Skip to main content

From Royal Road to Epistatic Road for Variable Length Evolution Algorithm

  • Conference paper
Artificial Evolution (EA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2936))

  • 664 Accesses

Abstract

Although there are some real world applications where the use of variable length representation (VLR) in Evolutionary Algorithm is natural and suitable, an academic framework is lacking for such representations. In this work we propose a family of tunable fitness landscapes based on VLR of genotypes. The fitness landscapes we propose possess a tunable degree of both neutrality and epistasis; they are inspired, on the one hand by the Royal Road fitness landscapes, and the other hand by the NK fitness landscapes. So these landscapes offer a scale of continuity from Royal Road functions, with neutrality and no epistasis, to landscapes with a large amount of epistasis and no redundancy. To gain insight into these fitness landscapes, we first use standard tools such as adaptive walks and correlation length. Second, we evaluate the performances of evolutionary algorithms on these landscapes for various values of the neutral and the epistatic parameters; the results allow us to correlate the performances with the expected degrees of neutrality and epistasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Platel, M.D., Clergue, M., Collard, P.: Maximum homologous crossover for linear genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 194–203. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Banzhaf, W., Frankone, F.D., Nordin, P.: Some emergent properties of variable size EAs. Position paper at the Workshop on Evolutionary Computation with Variable Size Representation at ICGA 1997 (1997)

    Google Scholar 

  3. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Chawdhry, P.K., Roy, R., Pan, R.K. (eds.) Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer, London (1997)

    Google Scholar 

  4. Daida, J.M., Polito, J.A., Stanhope, S.A., Bertram, R.R., Khoo, J.C., Chaudhary, S.A.: What makes a problem GP-hard? analysis of a tunably difficult problem in genetic programming. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 2, pp. 982–989. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  5. Punch, W.F., Zongker, D., Goodman, E.D.: The royal tree problem, a benchmark for single and multiple population genetic programming. In: Advances in Genetic Programming 2, pp. 299–316. MIT Press, Cambridge (1996)

    Google Scholar 

  6. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Foundation of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  7. Clergue, M., Collard, P., Tomassini, M., Vanneschi, L.: Fitness distance correlation and problem difficulty for genetic programming. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, pp. 724–732. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  8. Kauffman, S.A.: The origins of order. Self-organization and selection in evolution. Oxford University Press, New-York (1993)

    Google Scholar 

  9. Weinberger, E.D.: Local properties of kauffman’s N-k model, a tuneably rugged energy landscape. Physical Review A 44, 6399–6413 (1991)

    Article  Google Scholar 

  10. Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: RNA folding and combinatory landscapes. Physical review E 47, 2083–2099 (1993)

    Article  Google Scholar 

  11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-Doklady (1966)

    Google Scholar 

  12. Brameier, M., Bhanzhaf, W.: Explicit control of diversity and effective variation distance in linear genetic programming (2001)

    Google Scholar 

  13. O’Reilly, U.: Using a distance metric on genetic programs to understand genetic operators (1997)

    Google Scholar 

  14. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325 (1990)

    Article  MATH  Google Scholar 

  15. Kinnear Jr., K.E.: Fitness landscapes and difficulty in genetic programming. In: Proceedings of the 1994 IEEE World Conference on Computational Intelligence, Orlando, Florida, USA, vol. 1, pp. 142–147. IEEE Press, Los Alamitos (1994)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Platel, M.D., Verel, S., Clergue, M., Collard, P. (2004). From Royal Road to Epistatic Road for Variable Length Evolution Algorithm. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2003. Lecture Notes in Computer Science, vol 2936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24621-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24621-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21523-3

  • Online ISBN: 978-3-540-24621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics