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Abstract. Most of the classical clustering algorithms are strongly
dependent on, and sensitive to, parameters such as number of expected
clusters and resolution level. To overcome this drawback, in this paper
a Genetic Programming framework, capable of performing an automatic
data clustering, is presented. Moreover, a novel way of representing
clusters which provides intelligible information on patterns is introduced
together with an innovative clustering process. The effectiveness of the
implemented partitioning system is estimated on a medical domain by
means of evaluation indices.

1 Introduction

Clustering is the part of data mining whose task consists in grouping a set
of similar objects based on some measures of goodness that differ according
to application [1, 2]. Differently from the supervised learning in which, given a
collection of labeled training examples used to learn the descriptions of classes,
the problem is to label a newly encountered pattern, in clustering the problem
is to group a given collection of unknown patterns into meaningful clusters with
no assumptions about the relationships.

The clustering aim is to develop methods and tools for analyzing large data
sets and for searching for unexpected relationships in the data. A variety of
clustering algorithms have been developed to face the problem [3]. Most of these
algorithms require user inputs of several parameters like the number of clusters
and the average dimensionality of the cluster [4–6], which are not only difficult to
determine but are also not practical for real–world data sets. In the hierarchical
algorithms a human user evaluates a posteriori the resolution level, and thus the
cluster number, by which he wants to partition the assigned data set. In other
cases, different criteria have been introduced to find the optimal value of the
cluster number [7–9]. Hence, the output of these clustering algorithms is very
sensitive to user expertise.

To overcome these drawbacks, evolutionary techniques have been applied
to cluster analysis [10–13]. However pure evolutionary techniques are normally



considered inefficient due to high computational costs [10] and thus the usage of
combined strategies has been attempted [9, 14]. In this paper the effectiveness of a
Genetic Programming (GP) [15] framework to perform automatic data clustering
without providing any kind of user knowledge is investigated. The hope is that
GP, based only on information implicitly contained in the data set, allows to
find an efficient partitioning with interesting correlations among patterns. To
this aim an innovative way of representing clusters, based on logical formulas, is
introduced. Furthermore a new clustering procedure tied to this representation
is proposed. A solution is found by maximizing intra–cluster homogeneity and
inter–cluster separability of the clustering. This evolutionary system is applied
to clustering in a medical domain.

The paper is organized as follows: in Sect. 2 a formalization of data clustering
is reported, while in Sect. 3 our GP–based clustering system is outlined together
with its implementation details. In Sect. 4 the test problem and some evaluation
indices are described. The performance of our system is discussed in Sect. 5. The
last section illustrates our final remarks and future work.

2 Data Clustering

2.1 Definitions and Notations

Each element of the database is said pattern and is represented by X =
(x1, . . . , x`) with X ∈ S, where S is the universe of all possible elements with
` attributes and xj denotes the j–th attribute of the pattern. A pattern set X
with cardinality n is denoted with X = (X1, . . . ,Xn) with, in general, X ⊆ S.

Distance between Patterns. Definition of distance between patterns depends
on the type of attributes. For binary attributes the Hamming distance is used
while for numerical ones the linear distance δ(xj , yj) = |xj − yj | is considered.

Once defined the range for the j-th attribute as: Rj ≡ δ( max
i=1,...,n

xij , min
i=1,...,n

xij)

where xij indicates the j–th attribute of the i–th pattern, the distance between
patterns chosen is the Manhattan one:

d(X,Y) =
1
`
·
∑̀

j=1

(
1

Rj
· δ(xj , yj)

)
(1)

This distance is normalized with respect to the range Rj and to the number of
attributes, so as to have 0 ≤ d(X,Y) ≤ 1 ∀ X,Y ∈ X .

Cluster Representative and Clustering. Several ways are possible to
represent a cluster Ck. In the enumerative method for each cluster the data
set elements which belong to it are listed. In others a cluster is represented by
listing for each attribute the maximum and the minimum values computed on
cluster members. In many algorithms a representative for any cluster Ck is used,



i.e. an element of set S which can whether or not belong to the cluster. However,
the most used representative is the centroid Pk defined as the average point for
patterns belonging to Ck. In this case, a clustering CL with cardinality N can
be denoted by the list of its cluster representatives: CL ≡ {P1, . . . ,PN }.

2.2 Scoring Function, Homogeneity and Separability

To quantify the clustering quality with respect to data set taken into account, a
scoring function fs, expressed in terms of homogeneity H and separability S for
the clustering CL, is considered. Thus a generic score function is:

fs = f(H(CL),S(CL))

where the dependence on X is implicit in the computation ofH(CL) and S(CL).
Denoting with wk the cardinality for a cluster Ck, homogeneity is defined as:

H(Ck) ≡ −
∑

X∈Ck
[d(X,Pk)]
wk

Hence we can define clustering homogeneity as weighted average of homogeneity
of clusters, and separability for a clustering as the weighted average of distances
among clusters. Formally, we have:

H(CL) ≡
∑m

i=1 wi · H(Ci)∑m
i=1 wi

; S(CL) ≡
∑m−1

i=1

∑m
j=i+1 wi · wj · d(Ci,Cj)∑m−1

i=1

∑m
j=i+1 wi · wj

(2)

Distance between clusters is computed as the distance between respective
centroids by using (1).

3 Our Genetic Programming System for Data Clustering

Clustering Encoding. In our system, a cluster prototype is a logical formula
E constituted by a variable number of predicates and a clustering is represented
by a variable number of such formulas. Any GP individual encodes a clustering
as a tree structure. A formula generator, based on the context–free grammar in
Table 1, provides the starting population. This grammar ensures the syntactic
correctness of the formulas. The tree nodes can be either terminal or nonterminal
symbols. These latter are indicated in capital letter. Moreover, the terminal
symbol $ is introduced as formula delimiter. Since the grammar is non–
deterministic, the action carried out by a rule is chosen based on the fixed values
of probabilities shown in the table so as to reduce the probability of generating
too long formulas. However, in addition an upper limit has been imposed on
the total number of predicates contained in the set of formulas representing
a clustering and individuals which overcome it will be generated anew. The
generator starts by applying the starting rule S and then the remaining ones as
long as they are called upon. The aim is to create a set of logical formulas different



in terms of size, shape and functionality. It can be noted that S allows to generate
individuals composed by at least two formulas. For the predicates of each formula
Ek conditions on some of the attributes ai of the database patterns are set.
When all the predicates of this formula are satisfied by the attribute values
of the pattern, the formula is said to match the pattern itself. The matching
between a generic pattern and the formulas is effected by an interpreter. All the
formulas of the individual will be used to perform the clustering process which
takes place in two steps:

1. assign all the patterns which are matched by the formulas (the formulas
which match no pattern are not considered in the step 2 and they simply
represent introns in the genotype):
– a pattern is matched by one formula only: it is assigned to the related

cluster;
– a pattern is matched by more than one formula with different number

of predicates: the pattern is assigned to the formula with the greatest
number of matched predicates4;

– a pattern is satisfied by more than one formula with the same number
of predicates: the pattern is classified as undefined and it is not assigned
at this stage;

2. assign the patterns which are not matched by any formula of the clustering
and the undefined ones:
– for each formula, compute the average points of all the patterns assigned

so far to it: this point is called matching centroid;
– assign any pattern to the cluster whose matching centroid is the closest.

This process, hereinafter referred to as clustering, permits to combine the
advantages of a clustering whose representation is based on logical formulas
with those of a classical representation based on centroids. In fact, the former
provides a feature extraction and correlation capability and the latter makes
the process able to perform a complete clustering in which all the patterns are
assigned.

Hence, based on what expressed above, the phenotype F is constituted by
a variable number of formulas, each of which is representative of a cluster.
Formally, the clustering represented by F is as below:

F ≡ {E1, E2, . . . , EN }

where N is the number of formulas.

Fitness Function. After performing the clustering process, an appropriate
fitness function must be chosen to evaluate the quality of the segmentation
based on F. A penalty term linked to the number of clusters could be added
in the fitness, with the aim to avoid a probable overfitting of the solution with
4 The aim is to assign the pattern to the formula which delimits a smaller part of

feature space, so to obtain a more specialized cluster.



Table 1. The grammar for the random program generator.

Rule number Rule Probability

1 S −→ (Q)BA$(Q)BAE 1.0
2 Q −→ L|M equiprobable
3 L −→ C ∧ L|C 0.7, 0.3
4 M −→ C ∨M |C 0.7, 0.3
5 B −→ ∨|∧ equiprobable
6 A −→ (Q)BA|(Q) 0.3, 0.7
7 E −→ $(Q)BAE|$ 0.6, 0.4
8 C −→ (PNZ) 1.0
9 P −→ a0|a1| . . . |a32 equiprobable
10 Z −→ 0|1|2|3 equiprobable
11 N −→≥ | ≤ | = | > | < equiprobable

respect to the given database due to uncontrolled increase in the number of
clusters. Nevertheless, this would mean to establish a limit to this number, by
using some a priori knowledge on the application domain, which would make our
algorithm dependent on user skill. To surmount this problem, following [16], we
consider as fitness function a linear combination of intra–cluster homogeneity
and inter–cluster separability:

f(F) = H(F) + µ · S(F) (3)

where µ is a scaling factor. In this way, data clustering becomes a problem of
direct maximization for homogeneity and separability independently of number
of clusters N , and depending on a scale factor liable for balance between them.
Thus the fitness f(F) does not explicitly depend on N , yet as the parameter
µ varies a control on the number of clusters will be indirectly achieved. In fact
the relative weights for H and S change as µ varies. Namely it is to note that,
for low values of µ, H is dominant in (3) and as H increases N tends to grow,
while, when µ grows, the value of S assumes a more significant weight in (3)
and, consequently, its increment tends to let N decrease.

To calculate more accurately H(F) and S(F), the centroids of all the actual
clusters achieved at the end of the clustering process are evaluated and their
values are used in (2).

Genetic Operators. The phenotypes are encoded as derivation trees,
generated by the grammar, representing the genotypes the genetic operators
work with. This encoding is very appealing in that the actions performed by the
genetic operators can be easily implemented as simple operations on the trees.
The new elements in the population are generated by means of two operators,
crossover and mutation, which preserve the syntactic correctness of the formulas.

The crossover operates by randomly selecting both a nonterminal node
in the first individual to be crossed and the same nonterminal node in the



second individual. Then, it swaps the derivation subtrees. If a corresponding
nonterminal node cannot be found in the second parent, the crossover takes
place on different nodes.

Differently from classical GP, the mutation works on any obtained offspring
by randomly choosing a nonterminal node in the individual to be mutated, and
then the corresponding production rule is activated in order to generate a new
subtree. Depending on the nonterminal symbol chosen, this operation can result
either in the substitution of the related subtree (macro–mutation) or in a simple
substitution of a leaf node (micro–mutation).

Selection. Tournament method is taken into account in order to control loss of
diversity and selection intensity.

4 Evaluation Indices and Database

4.1 Evaluation Indices

Evaluation indices can be defined and exploited to quantitatively estimate a
posteriori the degree of usefulness and meaningfulness of found clusters. In
general, given a clustering and a data set where classes are known, a table
between the p classes and the s found clusters can be conceived. This table
corresponds to a matrix B where element bij represents the number of patterns
in the data set belonging to class i assigned to cluster j. Two indicators can be
defined: the Class Addressing Index I and the Class Gathering Index G. For the
j-th cluster:

Ij =
p∑

i=1

b2
ij

(
∑p

i=1 bij)2

This index represents a normalized weighted average and it measures the ability
of a cluster to address towards a single class. Its value is 1 in the best case, in
which the cluster represents only one class, and it decreases as the number of the
addressed classes increases. In the worst case its value is equal to 1

p . We define
I for the whole clustering as the weighted average for indices of each cluster:

I =

∑s
j=1 wj · Ij∑s

j=1 wj

where wj denotes the weight of j–th cluster, i.e. the number of patterns assigned
to j–th cluster. Its variation range is the same of Ij .

In a similar way, for the i–th class G is:

Gi =
s∑

j=1

b2
ij

(
∑s

j=1 bij)2

It indicates as a single class is subdivided among the clusters. Also in this case,
its value is 1 when all the elements of one class are grouped in one cluster, while



it decreases down to 1
s as the number of clusters in which a class is subdivided

increases. For all the clustering

G =
∑p

i=1 wi · Gi∑p
i=1 wi

where wi denotes the weight of i–th class, i.e. the number of patterns belonging
to i–th class. The variation range is the same as that of Gi.

For a global evaluation we take into account the so-called Correspondence
Index Ic = I · G. Its range is (1/p) · (1/s) ≤ Ic ≤ 1.0.

4.2 The Database

A database, constituted by 366 clinical dermatological cases, available at UCI
site [17] has been considered. Each instance has 34 attributes, of which 12 clinical
and 22 hysto–pathological. Any attribute, apart from age and family anamnesis,
is in the range [0, 3] where 0 indicates the absence of the attribute, 3 indicates
the presence at its maximum degree, while 1 and 2 denote intermediate values.
Family anamnesis is a boolean attribute with value 1 if any dermatological
pathology has been observed in the family, 0 otherwise. Such a database is
already subdivided into 6 classes on the base of medical belief.

5 Experimental Findings

Since d(X,Y) ≤ 1, for the homogeneity and the separability of a clustering,
represented by a phenotype F, we have that −1 ≤ H(F) ≤ 0 and 0 ≤ S(F) ≤ 1.
Therefore for the fitness it results that −1 ≤ f(F) ≤ µ. Preliminary trials
have allowed to set the basic evolutionary parameters. In particular population
size ps=100, tournament size T = 10, mutation probability pm=0.9, crossover
probability pc = 0.9 and number of generations ng = 250. Besides the maximum
number of predicates in the set of formulas has been set equal to 200.

The experiments aim at studying the variation of H and S as a function of
the scale factor µ in the range [0.0, 1.0] with step 0.1. In Table 2 the average
values of H, S and N for each value of µ are reported. These values have been
obtained performing 10 runs for each value of the scale factor. The objective is to
find the best µ in terms of H and S. In order to individuate it we have defined a
theoretical ‘optimal point’ (shown in bold in table) obtained considering the best
of homogeneity and separability among those found during our trials. Among
all the different values of H and S in table, the closest to this ‘optimal point’,
in terms of distance, has resulted to be that with µ = 0.7. Table 2 shows also
that as µ increases, the average number of clusters decreases which reveals that
an implicit control on N can be actually achieved by suitably setting values for
the scaling factor.

By using µ = 0.7, the behavior during the best run in terms of fitness is shown
in Fig. 1. In particular, on the left the average fitness of the population and the



Table 2. Average values of homogeneity and separability as a function of µ

µ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H -0,106 -0,105 -0,111 -0,115 -0,119 -0,120 -0,119 -0,125 -0,136 -0,140 -0,133
S 0,234 0,237 0,244 0,248 0,253 0,254 0,252 0,259 0,265 0,274 0,265
N 15.6 14.6 12.2 9.8 7.5 6.7 4.9 4.5 4.3 4.2 3.4

fitness of the best individual are reported as a function of the generation number.
As it can be noted, there is a startup phase for the best fitness in which its value
is almost constant and much higher than the average one. Such a behavior is due
to the predominance of the separability in the fitness function which keeps low
the related best number of clusters as it can be seen in Fig. 1 (right). Starting
from about 40 generations this fitness increases constantly until generation 100.
This is owed to the improvements of the homogeneity values as confirmed by the
increase in the corresponding number of clusters with respect to the initial phase.
Then the process continues with a lower increase until about 150 generations.
During this phase the number of clusters remains constant. The last phase, up
to generation 250, shows no significant variation in terms of the best fitness and
the decrease and the stabilization in the associated number of clusters.
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Fig. 1. Behavior of fitness (left) and number of clusters (right) during the best run.

In Table 3 the clustering obtained during the best run above is reported.
For the medical database considered, it should be observed that the second and
the fourth cluster address perfectly the first and the third class respectively.
Almost the same holds for the first and the third cluster. Moreover it is clear
that the second and the fourth classes have not been distinguished. Nonetheless,
this result was expected since it is known that these classes are hard to separate
by medical experts as well. This fact yields that the value of I = 0.8367 is
satisfactory but not so close to the maximum. Furthermore, it is worth observing
that each class has been almost optimally gathered in one cluster. This is
confirmed by the very good value of G = 0.989. Thus the global index Ic is



Table 3. Classes–clusters (p\s) relationship for the solution with µ = 0.7

p\s 1 2 3 4 5

1 0 112 0 0 0
2 0 0 0 0 61
3 0 0 0 72 0
4 0 0 0 0 49
5 50 0 0 0 2
6 0 0 19 0 1

Table 4. Average index values as a function of µ

µ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

I 0.5945 0.925 0.803 0.927 0.746 0.8154 0.8274 0.8167 0.665 0.6642 0.615
G 0.835 0.735 0.783 0.816 0.704 0.938 0.952 0.979 0.949 0.916 0.933
Ic 0.4964 0.6799 0.6287 0.7564 0.5252 0.7648 0.7877 0.7995 0.6311 0.6084 0.5738

equal to 0.8275. These values assure that the clustering achieved is effective.
As an example of the clustering, we report in the following only the formulas

representative of the first two clusters in Table 3:
Cluster 1: ((a17 = 2) ∨ (a10 = 1) ∨ (a15 > 0)) ∧ ((a27 = 1) ∨ (a6 > 1)) ∧
((a16 = 2) ∨ (a2 = 2) ∨ (a30 = 3) ∨ (a19 = 1) ∨ (a3 = 2) ∨ (a15 < 2)) ∧ (a14 ≥ 2)
Cluster 2: (a21 > 1)∧ ((a22 > 1)∨ (a26 > 1)∧ (a0 > 1)∨ (a28 > 0)∨ (a21 < 3)∨
(a0 < 3)∨ (a12 = 1)∨ (a18 > 1)∨ (a31 ≤ 2)∨ (a0 < 2)∨ (a11 > 1)∨ (a24 > 1))∧
((a29 = 0) ∨ (a18 < 2) ∨ (a10 < 3) ∨ (a12 < 2))

As it is evident this novel representation has the advantage of providing
explicit information both on the features of the patterns satisfying each formula
and on their values.

Let us use Ic index to evaluate the found solutions from a clustering
standpoint. It permits to estimate the utility of detected clusters in addressing
towards the classes. In Table 4 the average values of all the indices, related to
the best solutions in terms of fitness during 10 runs, are reported as a function
of µ. It should be observed that the value Ic obtained for µ = 0.7 is always the
best. This seems to validate a posteriori its choice.

6 Conclusions and Future Work

In this paper, the flexibility of a Genetic Programming framework in performing
automatic clustering has been exploited. The implemented system is capable
of detecting clusters orienting towards classes. As a data clustering algorithm,
satisfactory results have been achieved. Furthermore, thanks to GP, an
innovative mode of representing clusters, based on logical formulas, has been
introduced. This has not only allowed to perform an original clustering process
which exploits the advantages of both a new representation and a classical one,



but it has also permitted the discovery of common relationships of patterns
belonging to a same cluster.

The system will be tested on different databases to further ascertain its
effectiveness. Besides, it could be parallelized with the scope of achieving an
improvement both in performance and in solution quality.
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