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ABSTRACT 
Both Genetic Programming (GP) and Fast Evolutionary Programming (FEP) 
combined with a Reduced Parameter Bilinear (RPBL) model have been 
recognized as effective time series modeling methods. This study compares the 
performance of these two methods for their ability to model time series data in 
terms of their accuracy and time efficiency. A brief review of GP and FEP are 
presented. Then the accuracy and time efficiency of these two methods are 
evaluated on several different time series. The performances of the two 
methods are compared against each other.  

INTRODUCTION 
Artificial evolutionary processes, such as genetic algorithms (GA), are 

based on reproduction, recombination, and selection of the fittest members in an 
evolving population of candidate solutions. Koza [1] extended this genetic 
model of learning into the space of programs and thus introduced the concept of 
genetic programming (GP). Sathyanarayan and Chellapilla [5] proposed an 
alternative modeling approach called fast evolutionary programming (FEP) to 
optimize the parameters of a reduced parameter bilinear model (RPBL). The 
RPBL model [6] is capable of effectively representing nonlinear models with the 
additional advantage of using fewer parameters than a conventional bilinear 
model. This paper applies both approaches to model several time series, 
including Mackey-Glass, sunspot, and stock price time series.  
GENETIC PROGRAMMING 

Genetic programming (GP) lets a computer learn programs. The top-level 
process of GP follows a similar evolutionary approach as a GA. The major 
difference between GPs and GAs is that GP structures are not encoded as linear 
genomes, but rather as terms or symbolic expressions. The units being mutated 
and recombined do not consist of characters or command sequences but rather 
functional modules, which are generally represented as tree-structured 
chromosomes.  

The basic algorithm of GP is as follows: 
1. Generate an initial population and evaluate the fitness for each individual in the 

population. 
2. Select individuals from the population, typically using roulette or tournament 

methods. 
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3. Perform mutation, crossover and other genetic operators on the selected 
individuals, and form the new population using the result.  

4. If the solution is sufficient, end the process and present the best individual in 
the population as the result. Otherwise go to step 2. 

Adil Qureshi’s GPsys release 2b [7] is used. The configuration used in this 
study is given in Table 1.  
 

Generations 100 
Populations 2000 
Function set +, -, /, *, sin, cos, exp, sqrt, ln 
Terminal set }),10(,),2(),1( Rtxtxtx −−− …{  
Fitness Sum of squared error 
Max depth of new individual 9 
Max depth of new subtrees for mutation 7 
Max depth of individuals after crossover 13 
Mutation rate 0.01 
Generation method Ramped half-and-half 

Table 1: GP configuration 
 
FAST EVOLUTIONARY PROGRAMMING 

Fast evolutionary programming (FEP) is a variation of evolutionary 
strategies (ES) [9]. FEP should not be confused with Fogel’s evolutionary 
programming [8], which evolves finite state machines. Yao and Liu [10] have 
shown empirically that FEP, which uses a Cauchy mutation operator, has better 
convergence properties than ES, which uses a Gaussian mutation operator. This 
was demonstrated on several multimodal functions with many local minima. 
Further it is comparable to ES in performance for unimodal and multimodal 
functions with only a few local minima.  

FEP is implemented as follows [10], using a )( λµ +  evolution strategy.  
1. Generate the initial population of µ  randomly selected individuals, and set the 

generation number, k to one. Each individual is taken as a pair of real-valued 
vectors, ), iix( η , },,1{ µ"∈∀i , where  is the vector elements and  is 
the corresponding variance.  

ix iη

2. Evaluate the error score for each individual, in terms of the objective function, 
. )( ixf

),( ,,x η3. Mutate each parent  to create a single offspring  by 
,  

),( iix η
)1,0()( Cjiη

ii
)]1,0()1,0(exp[)()( ,,

jii NNjj ττηη +=)()(, jxjx ii +=
nj ,,1"=for . 

4. Calculate the fitness of each offspring. 
5. Conduct pairwise comparison over the union of parents and offspring. For each 

individual, q opponents are chosen randomly from all the parents and offspring 
with equal probability. For each comparison, if the individual’s error is no 
greater than the opponent’s, the individual receives a “win”. 

6. Select the µ  individuals that have the most wins to be parents of the next 
generation.  

7. Stop if the halting criterion is satisfied; otherwise, increment the generation 
number and go to Step 3. 
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This algorithm was coded in java to make it comparable to GPsys with the 
same population size (2000) and number of gen rations (100) as used in GP.  e
REDUCED PARAMETER BILINEAR MODEL 

The reduced parameter bilinear model (RPBL) is defined as  
])(][)([)()( tktmtqtp aBzBaBzB ζξθφ +=  

where  is the sequence of time series observations, {  is a sequence of 
independent zero mean random variables,  , 

, , and 
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; and  are unknown parameters to be estimated from 
the time series data. The backshift operator B shifts the subscript of a time series 
observation backward in time, that is, . As can be seen, the 
autoregressive moving average (ARMA) model is a special case of the bilinear 
model where 

ktt
k yy −=B

ξ  and 0=iζ  for all i. 
The RPBL model is evolved by FEP using the following configuration. The 

individual vectors of the population consist of the model orders followed by the 
model parameters, as given by }]{},{},{},{,,,,[ jjjji kmqpx ζξθφ= . In the 
initial population, p, q, m, and k parameters were selected randomly from 

 and the model coefficients were selected uniformly from [-1, 1].  }20,,2,1 "{
MODEL IDENTIFICATION FOR FEP 

The identification procedure consists of determining the orders p, q, m and k 
of the model, and estimating the parameters. The model order is determined as 
the order that minimizes the Minimum Description Length (MDL) criterion 
defined as [10] 

)(21()log()( 2 +− eN σγ number of independent parameters) log( )γ−N
max(

, 
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tẑ  is the predicted output at time t. This criterion tries to minimize both model 
order and squared error at the same time. Using FEP, the model order is 
estimated following Yao and Liu’s method [10]: Each individual in the 
population is a vector of the model order followed by the model parameters. In 
each generation, the model orders and model parameters are perturbed with 
continuous Cauchy random numbers and selected according to the MDL fitness 
criterion. The model orders are rounded to the nearest integer to obtain new 
model orders. The fittest vector after there is no more improvement in the fitness 
contains the desired model order and the model parameters. 
EXPERIMENTS AND RESULTS 

The time series used in the following experiments are scaled to lie between 
–1 and 1 before modeling. The mean square errors (MSEs) and times are all 
averaged over 10 runs, and σ  is the standard deviation.  
The Mackey-Glass equation 

The first time series considered in this study is generated by the Mackey-
Glass equation. The equation for the discretized Mackey-Glass map is 
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where a=0.1, b=0.2, c=10, and τ=16. The Mackey-Glass map is seeded with 17 
pseudo-random numbers, creating a 1200 points series. The first 1000 points are 
discarded to remove the initial transients. The next 100 points are used as the 
training set and the last 100 points are used as the test set, see Figure 1. Results 
from GP and FEP are shown in Table 2.  

 
 GP FEP 

Training 
MSE 5.687×  510− 4.735×  510 −

 2.333×  510−

510−

Test

2.613×  510 −

Test 
MSE 5.038×  4.648×  410 −

σ  2.123×  510−

Time

1.851×  410 −

Time 
(sec) 254.5 76.1 

σ  159.8 3.7 

Trainσ

Table 2: Results for the Mackey-
Glass time series 

 

 
Figure 1: MackDey-Glass map 

It can be seen that the models evolved by GP give much smaller MSE than 
FEP in the test data, although they have similar MSE for the training stage. 
Since the Mackey-Glass series is a totally deterministic time series, this result 
may imply that GP is more suitable for modeling those series with strong signals 
and weak noise than FEP. Even though GP takes about four times longer time, it 
would be the preferred method due to its better accuracy.   
The Sunspot time series 

The second experiment was conducted on the yearly sunspot series for the 
year 1800-1999 [11], see Figure 2. Once again, the first 100 data points are used 
for training and the next 100 are used for testing. See Table 3 for the results.
 

 GP FEP 
Training 

MSE 2.409×  210− 4.019×  210−

 6.11×  310 −

210−

Test

1.34×  310−

Test MSE 4.582×  5.765×  210−

σ  1.582×  210−

Time

4.23×  310−

Time (sec) 205.4 70.1 
σ  28.1 4.4 

Trainσ

Table 3: Results for the sunspot time 
series 

 

 
Figure 2: Sunspot time series 
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In modeling the sunspot time series, the accuracy performance between the 
two methods is not significantly different. The GP gives slightly better accuracy, 
but again, it takes three times as long to compute as the FEP method.  
Stock prices time series 

Two arbitrarily selected stocks, Compaq Computers (CPQ) on the NY 
Stock Exchange, and Microsoft (MSFT) on the NASDAQ, are used as the third 
experimental time series. The closing prices of the first 210 trading days in 1999 
are used. The first 10 points are need for modeling the first prediction, and the 
next 200 points are divided into training and test set in the same manner as 
before, see Figure 3. Tables 4 and 5 present the modeling results.  

 
 GP FEP 

Training 
MSE 6.597×  310 − 6.951×  310−

Trainσ  3.65×  410− 5

310 −

2.30×  10−

Test 
MSE 7.076×  6.456×  310−

Testσ  2.19×  310 − 4

Time

3.12×  10−

Time 
(sec) 126 64 

σ  87.3 6.8 

Table 4: Results for the MSFT time 
series 

 

 
Figure 3: MSFT price time 

series 

 GP FEP 
Training 

MSE 6.002×  310− 37.003×  10−

Trainσ  1.32×  310− 5

310− 3

9.15×  10−

Test 
MSE 2.335×  2.148×  10−

Testσ  4.12×  410− 5

Time

7.39×  10−

Time 
(sec) 119.6 68.1 

σ  115.3 4.0 

Table 5: Results for the CPQ time 
series 

 

 
Figure 4: CPQ price time series 

The results from the stock time series are similar to the sunspot results. The 
two methods give similar error in both training and testing, but the GP is much 
more time consuming. It was noticed that the results generated by FEP in each 
trial are consistent, but this is not the case for GP. There are larger variances in 
both GP’s MSE and time. One interesting observation in the experiments is that 
as the generation increases, the models evolved by FEP tend to become simpler 
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while those evolved by GP always become more complex. This explains why 
GP is not as consistent as FEP. Because while the model becomes more and 
more complex, the search space is expanded rapidly, and there are a large 
number of local minimums into which GP could fall. In the experiments, the 
best solution is always found by GP. This also suggests that GPs have relatively 
stronger search ability.  

CONCLUSIONS 
In this paper, two different nonlinear modeling techniques: Genetic 

Programming and Fast Evolutionary Programming are applied to solve three 
different kinds of times series modeling problem. The GP has been shown to 
have better search ability than FEP, especially when deal with more predictable 
time series. FEP performs better when applied to noisier time series. For real 
world time series such as sunspot series and stock price series, it could give 
predictions not worse than GP, but with much less computational effort.  
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