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ABSTRACT 

This paper details the application of a genetic programming framework for induction of 
useful classification rules from a database of income statements, balance sheets, and cash 
flow statements for North American public companies.  Potentially interesting 
classification rules are discovered.  Anomalies in the discovery process merit further 
investigation of the application of genetic programming to the dataset for the problem 
domain. 

 

1. Introduction 
Fundamental analysis involves the analysis of economic data, industry conditions, company fundamentals, and corporate 
financial statements (Little and Rhodes, 1983).  Data mining consists of the extraction of interesting novel knowledge from 
real-world databases (Fayyad et. al., 1996).  Near boundless effort is expended in analyzing time series consisting of market 
and company metrics to predict future outcomes in order to achieve above average returns.  This paper details an application 
of genetic programming to the problem of obtaining interesting (valuable) knowledge from the COMPUSTAT (North 
America) database consisting of annual time series of income statement, balance sheet, and cash flow statement data for 
North American companies from the period 1972 – 1999. 
 
(Freitas, 1997) proposes a genetic programming framework for induction of both classification and generalized rules from 
databases.  The framework outlines a method for classification using tuple set descriptors (TSD) in the form of  WHERE 
clauses for SQL queries, and a count of rows of a goal attribute class matching the TSD. A sample  TSD is of the form ((A1 > 
V1) AND (A2 < V2)) OR (A3 < A4), and represents a SQL query of the form in Figure 1.  The encoding of the sample TSD 
into prefix ordering for genetic programming manipulation is detailed in Figure 2. 
 

SELECT <goal attribute>, COUNT(*) 
FROM <data table> 
WHERE <tuple set descriptor> 
GROUP BY <goal attribute> 

 
Figure 1  TSD and Goal Attribute form in SQL 
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                   (> A1 V1) 
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         ) 
        (< A3 A4) 
 ) 

 
Figure 2  Encoding Of Sample TSD for Genetic Programming Manipulation 

 



 

A sample instance of a classification rule for a given goal attribute value is of the form:  IF <tuple set descriptor> THEN 
<goal attribute> <relational operator> <class designation value>. 

2. Methods 
All data mining tasks involve at least three steps:  data preparation, data analysis, and decision-making.  This work consists 
of the first two steps. 

2.1 Data Preparation 
The Standard & Poors COMPUSTAT (North America, annual) database contains 334 attributes, spanning 50 years of data 
for nearly 10,000 active (trading on public markets) and 11,000 inactive (non-trading, acquired, or failed) companies. 
 
Some attributes for a given company at a given time may be unavailable (NULL); for instance, the database attributes are 
sparse for periods before 1972.  In addition, the database is sparse for the most recent period (2001) for this edition of the 
database due to differences in fiscal year definition for different companies vs. the date of COMPUSTAT publication.  For 
this reason, the period mined is 1972 – 1999 (a bug unaddressed prior to GP runs left out 2000). 
 
There are 78,263 rows for the 8,259 active companies during the period 1972 – 1999.  In order to allow for cross-validation, 
a learning set of 4,264 companies and 39,054 rows was selected over the period and the remaining set of 4,265 companies 
and 39,209 rows were reserved for validation of the induced classification rules. 
 
The data set is normalized by converting to a time series of period-to-period percent change of each attribute. In addition, n 
order to facilitate classification, the attribute value period-to-period percent changes are rendered to a discrete domain by 
rounding each percent change to the nearest discrete quantum expressed as a multiple of 5%.  Percent changes in attribute 
values of greater than 100% or less than –100% are arbitrarily mapped to +100% and –100% respectively. 
 
Of the 334 available attributes, 52 are selected for mining based on two criteria:  subjective estimation of the relevance of the 
attributes to the domain-specific classification problem, and a sparseness rule eliminating those attributes for which, during 
the 1972 – 1999 period, more than 50% of the rows containing those attribute values were unavailable (NULL).  The 
selected attributes are detailed in Table 1. 
 

Table 1  COMPUSTAT Attributes (metrics) Selected For Mining  
Metric %Change in … Metric %Change in … 
 m01   Cash and Short-Term Investments    m27   Discontinued Operations   
 m02   Receivables    m28   Receivables-Estimated Doubtful   
 m03   Inventories    m29   Accounts Payable   
 m04   Assets    m30   Deferred Taxes   
 m05   Property, Plant, Equip    m31   Common Stock   
 m06   Long-Term Debt    m32   Treasury Stock Dollar Amt   
 m07   Sales    m33   Sale of Property, Plant, Equip   
 m08   Depreciation and Amortization    m34   Sale of Common and Pref. Stock   
 m09   Interest Expense    m35   Sale of Investments   
 m10   Special Items    m36   Purchase of Common and Pref. Stock   
 m11   Dividends-Preferred    m37   Receivables-Trade   
 m12   Dividends-Common    m38   Deferred Charges   
 m13   Price-CalYear-Close    m39   Accrued Expenses   
 m14   Common Shares Outstanding    m40   Prepaid Expense   
 m15   Employees    m41   Net Income (Loss)   
 m16   Intangibles    m42   Liabilities   
 m17   Debt in Current Liabilities    m43   Selling, General, Admin. Expenses   
 m18   Retained Earnings    m44   Extraordinary Items   
 m19   Invested Capital    m45   Short-Term Investments   
 m20   Cost of Goods Sold    m46   Receivables-Current-Other   
 m21   Advertising Expense    m47   Goodwill   
 m22   Research and Development Expense    m48   Notes Payable   
 m23   Rental Expense    m49   Capital Surplus   
 m24   Nonoperating Income (Expense)    m50   Stockholders Equity   



 

 m25   Interest Income    m51   Acquisition-Income Contribution   
 m26   Amortization of Intangibles    m52   Acquisition-Sales Contribution   

 

2.2 Data Analysis 
The technique used for data analysis is the aforementioned genetic programming framework for evolving tuple set 
descriptors for a given goal attribute.  The goal attribute selected is change in stock price greater than 15% in an ensuing 
year.  A single goal attribute and value was selected due to the experienced increase in evaluation time when attempting to 
find rules for each value of the goal attribute.  The relation PRICE >= +15% was selected for its value as knowledge, should 
a consistent correlative classification rule be found. 
 
The members of the terminal set for the TSD are of four types:  the metric change in percent, the average of the percent 
change in a metric over a 1-3 year period, based on availability of data in the preceding periods, and including the current 
period for a given time t, and min and max over the same form of preceding and current time period.  In addition 41 
terminals are defined for the discrete percent change domain, e.g. –100%, -95%, …, 0%, 5%, … 100%.  This results in a 
terminal set with 249 members. 
 
The function set consists of the Boolean operators AND, OR, NOT, and the relational operators less than (<) and greater than 
(>).  To deal with unavailability of a metric for a given company at a given time, all of the operators return NULL if any of 
their arguments are NULL.  If the result of a TSD tree is NULL, rather than TRUE or FALSE, then during evaluation of 
fitness the TSD tree neither gains nor loses fitness as a result of processing the TSD for that row. 
 
Initial and mutated TSD trees of depth N are constrained so that at depths 1 – (N-2), the only allowed functions are AND, 
OR, and NOT, and the only functions allowed at depth (N-1) are > and <.  The crossover operation is limited to choosing 
crossover points that are internal nodes, i.e. functions.  At depth N, the left-hand side of the operators > and < are constrained 
to terminals referencing the metrics or aggregates of the metrics. The mutation operator is allowed to choose any arbitrary 
point, with the constraint that if a terminal point is chosen, mutation can only introduce a new randomly selected terminal.  
These constraints ensure that trees formed by the genetic operators remain valid as TSD’s and are interpretable as IF...THEN 
classification rules. 
 
A sample TSD tree and its translation into intelligible terms are given in Figure 3. 
 

(or (not (or (and (not (> min(m21) min(m51))) 
                  (> max(m52) max(m32))) 
              (or (> m46 avg(m26)) 
                  (> max(m19) -5%)))) 
    (not (> min(m13) -65%))) 
 
  translated to 

 
(or (not (or (and (not (> min(Advertising Expense) min(Acquisition-Income 
Contribution))) 
      (> max(Acquisition-Sales Contribution) max(Treasury Stock Dollar Amt))) 
      (or (> Receivables-Current-Other avg(Amortization of Intangibles)) 
      (> max(Invested Capital) -5%)))) 
    (not (> min(Price-CalYear-Close) -65%))) 

 
 

Figure 3  Sample Tuple Set Descriptor 
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d  possible TSD trees, where 249 is the number of terminals, and 2d-1 is 

the number of internal nodes in a TSD of depth d.  The “curse of dimensionality” is evident in the cardinality of the set of 
possible TSD’s.  Genetic programming runs evolving TSD trees were limited by memory size to a maximum depth of 30 and 
a maximum number of nodes of 3,000, thus failing to provide for full exploration of the TSD space, but leaving the hope that 
a valuable rule would be found in the diminished TSD search space. 
 



 

For each row, the TSD tree is evaluated, possibly referring to 1-2 prior rows in the case of aggregates, and the goal attribute , 
price change >= 15% in the ensuing year, is determined.  Using the two Boolean results, a count of true positives, true 
negatives, false positives, and false negatives is determined for all rows in the learning set.  The fitness measure is the 
correlation of the TSD predicting the correct goal attribute across the entire learning set.  As a specific case, trees of 1 node 
are given punishing fitness to work them out of the population, as they do not constitute valid TSD’s.  In summary, a GP 
tableau is presented in Table 2. 
 
 Table 2  Tableau For Classification 

 Objective: Induce a classification rule using fundamental company 
metrics at year Y to predict >= +15% stock value 
appreciation at year Y+1 

 Terminal Set: MDD, avg(mDD), min(mDD), and max(mDD), where 
DD in { 01,02,…,52}, and where aggregate functions 
avg(), min(), and max() have an implicit prior/current 
period range of <= 3 years. 

 Function Set: AND, OR, NOT, <, > 

 Fitness Cases: 34,790 rows of attributes containing metrics at year Y 
and goal attribute (price) at year Y+1, where Y is in 
{1972, …, 1999} 

 Raw fitness: Correlation: 

C  = 
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 Standardized fitness: 
C = 

2
1 C−

 

 Hits: Not applicable 

 Parameters: Populations: M=5000, 20000, 50000 
Generations: G <= 50 
Pcrossover = 0.85, Pmutation = 0.05, Preproduction = 0.05 

 Success predicate: C = 1.0 or max(C) within G generations 

  

3. Results 
Multi-threaded LILGP was used for all genetic programming runs.  Runs were executed with population size 5,000 on a 
single processor 2.8GHz Pentium-4 system, population size 20,000 on a 24 processor 336MHz UltraSPARC symmetric 
multiprocessor (SMP), and population size 50,000 was run on a 4 processor Itanium (Madison) SMP.  The amount of 
computation cycles for fitness evaluation, even in the case of additional and more powerful processors, inhibited practical 
duration runs to ~10 generations. 
 
In each case, the best of the generation 0 populations was found to have a correlation on the validation set proportional to the 
size of the population.  The best of run was found invariantly in generation 1 for each population size.  The additional 
generations resulted only in raising the mean fitness of the population towards the best of run correlation, while the mean 
TSD tree size also increased.  Interestingly, the population included both large and small trees that achieved similar 
correlations. The highest correlation on the validation set for population 20,000 runs was ~0.08, and for the population 5,000 
runs was ~0.05.  Interestingly, the fitness for the best of generation rule was observed to decrease in some generations, but 
was recovered in subsequent generations. 
 
An example best of run individual TSD, with correlation 0.083, predicting 6,421 true positives, 13,212 true negatives, 8,486 
false positives, and 7,164 false negatives is given in Figure 4. 
 

(and (not (or (and (> min(m09) 65%) 
                    (< min(m51) min(m48))) 
               (and (< max(m45) max(m28)) 
                    (> min(m18) max(m05))))) 
      (not (not (not (< max(m26) avg(m13)))))) 



 

 
translated to 

 
IF 

(and (not (or (and (> min("Interest Expense") 65%) 
                    (< min("Acquisition-Income Contribution") min("Notes Payable"))) 
               (and (< max("Short-Term Investments") max("Receivables-Estimated 
Doubtful")) 
                    (> min("Retained Earnings") max("Property, Plant, Equip"))))) 
      (not (not (not (< max("Amortization of Intangibles") avg("Price-CalYear-
Close")))))) 

THEN 
(Price > 15%) 

Figure 4  Best Of Run Individual (correlation 0.083 on validation set) 
 

It is interesting to note that the best of run individuals had a distinct propensity to prefer aggregate operators on the percent 
change metrics over the metrics themselves. 
 
Suspecting that the “curse of dimensionality” was evident, subsequent runs were performed with population size 5,000 on 
the single processor Pentium-4, and 10,000 on the multiprocessor Itanium using only four metrics:  Sales, Stock Price, Net 
Income, and Stockholder’s Equity, performed against reduced learning and validation sets, specifically, the learning set was 
selected to be only performance metrics for Microsoft Corporation, and the validation set was selected to be only the 
performance metrics for Oracle Corporation. 
 
For population 5,000 runs at G=100, classification rules with correlation 0.358 were discovered.  These were significantly 
more correlative than the lesser generation classification rules discovered for the larger number of attributes and data sets.  
Satisfyingly, mean population and best individual of generation fitness were observed to rise proportional to the number of 
generations.  Interestingly, the best of generation 100 individual rule on the learning set produced a correlation of –0.0159 on 
the validation set.  The second best individual had a correlation of 0.073 on the validation set, however, the third through 
tenth best individuals had correlations of 0.358. For population size 10,000 at G=16 (limited by time), the sixth best 
individual (on the learning set) achieved a correlation of 0.524, predicting 5 true positives, 9 true negatives, 1 false positive, 
and 1 false negative.  It’s form is detailed in Figure 5, and it can be observed that the increase in tree size is proportional to 
prediction accuracy. 

 
 (and (not (not (not (not (or (not (<  Price-CalYear-Close  35%)) 
                              (or (< avg( Dividends-Common ) -45%) 
                                  (<  Stockholders Equity  max( Sales )))))))) 
      (and (and (or (or (or (and (>  Net Income (Loss)   Price-CalYear-Close ) 
                                 (< avg( Sales ) 10%)) 
                            (and (< min( Stockholders Equity ) 25%) 
                                 (< max( Net Income (Loss) ) avg( Net Income (Loss) 
)))) 
                        (or (and (<  Price-CalYear-Close  min( Stockholders Equity 
)) 
                                 (> min( Net Income (Loss) ) -95%)) 
                            (and (< avg( Stockholders Equity ) -50%) 
                                 (< max( Net Income (Loss) ) -95%)))) 
                    (or (not (or (< max( Sales )  Sales ) 
                                 (< max( Sales ) 15%))) 
                        (not (or (< max( Stockholders Equity ) -40%) 
                                 (>  Price-CalYear-Close  min( Sales )))))) 
                (and (not (not (or (> min( Net Income (Loss) ) -85%) 
                                   (<  Net Income (Loss)  -80%)))) 
                     (and (or (and (< min( Stockholders Equity ) 100%) 
                                   (> max( Sales )  Net Income (Loss) )) 
                              (not (> max( Price-CalYear-Close ) 70%))) 
                          (or (not (> avg( Dividends-Common ) 5%)) 
                              (and (> max( Stockholders Equity ) -85%) 
                                   (>  Net Income (Loss)  max( Stockholders Equity 
))))))) 



 

           (and (or (or (or (not (> avg( Net Income (Loss) ) max( Sales ))) 
                            (and (< max( Net Income (Loss) ) 50%) 
                                 (> avg( Net Income (Loss) ) 5%))) 
                        (or (not (>  Price-CalYear-Close  max( Sales ))) 
                            (not (> max( Price-CalYear-Close ) -90%)))) 
                    (and (not (not (> avg( Net Income (Loss) ) avg( Dividends-Common 
)))) 
                         (or (and (< avg( Dividends-Common ) min( Net Income (Loss) 
)) 
                                  (> max( Stockholders Equity ) 5%)) 
                             (or (>  Net Income (Loss)  max( Stockholders Equity )) 
                                 (< min( Price-CalYear-Close )  Net Income (Loss) 
))))) 
                (not (not (or (not (> avg( Sales ) avg( Sales ))) 
                              (not (> min( Net Income (Loss) ) avg( Sales ))))))))) 
 

Figure 5  Classification Rule (6 best of run, M=50,000) With Highest Correlation (0.524) On Validation Set 
 
It is also interesting to note that the best of run individuals with the highest validation set (Oracle) correlation based on a 

learning set (Microsoft) correctly classified both Oracle’s stock drop in 1991, and it’s rise in 1999, based on data from 1990 
and 1998 respectively, processed by the discovered classification rules.  Additonal work is required to determine the 
significance of such results. 

4. Discussion 
Certainly the underlying large data set is noisy.  The mystery of the early plateau in fitness and the early generation discovery 
of apparent maximum correlation, with both large numbers of TSD attributes and large datasets, seem to imply a local 
maximum discovered in the search space, or a pragmatic failure to process a large enough population for enough generations 
to better explore the search space.  One area investigated was the impact of NULL TSD results over the learning set.  This 
was found to not be an operative factor in the evaluation of fitness in any of the runs. 
 
It is interesting that some rules with positive correlation are discovered, classifying the validation set more correctly than not 
correctly.  Further work is required to determine if the discovered classification rules confer an equity trading advantage over 
common trading strategies such as buy-and-hold, or exceeding the performance of the S&P 500 index.  Owing to the results 
to date and the low positive correlations in classification rules discovered for large datasets and large numbers of attributes, 
further investigation is required before the classification rules were to be put to real-world use, if at all.  The results on the 
smaller learning and validation sets for much smaller number of relevant attributes is promising, but cannot be absolutely 
determined to be because of the metrics:  both companies were in an industy known to grow significantly in net wealth 
creation over the concerned time period. 
 
Additionally, other considerations, such as which the terminals are defined such as the lack of looking at other companies in 
the same industry or observation of key economic data and market indices limits the view of the TSD’s.  Ratios commonly 
used in fundamental analysis may or may not be useful to add to the set of metrics available to the TSD’s.  No attempt was 
made to use GP to rediscover these or novel other relevant ratios.  It is also not certain that any form of fundamental analysis 
is significantly predictive of future equity prices. 

5. Conclusion 
A framework for using genetic programming to induce classification rules has been applied. Classification rules with positive 
correlation for predicting price changes greater than or equal to 15% were discovered, with prediction on the validation set 
being more right than wrong.   It is difficult to determine if better rules could be discovered in the TSD search space, due to 
practical limits computational cycles and memory capacity for evaluating significant populations of TSD trees over 
reasonably large data sets comprising reasonably large numbers of metrics, over a significant number of companies and time 
series histories.  Further work is required to investigate the reasons for the plateau of fitness across generations of genetic 
programming runs for larger numbers of attributes and larger datasets.. 
 

Life can only be understood backwards, but it must be lived forwards. 
   -Soren Kierkegaard 
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