all splits. Regarding D2:MPa, KP 0.8 ex-
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Fig. 2. Violin and dot plots of the datasets, methods, and configurations. This plot is in log-scale. 

Fig. 3. Violin and dot plots of the datasets, methods, and configurations. The chart is zoomed between 0.5 and 150 for better visualization. This plot is in log-scale. 
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elled for all values of Pct, achieving considerably better results

han those of GSGP-LSH and MRGP. Finally, for D2:Slump, GSGP-

SH was the best method for Pct = 0.5, but the hypothesis test did

ot detect significant differences; except that KP achieved lower

MSE than MRGP. In the last row, the number of wins, ties, and

osses shows that KP 0.8 was the best performing method and that

P 0.4 was worse than the former. 

.4.2.1. Visual comparison. Next, we present two charts, the first

ne (see Fig. 2 ) shows all solutions, while the second (see Fig. 3 )

s zoomed to a region of interest between 0.5 and 150. The dot
lots are the real values for the runs; the dots are transparent and

lightly jittered to show overlaps. The violin plot is a box plot with

 rotated kernel density plot on each side which shows the prob-

bility density of the data at different values. Thus, the higher the

oncentration of dots (density), the larger the area in such region. 

In Fig. 2 one can observe that GSGP-LSH had many outliers.

hose outliers are, in fact, overfit runs. Such behavior was not de-

ected in [36] , probably because they tested other datasets. In that

aper, GSGP-L SH overfit when L S was used in all generations; then,

he authors tested a hybrid version in which LS is run for the first

 = 10 generations only and had no more issues. We are using the
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Table 9 

Average number of models and processing time. 

Dataset KP GSGP-LSH MRGP 

Models Time (s) Models Time (s) Models Time (s) 

D1 1001 64.12 82,200 60.04 614.67 94.35 

D2 1301 62.75 650,200 58.79 912.00 85.69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Number of nodes in the complete solution. 

Dataset KP MRGP 

Pct Mean Std. dev. Mean Std. dev. 

D1:MPa 0.5 123.92 18.48 397.88 58.30 

D1:MPa 0.7 132.64 23.86 411.32 70.16 

D1:MPa 0.9 117.84 22.86 404.84 65.74 

D2:Flow 0.5 128.36 19.58 126.80 22.10 

D2:Flow 0.7 131.16 24.12 195.68 14.66 

D2:Flow 0.9 129.92 17.30 210.92 25.78 

D2:MPa 0.5 113.36 20.42 131.12 15.12 

D2:MPa 0.7 117.48 17.16 181.52 33.02 

D2:MPa 0.9 109.08 20.80 211.88 30.91 

D2:Slump 0.5 127.04 24.35 128.84 18.45 

D2:Slump 0.7 132.56 24.56 193.40 13.66 

D2:Slump 0.9 132.72 20.59 207.80 25.94 
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same approach here, as explained in Section 5.2 , but it overfitted.

We provide Fig. 3 for a better visualization. 

GSGP-LSH was the most robust method on D1, showing the

smallest variation, but got stuck in local optima. It was the best

method on D2:Flow, and the second-best on D2:Slump. For KP,

there is a visible improvement when max _ correlation was in-

creased from 0.4 to 0.8. This increase also resulted in more ro-

bustness and less variation. Thus, the chosen quality measure (AIC)

and the safe prediction procedure were adequate at reducing over-

fitting. Finally, MRGP had no overfitting problems, suggesting that

LASSO is more effective than OLS; thus, LASSO is a promising alter-

native method for a future investigation. However, next we show

what the advantages are with OLS why we intend to stay with it

for now. 

5.4.2.2. Processing time. The number of models created by each

method and the average processing time in seconds are shown in

Table 9 . For KP, it is the number of cycles because in each cycle

there is one complete (reduced) model we disconsider the evalua-

tion of the two expanded models used to evaluate the importance

of the features. For GSGP-LSH and MRGP it is Population size + Pop-

ulation size × Number of generations because the offspring and pop-

ulation sizes are the same. The statistics for D2 considers all three

datasets because they were executed for the same number of cy-

cles/generations. 

We configured the algorithms to run for approximately 60 s. As

explained before, for KP and GSGP-LSH we estimated the total time

in number of cycles/generations. MRGP has a time limit parameter;

however, it did run for a longer period because it finishes only af-

ter a generation is completed. For this reason, the number of mod-

els evaluated by MRGP is averaged because the algorithm stopped

after the time limit. 

Even though we set the processing time as termination cri-

terion, it is interesting to observe that GSGP-LSH is many times

faster than KP and MRGP, and that KP (in Python) was substan-

tially faster than MRGP (in Java). KP built approximately 38% (for

D1) and 29% (for D2) more models than MRGP in approximately

66% of the time 7 LASSO gave MRGP a better predictive accuracy

than OLS in KP, but it is slower than OLS because of the nature of

the problem being optimized (and possibly because of some con-

figuration issues). 

We also ran GSGP-LSH allowing LS for all generations, instead

of limiting it to 10 generations, to compare the processing time.

The increase in time was not significant, approximately 7 s, proba-

bly because it is optimizing only three coefficients per generation,

while KP optimized 51 for each of the two expanded models and

11 for the complete solution. 

5.4.2.3. Interpretability. In Table 10 , we present the mean and stan-

dard deviation of the number of nodes in the final solution created

for each dataset. A node is either an operator or an operand. For

KP, one must add the intercept and multiply each feature by a con-

stant. For MRGP, one must add the intercept and each constant is

multiplied by a node in the individual. GSGP-LSH does not pro-

vide the final solution for comparison. Besides, interpretability is a
7 If we consider the expanded models created by KP to calculate the importance 

of the variables, then the number is two times bigger (3003 and 3903). 

t

 

a  

N  
nown issue in GSGP as it exponentially grows the expression tree

ithout a maximum size limit (the geometric crossover adds two

ndividuals). 

One may see in the table that, in average, MRGP needed more

han three times the number of nodes needed by KP for D1 and

ore than 40% the number needed by KP for D2. 

MRGP generates weights for each node in the expression tree,

eaning that there are many constants to interpret. As an exam-

le, the most accurate solution found by MRGP for D1, P ct = 0 . 5 ,

un = 10 , is presented in Fig. 5 ; it is an average size solution. For

P, the solution for the same dataset and run is shown in Fig. 4 . As

an be seen, KP returns features without weights because they can

e found by another method. Also, the new features can be inves-

igated separately, and posterior feature selection methods can be

mployed. Nevertheless, KP may also be configured to return the

omplete linear model. 

Figs. 4 and 5 are examples of average size solutions. As the al-

orithms are stochastic, the complexity of the solutions depends

n the run. The important aspect is that, for KP, the resulting fea-

ures are usually small and make the interpretation easier than

aving a single and long feature. Nevertheless, in order to achieve

 higher-quality model, we understand that MRGP’s approach can

e considered. 

.4.3. Comparison with statistical and Machine Learning methods 

We believe that it is important to compare KP with traditional

tatistical and ML methods in order to verify if our approach is

seful. To this end, the results obtained by KP and other methods

rom Weka are shown in Table 11 . 

The most important points of this comparison are as follows.

P was substantially better than Gaussian Processes on D1 and

2:MPa, achieving similar or worse quality on the remaining

atasets. KP should achieve better results than LR in all runs

ecause it should be able to discover intrinsic useful relationships

mong variables; however, this was not the case as LR showed

etter performance on two cases and a similar performance in

nother four cases. Notwithstanding, one may also observe that LR

as better than GSGP-LSH and MRGP for the same datasets (see

able 8 ). The conclusion is that one should start with LR and try

nother method whether the model is not satisfactory. 

MLP was by far the best method on D2:MPa, but lost on all D1

ases and achieved similar, but higher, medians on the remaining

atasets. Lastly, the two SVM methods showed poor performance,

hile SVM-RBF was the worst. Tuning the parameters of all these

ethods, including KP, could lead to even better results, although

his is out of scope in the current paper. 

In general, KP found models with prediction qualities that are

s good as, or better than more complex and robust methods.

onetheless, KP is solving a more complicated problem by search-
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Fig. 4. The solution found by KP 0.8 for D1, Pct = 0 . 5 , run = 10 . Each row is a feature, in descending order by their measured importance ( p -value). 

Fig. 5. The most accurate solution found by MRGP for D1, Pct = 0.5, run = 10. 

Table 11 

The median RMSE on the test set and two-sided Wilcoxon Rank Sum test agains KP 0.8. The marks are 

for significance levels α = 0 . 001 (3 bullets), 0.01 (2 bullets), and 0.05 (one bullet). W / T / L means number of 

Wins/Ties/Losses. Some KP results are different from those in Table 8 because here N = 50 . 

Dataset Pct KP 0.8 GaussP LR MLP SVM-Poly SVM-RBF 

D1:MPa 0.5 6 .94 8 .39 ••• 10 .49 ••• 7 .53 ••• 10 .87 ••• 11 .30 ••• 
D1:MPa 0.7 6 .70 8 .06 ••• 10 .44 ••• 7 .73 ••• 10 .85 ••• 11 .01 ••• 
D1:MPa 0.9 6 .65 7 .76 ••• 10 .21 ••• 7 .49 ••• 10 .67 ••• 10 .58 ••• 
D2:Flow 0.5 15 .65 13 .81 ◦◦◦ 13 .72 ◦◦◦ 17 .25 •• 14 .55 ◦◦ 17 .31 • 
D2:Flow 0.7 13 .46 13 .35 13 .51 15 .79 • 14 .35 17 .08 ••• 
D2:Flow 0.9 12 .55 12 .96 12 .84 14 .37 • 13 .86 16 .44 ••• 
D2:MPa 0.5 1 .37 3 .84 ••• 2 .88 ••• 1 .27 2 .88 ••• 6 .64 ••• 
D2:MPa 0.7 1 .24 3 .12 ••• 2 .91 ••• 1 .01 ◦◦ 2 .86 ••• 5 .66 ••• 
D2:MPa 0.9 1 .06 2 .54 ••• 2 .56 ••• 0 .53 ◦◦◦ 2 .55 ••• 4 .91 ••• 
D2:Slump 0.5 9 .05 7 .56 ◦◦◦ 7 .99 ◦◦◦ 8 .89 8 .63 9 .42 

D2:Slump 0.7 7 .79 7 .51 ◦ 7 .89 8 .54 8 .46 • 9 .42 •• 
D2:Slump 0.9 7 .43 6 .91 7 .67 • 8 .66 • 8 .31 • 9 .26 ••• 
W / T / L 3/3/6 2/3/7 2/3/7 1/3/8 0/1/11 

◦, • Statistically significant improvement or degradation. 
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Fig. 6. Observed versus predicted plots for the best constructed features. The diagonal blue line is the reference. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 12 

Comparison of Mean and Median RMSE (test set, rounded to two decimal places) 

with results from the literature for dataset D1. Symbol ‘–’ means not available. 

Method Models Split Mean Median 

KP 0.8 1001 50%/50% 6.90 6.94 

KP 0.8 1001 70%/30% 6.82 6.70 

KP 0.8 1001 90%/10% 6.58 6.65 

MLP [4] – 10-fold cv 6.33 –

CART [4] – 10-fold cv 9.70 –

CHAID [4] – 10-fold cv 8.98 –

SVM [4] – 10-fold cv 6.91 –

LR [4] – 10-fold cv 11.24 –

Square regression [18] – 70%/30% – 15.91 

Isotonic regression [18] – 70%/30% – 13.39 

Radial basis function 

network [18] 

– 70%/30% – 16.09 

SVM polynomial kernel 

( degree 5) [18] 

– 70%/30% – 6.79 

KP + LR [27] 101 10-fold cv 6.54 6.51 

KP + Gaussian processes [27] 101 10-fold cv 5.98 –

Standard GP [18] 360,0 0 0 70%/30% – 8.67 

Geometric semantic GP [18] 280,0 0 0 70%/30% – 5.93 ∗

GOT [42] 160,0 0 0 5-fold cv 7.12 –

WOS [42] 160,0 0 0 5-fold cv 6.89 –

GWPOT [42] 640,0 0 0 5-fold cv 6.38 –

GEGA [17] 20 0,0 0 0 66%/34% 9.95 –

GP [17] 20 0,0 0 0 66%/34% 10.87 –
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8 In fact, the reported value seems to be the MAE, not the RMSE, and our MAE 

was better than that as shown in the Appendix Table 14 . 
ing for both the structure of the model (the formula) and the pa-

rameters, while the other methods have a fixed structure and must

only optimize the parameters. Also, one must remember that KP

is creating features with only the four basic arithmetic operators,

while the other methods can build smoother surfaces (kernels, ac-

tivation functions). 

Regarding interpretability, the best models are those built by

LR, which is the simplest method. However, the models created by

KP are also linear in the parameters and likely easier to interpret

than an MLP and a set of SVM weights. Moreover, SR methods are

used to search for hidden knowledge” in the data and express it

in formulae, which could be useful to researchers, even if it is less

precise than a black-box method. 

5.4.4. Comparison with the literature 

Finally, in Table 12 we compare our results with those

of the literature. The number of models of the EC methods

was estimated as: population size + population size × generations ×
crossov er rate . Unfortunately, we could not find reports in the lit-

erature using SR methods on dataset D 2. 

The results of KP are better than several others reported in the

literature, even though KP was configured with only the four ba-

sic arithmetic operators as suggested in [18] , while other methods

used more operators that are potentially more effective in approx-

imating the data. KP outperformed the EC methods (from Standard

GP to below) but required fewer models (there is no information

on processing times in the literature). For GSGP (marked in the ta-
le), we tried to reproduce the results using the library provided

y the authors, but the average RMSE was more than twice the

ne reported in their paper [18] 8 

The other KP results in the table (KP+LR and KP+Gaussian Pro-

esses) are from [27] , in which we used Genetic Programming to

rovide the experts and performed 10-fold cross-validation (cv)

ach generation to reduce overfitting. Given the high computa-

ional cost of using cv, in this paper we employed AIC expecting

o achieve a similar predictive quality, but with a lower computa-

ional cost. As the results are not considerably different, although a

irect comparison is 50 × 90%/10% vs 10-fold cv, we consider that

he results achieved by KP in this work are satisfactory, suggesting

hat AIC was useful to reduce overfitting. 

Related EC work from the literature does not report computa-

ional time for comparison, but some is implemented in MATLAB,

hich is not a high-performance programming language. Hence,

e are unable to compare such processing cost. 

.5. Constructed features 

Table 13 has the constructed features that presented the lowest

est RMSE for KP 0.8 in each dataset with a training set percentage

f 90%. Fig. 6 shows the observed versus predicted plots for those

eatures. 

As the purpose of KP is to create and improve features, they

ave no weights as can be seen in Table 13 . These weights must

e optimized by OLS (or another method) for a specific training

et. However, the final features must be adequate to allow the cre-

tion of high-quality models that present low RMSE on the test set.

n the Appendix, we provide an R source code to evaluate those

eatures. 

Regarding the plots, the closer the points are to the reference

ine, the better the prediction. It is easy to notice that the high-

st quality model was D2:MPa, and the lowest quality model was

2:Slump. D1:MPa has an outlier near to position 20 × 40 and a

ew poor predictions around position 70 × 60. Nevertheless, the

odels present an acceptable overall quality, with high R 2 values. 

As explained before, a complete model using a set of ten fea-

ures could be a black-box. However, it is plausible to assume that

ost features are simple enough to be understood and can likely

e interpreted by material engineers. Thus, one might say that the

odels are gray-boxes. This is one of the reasons for using SR

ethods [15,19] . We are not aware of an algorithm that can assure

ull interpretability of models, and we do not guarantee it either. 

. Summary, conclusions, and future works 

Kaizen Programming is a hybrid algorithm that uses a collabo-

ative problem solving approach where partial solutions compose
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Table 13 

Best constructed features. Function div is safeDiv . 

Dataset Features 

D1:MPa 1: mul(sub(div(sub(mul(mul(add(X3, add(X3, mul(X3, X5))), X6), X6), X7), X2), X7), X6) 

2: sub(add(add(sub(div(mul(mul(mul(X1, X0), X4), X5), X4), X7), X0), X3), X1) 

3: mul(X3, add(sub(add(X4, X4), X3), X2)) 

4: sub(mul(add(sub(mul(X7, mul(X7, X6)), X0), X6), X5), X2) 

5: mul(mul(sub(add(add(mul(X3, X4), X7), X5), X6), X7), X0) 

6: sub(mul(X5, add(X7, X2)), add(X4, div(X2, X3))) 

7: div(mul(add(add(mul(mul(X0, X3), X4), X0), X1), X7), X0) 

8: div(sub(X0, div(add(add(div(X1, X0), X2), mul(X3, add(X3, X4))), X0)), X3) 

9: sub(mul(mul(sub(mul(X3, mul(X1, X6)), X0), X6), X5), X2) 

10: mul(div(sub(add(sub(add(X1, X2), sub(X7, X3)), X1), X4), X7), X0) 

D2:Flow 1: mul(mul(sub(X6, X0), sub(X3, mul(sub(X0, X3), add(X5, X4)))), add(X1, X4)) 

2: div(mul(mul(X2, sub(X6, add(div(X6, X4), X5))), X4), add(X6, X4)) 

3: div(mul(mul(X2, sub(X6, X2)), div(X6, X4)), X5) 

4: mul(mul(sub(X6, div(sub(X3, mul(sub(X0, X3), add(X5, X4))), add(X1, X4))), X3), X2) 

5: div(add(div(div(add(div(sub(X1, X4), X3), X4), X0), X3), X1), X1) 

6: div(div(add(add(add(X3, div(X4, X5)), X1), X6), X5), X3) 

7: div(mul(mul(X2, sub(X4, X0)), div(X6, X4)), X5) 

8: sub(sub(mul(mul(div(sub(mul(mul(X4, div(X4, X2)), X6), X1), X5), X1), X0), X4), X3) 

9: mul(mul(X4, X2), X1) 

10: add(mul(div(sub(X3, X2), X6), X2), X5) 

D2:MPa 1: mul(sub(add(sub(sub(div(mul(sub(X3, X3), X1), add(X3, X6)), X3), X3), X2), X5), X3) 

2: sub(add(X2, X3), X4) 

3: sub(add(sub(sub(div(mul(sub(X3, X3), add(add(X3, X6), X3)), X3), X0), X5), X3), X2) 

4: mul(X6, X6) 

5: sub(mul(div(sub(sub(div(add(sub(X5, X2), X6), X3), X4), X6), X3), X4), X3) 

6: mul(X6, X0) 

7: div(X6, sub(X4, X3)) 

8: sub(X4, add(sub(X4, X4), X5)) 

9: mul(sub(add(sub(sub(div(mul(sub(X3, X3), X1), add(X3, X6)), X3), X3), X0), X5), X3) 

10: mul(X6, X3) 

D2:Slump 1: mul(add(mul(mul(mul(mul(X6, X5), div(X1, X3)), X2), X0), X0), X1) 

2: add(sub(X0, X1), X6) 

3: mul(add(X6, X2), X5) 

4: sub(mul(mul(div(add(mul(sub(div(X1, div(X0, X1)), X4), X1), X5), X4), X2), X2), X3) 

5: mul(add(add(mul(X1, mul(X6, X5)), X0), X1), X3) 

6: mul(mul(X5, X4), X5) 

7: div(X1, div(sub(X0, add(X2, X2)), X6)) 

8: div(X1, sub(mul(add(X2, X2), X6), X3)) 

9: div(add(sub(X4, div(X4, X5)), X5), X5) 

10: div(mul(div(X5, X3), X6), X5) 
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 complete solution. KP can use global optimization algorithms,

tatistics, and ML. The partial solutions are created by the experts

hat generate ideas (partial solutions) based on the current stan-

ard (best set of partial solutions), which is improved over the cy-

les. Ideas are evaluated by their contribution to help to solve the

roblem, and the most important ones are selected for the next

mprovement cycle. Ideas providing similar partial solutions (not

imilar contributions) are automatically dropped to maintain diver-

ity. 

In this work, KP was employed to perform automatic feature

ngineering to build regression models for predicting properties of

oncrete. KP was tested on two datasets from the literature and the

esults were compared to those of EC, statistics, and ML methods.

t was shown that KP is competitive in terms of predictive quality

RMSE), outperforming several methods from the literature. KP can

e a useful alternative to related methods as it provides a set of

eatures instead of a single one. 

KP, being implemented in Python, was faster than MRGP (in

ava), and both were substantially slower than GSGP-LSH (in C++).

owever, GSGP-L SH runs L S only in the first ten generations to op-

imize only three coefficients to reduce the chance of overfitting,

hile KP and MRGP optimize many coefficients every iteration. 

In the future, we intend to apply KP as a feature construct-

ng approach on harder problems, for instance, larger datasets

ontaining more features, noise, and missing values. If OLS does

ot show acceptable performance, regularization methods such as
ASSO might be useful, despite its higher computational cost. We

lso plan to compare our approach to other methods, such as FFX. 

Further aspects: (i) ifferent initialization methods may provide

etter seeds for the search. This is another important issue to be

nvestigated in the future, as has been already demonstrated in

P. (ii) Instead of Simulated Annealing, one may investigate other

ombinatorial optimization methods. Also, the inclusion of ERCs

hould employ efficient numerical optimization methods, not SA.

iii) We intend to study different approaches to reduce overfitting.

hile we used 10-fold cross-validation during training in previous

ork, it was time-consuming, though it showed better robustness

gainst overfitting than achieved here with AIC. 

The results obtained in this work show that KP can find high-

uality features in short time and that a traditional linear regres-

ion model can achieve similar or better results than black-box

odels. The future research avenues presented above are opportu-

ities to enhance KP to provide a useful tool to the ML community.
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 shown in Table 13, Section 5.5 , and tables with more detailed statistics 

atures section. 
7. Appendix 

This section presents the R source code to test the best features

regarding the experiments. 

7.1. R source code 

R code to validate the solutions presented in the constructed fe
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ion quality, which was better than KP 0.4. Table 15 shows an extended 

s 16 and 17 shows an extended descriptive analysis compared KP with 

D2:MPa D2:Slump 

0.9 0.5 0.7 0.9 0.5 0.7 0.9 

8 6.640 10.744 0.978 5.863 10.002 0.863 5.585 

 6.824 10.919 1.047 6.047 10.066 0.884 5.653 

 4 1.056 1.740 0.253 0.882 2.412 0.207 1.119 

0 81.834 181.225 1.542 60.642 157.464 1.124 55.154 

 87.115 212.997 2.077 65.007 174.674 1.343 54.602 

9 27.210 87.270 1.355 21.160 88.418 0.816 21.078 

 9.046 13.461 1.242 7.787 12.548 1.060 7.427 

3 9.223 14.324 1.385 7.968 12.820 1.115 7.239 

2 1.450 2.823 0.401 1.245 3.245 0.319 1.496 

5 0.477 0.697 0.989 0.516 0.686 0.990 0.634 

3 0.455 0.652 0.985 0.515 0.669 0.984 0.599 

9 0.167 0.157 0.012 0.164 0.188 0.020 0.245 

1 0.228 0.486 0.978 0.267 0.470 0.980 0.403 

1 0.234 0.449 0.970 0.291 0.482 0.968 0.418 

3 0.141 0.174 0.024 0.149 0.229 0.039 0.241 
7.2. More detailed descriptive statistical analysis 

In Table 14 , we present other statistics regarding KP 0.8 predict

descriptive analysis comparing KP, GSGP-LSH, and MRGP, and Table

methods in WEKA. 

Table 14 

Other predictive quality statistics for KP 0.8. 

Dataset D1:Mpa D2:Flow 

Pct 0.5 0.7 0.9 0.5 0.7 

Median 5.201 5.079 4.957 12.359 1.02

MAE Mean 5.184 5.085 5.0 0 0 12.438 1.133

Std. dev. 0.241 0.289 0.469 1.868 0.4 4

Median 48.184 44.933 44.189 244.798 1.89

MSE Mean 47.794 46.855 43.783 264.940 4.186

Std. dev. 5.906 8.873 8.571 86.591 11.97

Median 6.941 6.703 6.647 15.646 1.375

RMSE Mean 6.901 6.820 6.585 16.074 1.64

Std. dev. 0.409 0.596 0.652 2.587 1.23

Median 0.912 0.915 0.923 0.604 0.98

R Mean 0.912 0.913 0.921 0.589 0.97

Std. dev. 0.012 0.016 0.017 0.126 0.05

Median 0.832 0.837 0.851 0.365 0.97

R 2 Mean 0.832 0.833 0.849 0.363 0.95

Std. dev. 0.022 0.028 0.031 0.134 0.09
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Table 15 

Comparison of RMSE on the test set with GSGP-LSH, MRGP, and KP with two max _ correlation values. Pct is the training set 

percentage. N is the number of successful runs. The results of a two-sided Wilcoxon Rank Sum test with levels α = 0 . 001 , 0 . 01 

and 0.05 are also indicated. 

Method Dataset Pct. N Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev. 

GSGP-LSH D1:MPa 0.5 50 11.63 11.92 12.02 ••• 12.08 12.24 12.87 0.27 

KP 0.4 D1:MPa 0.5 50 6.86 7.41 7.58 ••• 7.68 7.83 9.52 0.46 

KP 0.8 D1:MPa 0.5 50 6.25 6.59 6.94 6.90 7.13 8.68 0.41 

MRGP D1:MPa 0.5 50 6.22 6.59 6.95 7.10 7.44 8.87 0.71 

GSGP-LSH D1:MPa 0.7 50 10.62 11.66 11.89 ••• 11.89 12.15 12.62 0.39 

KP 0.4 D1:MPa 0.7 50 6.56 7.18 7.38 ••• 7.48 7.83 8.65 0.44 

KP 0.8 D1:MPa 0.7 50 5.89 6.49 6.70 6.82 7.04 9.13 0.60 

MRGP D1:MPa 0.7 50 5.33 6.10 6.42 ◦ 6.60 6.84 8.63 0.73 

GSGP-LSH D1:MPa 0.9 50 10.38 11.34 11.81 ••• 11.79 12.13 13.12 0.64 

KP 0.4 D1:MPa 0.9 50 5.74 6.80 7.34 ••• 7.39 7.95 8.95 0.79 

KP 0.8 D1:MPa 0.9 50 5.04 6.07 6.65 6.59 7.07 7.95 0.65 

MRGP D1:MPa 0.9 50 5.11 5.64 6.37 6.42 6.83 8.80 0.92 

GSGP-LSH D2:Flow 0.5 45 11.61 13.13 14.41 ◦ 4.47E + 28 16.04 2.01E + 30 3.00E + 29 

KP 0.4 D2:Flow 0.5 45 11.42 14.84 18.17 • 17.87 19.95 25.64 3.69 

KP 0.8 D2:Flow 0.5 45 11.78 13.50 15.62 15.87 17.18 22.06 2.56 

MRGP D2:Flow 0.5 45 13.16 15.29 17.04 • 17.12 18.61 23.19 2.33 

GSGP-LSH D2:Flow 0.7 50 9.54 12.31 13.15 3.67E + 11 14.50 8.62E + 12 1.55E + 12 

KP 0.4 D2:Flow 0.7 50 10.71 14.05 16.10 ••• 16.52 18.59 22.77 3.12 

KP 0.8 D2:Flow 0.7 50 10.19 12.36 13.46 14.32 16.22 22.01 2.82 

MRGP D2:Flow 0.7 50 11.26 13.64 15.63 • 15.54 16.93 23.47 2.67 

GSGP-LSH D2:Flow 0.9 50 8.03 10.18 11.90 12.04 14.11 16.37 2.27 

KP 0.4 D2:Flow 0.9 50 6.52 11.22 14.31 • 15.08 17.77 24.68 4.60 

KP 0.8 D2:Flow 0.9 50 5.41 11.00 12.55 12.82 14.68 23.21 3.25 

MRGP D2:Flow 0.9 50 8.14 12.30 13.90 •• 14.82 16.90 22.67 3.41 

GSGP-LSH D2:MPa 0.5 50 2.30 2.84 3.27 ••• 2.28E + 06 4.02 5.89E + 07 1.13E + 07 

KP 0.4 D2:MPa 0.5 50 2.22 3.18 3.82 ••• 4.13 4.64 8.21 1.38 

KP 0.8 D2:MPa 0.5 50 0.87 1.13 1.38 1.64 1.73 9.22 1.23 

MRGP D2:MPa 0.5 50 1.16 1.92 2.32 ••• 2.74 2.90 8.00 1.38 

GSGP-LSH D2:MPa 0.7 50 1.68 2.23 2.72 ••• 2.73E + 29 2.94 1.37E + 31 1.93E + 30 

KP 0.4 D2:MPa 0.7 50 1.44 2.84 3.55 ••• 3.71 4.41 7.99 1.29 

KP 0.8 D2:MPa 0.7 50 0.89 1.12 1.24 1.39 1.63 2.70 0.40 

MRGP D2:MPa 0.7 50 0.93 1.60 1.97 ••• 2.30 2.70 6.56 1.13 

GSGP-LSH D2:MPa 0.9 50 1.52 2.14 2.58 ••• 2.73 3.11 5.29 0.81 

KP 0.4 D2:MPa 0.9 50 1.21 2.50 3.14 ••• 3.49 3.91 12.73 1.81 

KP 0.8 D2:MPa 0.9 50 0.65 0.88 1.06 1.12 1.26 2.01 0.32 

MRGP D2:MPa 0.9 50 0.66 1.23 1.69 ••• 2.09 2.58 7.96 1.30 

GSGP-LSH D2:Slump 0.5 49 5.91 7.73 8.43 2.07E + 50 9.89 1.02E + 52 1.45E + 51 

KP 0.4 D2:Slump 0.5 49 7.28 8.35 9.79 9.86 11.28 15.16 1.78 

KP 0.8 D2:Slump 0.5 49 6.54 8.21 9.11 9.25 10.20 12.36 1.46 

MRGP D2:Slump 0.5 49 7.59 8.51 9.30 9.37 10.18 11.94 1.10 

GSGP-LSH D2:Slump 0.7 50 4.54 7.36 8.14 1.97E + 28 9.36 9.85E + 29 1.39E + 29 

KP 0.4 D2:Slump 0.7 50 5.96 7.83 8.75 ••• 8.88 9.92 11.53 1.39 

KP 0.8 D2:Slump 0.7 50 5.89 7.15 7.79 7.97 8.61 11.34 1.25 

MRGP D2:Slump 0.7 50 6.52 7.82 8.69 ••• 8.72 9.47 11.50 1.11 

GSGP-LSH D2:Slump 0.9 50 3.41 5.39 6.92 30.33 8.87 891.60 127.94 

KP 0.4 D2:Slump 0.9 50 4.01 7.08 8.79 ••• 8.69 10.49 13.56 2.25 

KP 0.8 D2:Slump 0.9 50 3.93 6.30 7.43 7.24 8.27 10.17 1.50 

MRGP D2:Slump 0.9 50 3.90 7.03 8.00 7.91 8.91 12.07 1.63 

◦, • Statistically significant improvement or degradation 
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Table 16 

Part I: comparison of RMSE on the test set using Statistical and ML methods. All runs succeeded. The results of 

a two-sided Wilcoxon Rank Sum test with levels α = 0 . 001 , 0 . 01 and 0.05 are also indicated. 

Method Dataset Pct. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev. 

GaussP D1:MPa 0.5 8.00 8.22 8.39 ••• 8.39 8.55 8.87 0.23 

KP 0.8 D1:MPa 0.5 6.25 6.59 6.94 6.90 7.13 8.68 0.41 

LR D1:MPa 0.5 10.04 10.32 10.49 ••• 10.52 10.67 11.20 0.26 

MLP D1:MPa 0.5 6.50 6.99 7.53 ••• 7.89 8.58 12.89 1.21 

SVM-Poly D1:MPa 0.5 9.95 10.68 10.87 ••• 10.98 11.21 12.97 0.57 

SVM-RBF D1:MPa 0.5 10.69 11.20 11.30 ••• 11.32 11.43 12.03 0.25 

GaussP D1:MPa 0.7 7.28 7.91 8.06 ••• 8.07 8.24 8.66 0.29 

KP 0.8 D1:MPa 0.7 5.89 6.49 6.70 6.82 7.04 9.13 0.60 

LR D1:MPa 0.7 9.76 10.27 10.44 ••• 10.48 10.69 11.33 0.35 

MLP D1:MPa 0.7 6.53 7.23 7.73 ••• 7.82 8.31 11.21 0.87 

SVM-Poly D1:MPa 0.7 9.55 10.48 10.85 ••• 11.02 11.49 13.52 0.77 

SVM-RBF D1:MPa 0.7 10.28 10.77 11.01 ••• 10.99 11.21 11.60 0.31 

GaussP D1:MPa 0.9 6.56 7.19 7.76 ••• 7.72 8.25 9.17 0.66 

KP 0.8 D1:MPa 0.9 5.04 6.07 6.65 6.59 7.07 7.95 0.65 

LR D1:MPa 0.9 9.19 9.81 10.21 ••• 10.32 10.77 12.32 0.61 

MLP D1:MPa 0.9 5.78 7.01 7.49 ••• 7.91 8.32 12.43 1.57 

SVM-Poly D1:MPa 0.9 9.22 10.39 10.67 ••• 10.78 11.21 13.50 0.97 

SVM-RBF D1:MPa 0.9 9.68 10.25 10.58 ••• 10.72 11.16 11.95 0.57 

GaussP D2:Flow 0.5 11.38 13.27 13.81 ◦◦◦ 13.83 14.45 16.33 1.08 

KP 0.8 D2:Flow 0.5 11.78 14.14 15.65 16.07 17.56 22.06 2.59 

LR D2:Flow 0.5 11.45 12.93 13.72 ◦◦◦ 13.71 14.57 15.81 1.07 

MLP D2:Flow 0.5 12.74 15.77 17.25 •• 18.17 19.98 26.75 3.60 

SVM-Poly D2:Flow 0.5 11.96 13.66 14.55 ◦◦ 14.80 15.55 19.53 1.67 

SVM-RBF D2:Flow 0.5 13.34 16.00 17.31 • 17.12 18.15 20.88 1.72 

GaussP D2:Flow 0.7 9.53 12.73 13.35 13.26 14.31 17.41 1.56 

KP 0.8 D2:Flow 0.7 10.19 12.36 13.46 14.32 16.22 22.01 2.82 

LR D2:Flow 0.7 10.09 12.63 13.51 13.47 14.47 17.44 1.47 

MLP D2:Flow 0.7 10.59 13.52 15.79 • 15.90 17.81 22.07 3.23 

SVM-Poly D2:Flow 0.7 11.00 13.19 14.35 14.45 15.43 18.96 1.80 

SVM-RBF D2:Flow 0.7 11.77 15.26 17.08 ••• 16.82 18.45 22.53 2.39 

GaussP D2:Flow 0.9 6.45 11.13 12.96 12.90 14.75 19.92 2.64 

KP 0.8 D2:Flow 0.9 5.41 11.00 12.55 12.82 14.68 23.21 3.25 

LR D2:Flow 0.9 8.32 11.29 12.84 13.02 14.85 19.95 2.52 

MLP D2:Flow 0.9 4.84 11.76 14.37 • 14.97 18.09 35.69 5.15 

SVM-Poly D2:Flow 0.9 9.45 11.95 13.86 14.03 15.70 19.92 2.69 

SVM-RBF D2:Flow 0.9 7.57 14.00 16.44 ••• 16.17 18.46 24.62 3.70 

GaussP D2:MPa 0.5 2.79 3.52 3.84 ••• 3.83 4.08 5.18 0.60 

KP 0.8 D2:MPa 0.5 0.87 1.13 1.38 1.64 1.73 9.22 1.23 

LR D2:MPa 0.5 2.32 2.76 2.89 ••• 2.91 3.05 3.53 0.27 

MLP D2:MPa 0.5 0.57 0.91 1.27 1.44 1.88 2.73 0.65 

SVM-Poly D2:MPa 0.5 2.22 2.73 2.88 ••• 2.88 3.04 3.60 0.28 

SVM-RBF D2:MPa 0.5 4.84 6.22 6.64 ••• 6.57 6.97 7.75 0.61 

GaussP D2:MPa 0.7 2.20 2.85 3.13 ••• 3.20 3.57 4.52 0.55 

KP 0.8 D2:MPa 0.7 0.89 1.12 1.24 1.39 1.63 2.70 0.40 

LR D2:MPa 0.7 1.77 2.67 2.91 ••• 2.85 3.11 3.61 0.40 

MLP D2:MPa 0.7 0.48 0.74 1.02 ◦◦ 1.25 1.50 3.82 0.74 

SVM-Poly D2:MPa 0.7 1.79 2.63 2.86 ••• 2.80 2.99 3.62 0.39 

SVM-RBF D2:MPa 0.7 3.95 5.13 5.66 ••• 5.76 6.54 7.60 0.88 

GaussP D2:MPa 0.9 1.16 2.04 2.55 ••• 2.69 3.10 4.92 0.87 

KP 0.8 D2:MPa 0.9 0.65 0.88 1.06 1.12 1.26 2.01 0.32 

LR D2:MPa 0.9 1.23 2.16 2.56 ••• 2.69 3.11 4.97 0.76 

MLP D2:MPa 0.9 0.27 0.43 0.53 ◦◦◦ 0.57 0.63 1.10 0.20 

SVM-Poly D2:MPa 0.9 1.10 2.07 2.55 ••• 2.65 3.21 5.16 0.82 

SVM-RBF D2:MPa 0.9 2.26 3.95 4.91 ••• 5.01 5.85 7.98 1.37 

◦, • Statistically significant improvement or degradation 
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Table 17 

Part II: comparison of RMSE on the test set (rounded to two decimal places) using Statistical and ML methods. 

All runs succeeded. The results of a two-sided Wilcoxon Rank Sum test with levels α = 0 . 001 , 0 . 01 and 0.05 are 

also indicated. 

Method Dataset Pct. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev. 

GaussP D2:Slump 0.5 6.05 7.11 7.56 ◦◦◦ 7.55 8.03 9.08 0.61 

KP 0.8 D2:Slump 0.5 6.54 8.20 9.05 9.22 10.19 12.36 1.45 

LR D2:Slump 0.5 6.96 7.80 7.99 ◦◦◦ 8.04 8.32 9.26 0.45 

MLP D2:Slump 0.5 6.96 7.86 8.89 9.28 10.17 13.92 1.75 

SVM-Poly D2:Slump 0.5 6.75 8.20 8.63 8.83 9.24 12.13 1.18 

SVM-RBF D2:Slump 0.5 6.88 8.55 9.42 9.30 10.15 11.15 1.05 

GaussP D2:Slump 0.7 5.13 6.75 7.51 ◦ 7.31 7.85 9.17 0.96 

KP 0.8 D2:Slump 0.7 5.89 7.15 7.79 7.97 8.61 11.34 1.25 

LR D2:Slump 0.7 6.16 7.45 7.89 7.96 8.57 9.55 0.79 

MLP D2:Slump 0.7 4.51 7.20 8.54 8.74 10.06 13.99 2.23 

SVM-Poly D2:Slump 0.7 5.60 7.70 8.46 • 8.46 9.22 12.15 1.30 

SVM-RBF D2:Slump 0.7 4.94 8.24 9.42 ••• 9.25 10.43 12.10 1.65 

GaussP D2:Slump 0.9 4.16 6.23 6.91 7.18 8.48 10.46 1.54 

KP 0.8 D2:Slump 0.9 3.93 6.30 7.43 7.24 8.27 10.17 1.50 

LR D2:Slump 0.9 5.24 7.03 7.67 • 7.94 8.99 10.85 1.32 

MLP D2:Slump 0.9 2.82 6.52 8.66 • 8.23 10.01 14.75 2.77 

SVM-Poly D2:Slump 0.9 4.23 6.79 8.31 • 8.17 9.60 12.34 1.83 

SVM-RBF D2:Slump 0.9 2.84 7.24 9.26 ••• 9.01 11.08 14.14 2.58 

◦, • Statistically significant improvement or degradation. 
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