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Abstract:  This paper uses Genetic Programming to evolve groups of ants to push a box from the 
center of a room to a wall.  Group sizes and ant capabilities are varied to observe the speed, 
effectiveness, and nature of the intelligence that evolves for each ant.  As expected, larger groups 
compensate for lesser intelligent ants by having more of them to solve the task.  The ant-box-
pushing problem then becomes a coverage problem whereby solutions are found by adequately 
covering the space in which the task is to be completed. 

  
 
I. Introduction and Background 
 
A. Introduction 
 
A group of ants are placed in a room with a box of food that they have to push to a wall.  The objective of this 
simulation is to evolve the individual ants so that when placed in a group they are able to effectively coordinate the 
pushing of this box.  The more ants that help push the box, the faster the food is collected.  The faster a group 
collects the food, the more favored that group of ants will be in breeding for subsequent generations.  Also, since the 
box is rectangular, the ants must also coordinate evenly pushing the box so that not too much time is wasted in 
pushing a corner of the box thereby rotating the box in circles. 
 
 
B. Simulation Details 
 
The n ants in a group are represented as points in a 100cm x 100cm square room.  Each ant can either rotate 45 
degrees or move forward 2cm per time step.  There are 100n time steps to complete the task of pushing the box.  The 
number of time steps is based on providing sufficient time for an ant to come in contact with the box (< ~35 time 
steps from any point to the box) and sufficient time to push it toward a wall (< ~ 25 time steps from the box to the 
wall). 
 
The box is 7cm x 7cm and is placed in the center of the room.  The ants are randomly placed around the room with 
random orientations in a trial.  A trial is repeated 50 times in order to ascertain the average effectiveness of the 
program used for that group of ants. 
 
There are three levels of capabilities provided for the ants: 
Level A – Here the ants have no cognitive or communicative capabilities.  They are only allowed to rotate to the left 

or right or move forward. 
Level B – At this level, ants get the additional ability to sense if there is a box 20cm ahead. 
Level C – This level adds the most basic communication among the ants, simply allowing them to detect whether 

there is another ant 20cm ahead.  It is arguable whether this can be considered communication.  We choose 
to consider it as such since as an ant suddenly observes another ant moving, he may want to follow to aid in 
the pursuit of the box.  So ants’ movements and directions, on a basic level, implicitly communicate to 
other ants the potential location of the box. 
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Initially, the groups of ants will not have any intelligent method of using their capabilities.  As successive 
generations of ants are evaluated for their fitness, the better species in each generation will tend to breed more often 
and produce offspring for subsequent generations.  Eventually, intelligence will emerge in later generations of ants. 
 
The fitness of each ant is determined by how quickly and how often the box is pushed to the wall.  If the box is not 
pushed all the way to the wall but is dislodged from its center within the time allotted, then the proximity of the box 
to the wall is used for fitness. 
 
 
C. Technology Used 
 
The simulation in this paper uses Genetic Programming (GP) based on the work of John Koza at Stanford 
University.  Each ant is represented by a simple LISP-based program.  The LISP-code represents a tree with each 
internal node representing a cognitive or communicative ability of the ant and each terminal representing an action, 
like move forward, rotate, etc. 
 
During breeding, sub-trees of programs are swapped to simulate the cross-over effect that occurs in DNA.  This 
provides for novel species that are, in many cases, better suited for the task at hand.  In addition mutations can occur 
during breeding.  These are used sparingly, but they allow for program trees to change spontaneously so as to escape 
from situations in which the simulation leads to locally maximum performance. 
 
 
D. Motivation 
 
GP offers a method for simulating Darwinian natural selection.  Every application of a GP-based problem gives at 
least some insight into the way organisms in nature have adapted to their various ecosystems and niches.  These 
adaptations can then be extracted for use in solving problems in other fields, such as economics and electrical 
engineering. 
 
In autonomous organisms, or nodes, common adaptations that emerge include communication, cognition, and group-
wise coordination.  Coordination is seen as a natural result of communication and cognition; once organisms can 
sense their environment and peers, they can leverage the power of groups by dividing a task amongst themselves. 
 
By abstracting the problem of coordination into a simple ant-box-pushing problem, we can gain some general 
insights into the influence certain factors may have on the utility of group behavior.  Such insights are useful for 
systems theory and other evolutionary systems.  Many of these insights also confirm our common sense notions 
about group behavior.  For example, if there is a simple task to be completed by a large group of people, there is a 
tendency for simplicity and laziness to propagate in individuals.  These and other generalizations about group 
behavior and intelligence distribution are useful for designing group-based solutions. 
 
 
II. Simulation Setup 
 
A. Simulation Intent 
 
Other GP simulations focus on developing an optimum or novel solution to problems or situations.  The box-
pushing-simulation is different.  Since a solution is fairly simple, our goal is to see how close and fast the simulation 
comes to hypothetical target solutions. 
 
Level A General Target Solution: 
(progn2 (progn2 fwd right) 
 (progn2 fwd left ) 
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This is also known as “zig-zag.”  An ant with this program moves forward, turns left, moves forward again, turns 
right, and then moves forward again.  A group of zig-zaggers will crawl around the room and have a high chance of 
hitting and pushing the box to the wall. 
 
Level B General Target Solution: 
(if-box-ahead fwd zig-zag) 
 
This is a “zig-zag-finder,” a slight modification of “zig-zag.” Here the ants will crawl around the room until one sees 
a box.  At that point the ant will then pursue the box, pushing it to the wall 
 
Level C General Target Solution: 
(if-box-ahead (if-ant-ahead fwd fwd) 

(if-ant-ahead fwd zig-zag) ) 
 
This is called a “zig-zag-finder-chaser.”  As the naming suggests, ants with this program crawl around, and if they 
see an ant, chase them.  This is to have ants detect other ants that might be moving toward boxes and then follow 
them to aid in pushing the box to the wall. 
 
If we limit LISP-trees of ants in a Level A simulation to have a minimum depth of 2, the probability of generating 
the Level A General Target Solution is 1 in 2,500 (.5 chance on nodes at depth 1 and 2, and 1/5 chance for each 
node in depth 3).  Plus, there are many variations of the zig-zag program, so by simple enumeration, this solution 
should be reached in much less than 2,500 iterations.  Level B and Level C have modifications on the zig-zag 
problem and only add one or two levels of depth.  Since these solutions can be created easily, our goal then is not to 
test whether we achieve these target solutions through GP, but how quickly and with what proximity we do so. 
 
 
B. Major Preparatory Steps 
 
In Koza’s Genetic Programming five major preparatory steps are essential to every GP-based project (Koza 1992): 
 
 
1. Terminals 
 
These are the terminal nodes in any program tree representing each ant: 
- Left (45 degrees) 
- Right (45 degrees) 
- Forward (2cm) 
 
 
2. Functions 
 
These are the internal nodes in any program tree representing each ant: 
- Level A – None 
- Level B – If-Box-Ahead 
- Level C – If-Box-Ahead, If-Ant-Ahead 
 
 
3. Fitness Measure 
 
There are 50 trials for each ant.  During each trial, the ants are randomly placed in the room with random 
orientations.  When the trial ends (by either time-out or by a box hitting the wall), a score is assigned to the trial.  
The score is based 50% on the time it took and 50% based on how far the box was from the wall.  A group of ants, 
in an impossible scenario, that pushes the box to the wall and takes 0 time steps will receive a score of 0.  If the box 
never moves from the center and all of the time steps are used, then that trial will receive a score of 1.  The average 
of 50 scores is taken and that becomes the fitness of a program.  The fitness also tracks the number of hits for 50 
trials based on the number of times the box made it to the wall. 
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The number of trials, 50, was discerned through trial-and-error.  I tested various trial sizes to see which ones were 
sufficient for identifying the average performance of that program. 
 
 
4. Parameters 
 
Population Size = 100 
Since we require that the initial population have a minimum depth of 2, a population of 100 ensures that each 
population will represent all possible functions and terminals.  Although each combination will not be represented in 
the initial random population, the primary concern in population size is to ensure that the original ancestors of 
generation 0 have enough diversity to ensure that over a number of generations their children can adequately 
represent the best individuals for that level. 
 
Max Generations = 20 
As mentioned in Section A, random enumeration could eventually get the target solutions for each level.  Hence, we 
keep the number of generations relatively small.  In GP, once individuals with a high fitness emerge, they tend to 
crowd the population with duplicates of themselves, creating a plateau or equilibrium in the evolution of that run.  
So, by trial and error, 20 generations was found to be sufficient for the runs to reach a plateau. 
 
Max Depth = 6 
This is based on the maximum depth of the General Target Solutions mentioned in Section A. 
 
Breeding Parameters 
Individuals are selected with a frequency proportionate to their fitness and have a 90% chance of undergoing a 
cross-over genetic operation, a 10% chance of undergoing reproduction, and a 1% chance of mutation.  The 
mutation is used to help in breaking out of local maxima.  The 10% reproduction is to ensure that at least some of 
the top individuals are duplicated. 
 
Terminating a Run 
Runs are terminated when an individual group of ants, in all 50 trials, pushes the box to the wall. 
 
 
III. Results 
 
A. Snapshots 
 
In none of the runs did an exact replica of the general target solutions occur.  However, some other patterns 
emerged.  These appear on the following page. 
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Figure 1, Spiraler:  This was the best-of-run program 
for a Level A experiment with 1 ant.  Here the ant spirals 
around in order to hit the box.  Achieving a sea-shell 
spiral is not possible as the program for the individual 
cannot keep track of an increasing exponent after each 
run. However some basic circling so that the ant has 
more chances of hitting the box at least scores a few hits 
 

 
 
Figure 2, Zig-Zagger: This best-of-run for Level A, 6 
ants, somewhat mimics the zig-zag approach.  You can 
see a bend in the path of the top three ants.  These 
bended lines are better than straight lines as they 
increase the chances that an ant will hit and push a box. 

 
 

 
 
Figure 3, Lungers / Marchers: This snapshot shows 
the best-of-run for Level B, 12 ants.  Here the ants 
simply lunge forward as far as they can, hopefully 
hitting the box and therefore pushing it to the wall.  
Lungers will try to move forward as much as they can 
before letting other ants move.  Marchers will only move 
forward once or twice at time.  
 

 
 
Figure 4, Spinners: This best-of-run from Level B, 4 
ants, shows the ants acting on cognition.  Here the ants 
spin in place until encountering a box, at which point 
they will move toward the box. 



6 

 
 
Figure 5a, Spinner-Lunger: This snapshot from Level 
B, 12 ants, shows in more detail how an ant will push a 
box, possibly rotating it out of reach. 

 
 
Figure 5b: Pushing the box, though, may put it in view 
of another ant which could then lunge forward and 
complete the task. 

 
 
B. Table of Results 
 
Level A 
 

No. Ants Final Type Plateau Generation Hits 

1 spiraler 7 1 

2 spiraler 17 7 

4 spiraler 17 8 

6 marcher 15 15 

8 marcher 15 18 

12 lunger 17 23 

22 marcher 9 29 

32 marcher 20 31 
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Level B 
 

No. Ants Final Type Plateau Generation Hits 

1 spinner 1 17 

2 spinner 1 21 

4 spinner 1 30 

6 spinner 1 38 

8 spinner 1 43 

12 spinner-lunger 9 50 

22 spinner-lunger 3 50 

32 spinner-lunger 3 50 
 
 
Level C 
 

No. Ants Final Type Plateau Generation Hits 

2 spinner 11 20 

4 spinner 8 27 

6 spinner 11 40 

8 spinner 14 44 

12 spinner 5 49 

22 spinner 15 50 

32 spinner 8 50 
 
 
 
C. Discussion of Individual Runs 
 
A1 – For generations 0-6, this run held zig-zaggers.  At generation 7, A1 reached a plateau and stabilized on a 
spiraler.  It is tempting to conclude that spiraling is better than going forward in zig-zags.  However, since the hits 
are so low with just one ant, it is difficult to say that any possible solution for a randomly moving single ant is useful 
at completing this task. 
 
A2 – This went the same way of A1 except that its plateau point is much later and the number of hits is 7.  With two 
ants, the spirals can cover more quadrants of the room.  Plus, variations in the sizes of spirals also determine how 
much of a quadrant is covered.  The best-of-run lunges forward 24cm, rotates left, then moves forward 8cm, and 
then rotates left again.  This creates an approximate circle that occupies much of a quadrant of the room. 
 
A6 – Until generation 6, the ants zig-zagged.  Eventually, though, marching forward was found as the best strategy 
for pushing the box.  The increase in the quantity of the ants increased the effectiveness of simple marching; with 
enough ants moving simultaneously in various directions across the screen, the box is likely to come in contact with 
an ant. 
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A12 – Lunging won out over simple marching for 12 ants.  This makes sense given the quantity of ants.  Consider a 
marching scenario with two ants near the box, one facing the top, the other the left.  In marching, the top ant could 
nudge the box down.  The left ant would then, instead of facing the center of the left side would be facing a corner 
of the box.  That ant then marches forward and rotates the box.  Eventually, the box could rotate out of the path of 
both ants.  With many ants, there are many chances for this kind of interference. 
  
A22,32 – The trend of lunging was short-lived, and with many ants, marching was good enough to get a 
considerable number of hits.  Even if interference scenarios occurr, as described above, there are enough ants to 
continue pushing the box to the wall. 
 
B1-8 – Spinning is so simple and effective that it could be developed in generation 1 and persist till generation 20.  
Spinning is close to the spinner-zig-zagger.  However, the Level A experiments showed that zig-zagging doesn’t 
win out over marching or spiraling. 
 
B12 – Up until generation 9, there was competition between marching and spinning. 
 
B22, 32 – Like B12, there was also competition between marching and spinning.  Marching was somewhat effective 
in A22 and A32, so this is no surprise.  However, with so many ants, the runs in Level B stabilized quickly on 
spinning.  This is because 50 hits were reached quickly with so many ants spinning around. 
 
C22 – The If-Ant-Ahead function was used in this interesting case scenario.  In this program, if an ant detected both 
a box and an ant ahead, it would continue spinning around, rather than pursuing the ant and box.  This could indicate 
a few conclusions.  One is that this evolution was used to prevent interference with other ants that are already 
pushing the box.  Another is that, unnecessary movement of an ant toward a box saps the number of time steps 
available for the group.  And a third conclusion is that this unique evolution indicates an evolved laziness in the ants 
as they didn’t need to move toward the box in all occasions to achieve the 50 hits necessary to terminate the run. 
 
C-others – Unfortunately, no setting of the variables could consistently arrive at anything resembling a chaser.  The 
If-Ant-Ahead function didn’t provide the proper advantages necessary for ants to collect the food.  This could be the 
result of the fact that if ant X spots ant Y, then X doesn’t need to follow Y; Y already has a range of space covered 
by its vision, and so if there was a box near Y, Y could take care of it on its own.  Two ants working together didn’t 
seem to enhance the pair’s ability to collect the food.  Rather, it’s the distribution of the ants all around the room that 
mattered. 
 
 
E. Conclusion 
 
This simulation corroborates some common sense notions about the way groups can intelligently use tools to solve a 
task.  In our simulations, single ants were highly ineffective in collecting the food due to each individual ant’s lack 
of intelligence.  Increasing the group size, however, compensated for the lesser intelligent ants.  Likewise, in general 
group-based systems, consider members of a group that are autonomous.  If these members were left on their own, 
they may not be very effective at completing their task.  In response, one could increase effectiveness by simply 
increasing the number of members attempting the task. 
 
A generalization of these results works only for certain types of tasks.  The box-pushing task involves a space—the 
room—and a target region—the box.  The task could only be completed if a node in the space probed that region.  
This turns the box-pushing problem into a coverage problem.  The best way to solve a coverage problem is simply to 
cover more of the space by increasing the number of probes.  However, the presence of a probe in the space changes 
the nature of that space, and therefore in some cases, as in C22, too many probes may hinder progress in actually 
hitting the target. 
 
This simulation also demonstrates, on a basic level, the capabilities of GP to simulate the evolution of group-based 
systems.  GP provides the opportunity to develop novel directives for autonomous nodes in multi-node systems.  
This is useful because engineering the behavior of individuals so as to capture a target emergent behavior of a group 
is no easy task. 
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IV. Notes 
 
A. Problems Encountered and Failures 
 
• There was a problem encountered in not being able to hit target solutions.  There was also a general problem of 

uninteresting programs such as spinners (see table).  This could be remedied with more runs or by tweaking the 
variables, such as the visibility of the other ants and the breeding parameters. 

 
• Duplicating nature within a program was difficult.  I ultimately resorted to a modified version of nature.  For 

example, each of the ants is represented as a point which means they can practically occupy the same space.  
Plus, the box doesn’t move exactly as it would if there was an ant pushing in real life; in the simulation an ant 
has to move 2cm in every step, but in real life, an ant attempting to push a box would slow down and cover less 
distance per time step.  This could have encouraged the ants to work together in groups. 

 
• Providing interesting conclusions and abstractions to systems theory is difficult and vague with the ant-box-

pushing task.  This problem may have too many specific parameters that don’t generalize to abstract systems..  
For example the box rotates, the ants can only spin a certain number of degrees, the space is two-dimensional, 
etc. 

 
 
B. Future Work 
 
• The simulation could be improved to more accurately reflect the way groups of ants work in nature.  For 

example, in the real world, the ants move around simultaneously, not one after the other.  Other nuances could 
also be simulated, such as each ant occupying a rectangular space for their body. 

 
• Just as the simulation could be improved by more closely mimicking nature, it can be improved by also being 

more abstract.  The nodes could be more generalized.  Instead of ants, have dots that can rotate in any direction 
possible and maybe expand the plane of movement into 3D space.  The box could also be a circular, and so 
could the room..  This could help to make more concrete suggestions on the nature of group-based evolutionary 
systems. 

 
• Many more experiments and runs could be made to get more conclusive data.  The number of generations could 

be increased and the number of levels could also be increased.  These enhancements come at a cost to processor 
time which must be considered. 

 
• More function sets could also enhance the simulation.  The ants could communicate with each other, have 

memories, and even maybe drop pheromones. 
 
• Other strategic modifications to the problem could be made.  For example, one could add more boxes to the 

room, change the shape of the room, or locate the box closer to certain walls. 
 
 
C. Duplicating Results 

This simulation was developed using the lil-gp 1.1 Genetic Programming System  
(http://garage.cps.msu.edu/software/lil-gp/lilgp-index.html) 
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