Skip to main content

Robot Calibration Using Genetic Programming

  • Chapter
  • 134 Accesses

Abstract

Conventional robot calibration techniques rely on numerical optimisation methods with the attendant problems of; kinematic equation non-linearities, inappropriate model parameterisations and parameter discontinuities or redundancies. In this paper research using a symbolic co-evolutionary calibration algorithm is described. The approach merges established kinematic modelling techniques with Genetic Programming to generate joint correction junctions as part of an inverse calibration model. The data generated in a calibration procedure is described and the paper concludes by discussing the potential for symbolic calibration and the automatic generation of correction models using Genetic Programming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABB. RobotStudio — Programming & Simulation. RobotStudio® product description. Hannover. 2000.

    Google Scholar 

  • DELMI. IGRIP Reference Manual. DELMIA Corporation. 2000.

    Google Scholar 

  • Ambarish G, Quaid A, Peshkin. M. Complete Parameter identification from partial pose measurement. IEEE International Conference on Robotics and Automation. 1993.

    Google Scholar 

  • Caenen J. Angue J. Identification of geometric and non-geometric parameters of robots. Proceedings of the IEEE International conference on robotics and automation. 1990; 1032–1037.

    Google Scholar 

  • CAMELOT. Ropsim product description. Alterød. Denmark. 2000.

    Google Scholar 

  • Everett LJ. Models for Diagnosing Robot Error Sources. Conference on Robotics and Automation. 1993; 2: 155–159.

    Google Scholar 

  • FAMOS® FAMOS Product description. Carat robotic innovation GmbH. 1998.

    Google Scholar 

  • Hayati SA. Mirmirani M. Improving the absolute positioning accuracy of robot manipulators. Journal of Robotic Systems. 1985; 2: 397–413.

    Article  Google Scholar 

  • Hollerbach JM. Wampler CW. A taxonomy of kinematic calibration methods. International Journal of Robotic s Research. 1996; 14,: 573–591.

    Article  Google Scholar 

  • Jenkinson, I.D. An application of neural networks to improve the accuracy of an industrial robot for offline programming. Ph.D. Thesis, Liverpool John Moores University. Liverpool. 2000.

    Google Scholar 

  • Jordan MI. Rumelhart DE. Forward models: Supervised learning with a distal teacher. Cognitive Science, 1992; 16: 307–354.

    Article  Google Scholar 

  • Judd RP, Knasinski AB. A Technique to Calibrate Industrial Robots with Experimental Verification. IEEE Transactions on Robotics and Automation. 1990; 6(1): 20–30.

    Article  Google Scholar 

  • Lewis J. Zhong X, Nagy FN. Inverse robot calibration using artificial neural networks. Engineering Applications of Artificial. Intelligence. 1996, 9: 83–93.

    Google Scholar 

  • Mooring BW, Roth ZS, Oriels MR. Fundamentals of Manipulator Calibration. John Wiley & Sons. 1991.

    Google Scholar 

  • Stone HW. Kinematic Modelling, Identification and Control of Robotic manipulators. Kluwer Academic Publisher New York. 1987.

    Chapter  Google Scholar 

  • Vincze M (a), Prenninger JP, Gander H. A laser tracking system to measure position orientation of robot end effectors under motion. International Journal of Robotics Research. 1994; 13: 305–314.

    Article  Google Scholar 

  • Vincze M (b), Filz KM, Gander H, Prenninger JP, Zeichen GA. Systematic Approach to Model Arbitrary Non-Geometric Kinematic Errors. Advances in Robot Kinematics and Computationed Geometry. Kluewer Academic. 1994: 129–138.

    Google Scholar 

  • Vincze M, Filz KM, Gander H, Prenninger JP. A Systematic and Extendible Model for Arbitrary Axis Configurations. International Journal of Flexible Automation and Integrated Manufacturing. 1996; 3(2): 147–164.

    Google Scholar 

  • Whitney DE, Lozinski CA, Rourke JM. Industrial Robot Forward Calibration Method and Results. Journal of Dynamic Systems, Measurement, and Control. 1986; 108: 1–8.

    Article  Google Scholar 

  • Zhuang H, Roth RS, Hamano F. A complete and parametrically kinematic model for robot manipulators. IEEE Transactions on Robotics and Automation. 1992; 8,(4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dolinsky, JU., Colquhoun, G., Jenkinson, I. (2004). Robot Calibration Using Genetic Programming. In: Ferreira, J.J.P. (eds) E-Manufacturing: Business Paradigms and Supporting Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8945-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8945-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4730-9

  • Online ISBN: 978-1-4419-8945-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics