
 1

NONLINEAR MODELING: GENETIC PROGRAMMING VS. FAST
EVOLUTIONARY PROGRAMMING

MINGLEI DUAN
Department of Electrical and
Computer Engineering
Marquette University
Milwaukee, Wisconsin

RICHARD J. POVINELLI
Department of Electrical and
Computer Engineering
Marquette University
Milwaukee, Wisconsin

ABSTRACT
Both Genetic Programming (GP) and Fast Evolutionary Programming (FEP)
combined with a Reduced Parameter Bilinear (RPBL) model have been
recognized as effective time series modeling methods. This study compares the
performance of these two methods for their ability to model time series data in
terms of their accuracy and time efficiency. A brief review of GP and FEP are
presented. Then the accuracy and time efficiency of these two methods are
evaluated on several different time series. The performances of the two
methods are compared against each other.

INTRODUCTION
Artificial evolutionary processes, such as genetic algorithms (GA), are

based on reproduction, recombination, and selection of the fittest members in an
evolving population of candidate solutions. Koza [1] extended this genetic
model of learning into the space of programs and thus introduced the concept of
genetic programming (GP). Sathyanarayan and Chellapilla [5] proposed an
alternative modeling approach called fast evolutionary programming (FEP) to
optimize the parameters of a reduced parameter bilinear model (RPBL). The
RPBL model [6] is capable of effectively representing nonlinear models with the
additional advantage of using fewer parameters than a conventional bilinear
model. This paper applies both approaches to model several time series,
including Mackey-Glass, sunspot, and stock price time series.
GENETIC PROGRAMMING

Genetic programming (GP) lets a computer learn programs. The top-level
process of GP follows a similar evolutionary approach as a GA. The major
difference between GPs and GAs is that GP structures are not encoded as linear
genomes, but rather as terms or symbolic expressions. The units being mutated
and recombined do not consist of characters or command sequences but rather
functional modules, which are generally represented as tree-structured
chromosomes.

The basic algorithm of GP is as follows:
1. Generate an initial population and evaluate the fitness for each individual in the

population.
2. Select individuals from the population, typically using roulette or tournament

methods.

 2

3. Perform mutation, crossover and other genetic operators on the selected
individuals, and form the new population using the result.

4. If the solution is sufficient, end the process and present the best individual in
the population as the result. Otherwise go to step 2.

Adil Qureshi’s GPsys release 2b [7] is used. The configuration used in this
study is given in Table 1.

Generations 100
Populations 2000
Function set +, -, /, *, sin, cos, exp, sqrt, ln
Terminal set }),10(,),2(),1(Rtxtxtx −−− …{
Fitness Sum of squared error
Max depth of new individual 9
Max depth of new subtrees for mutation 7
Max depth of individuals after crossover 13
Mutation rate 0.01
Generation method Ramped half-and-half

Table 1: GP configuration

FAST EVOLUTIONARY PROGRAMMING

Fast evolutionary programming (FEP) is a variation of evolutionary
strategies (ES) [9]. FEP should not be confused with Fogel’s evolutionary
programming [8], which evolves finite state machines. Yao and Liu [10] have
shown empirically that FEP, which uses a Cauchy mutation operator, has better
convergence properties than ES, which uses a Gaussian mutation operator. This
was demonstrated on several multimodal functions with many local minima.
Further it is comparable to ES in performance for unimodal and multimodal
functions with only a few local minima.

FEP is implemented as follows [10], using a)(λµ + evolution strategy.
1. Generate the initial population of µ randomly selected individuals, and set the

generation number, k to one. Each individual is taken as a pair of real-valued
vectors,), iix(η , },,1{ µ"∈∀i , where is the vector elements and is
the corresponding variance.

ix iη

2. Evaluate the error score for each individual, in terms of the objective function,
.)(ixf

),(,,x η3. Mutate each parent to create a single offspring by
,

),(iix η
)1,0()(Cjiη

ii
)]1,0()1,0(exp[)()(,,

jii NNjj ττηη +=)()(, jxjx ii +=
nj ,,1"=for .

4. Calculate the fitness of each offspring.
5. Conduct pairwise comparison over the union of parents and offspring. For each

individual, q opponents are chosen randomly from all the parents and offspring
with equal probability. For each comparison, if the individual’s error is no
greater than the opponent’s, the individual receives a “win”.

6. Select the µ individuals that have the most wins to be parents of the next
generation.

7. Stop if the halting criterion is satisfied; otherwise, increment the generation
number and go to Step 3.

 3

This algorithm was coded in java to make it comparable to GPsys with the
same population size (2000) and number of gen rations (100) as used in GP. e
REDUCED PARAMETER BILINEAR MODEL

The reduced parameter bilinear model (RPBL) is defined as
])(][)([)()(tktmtqtp aBzBaBzB ζξθφ +=

where is the sequence of time series observations, { is a sequence of
independent zero mean random variables, ,

, , and
. The variables

}{ tz }a

q

t
p

pp BBB φφφφ −−= 211)(
BBB ξ +++= "2

2)
p

B −−"2

m
m Bξqq BBBB θθθθ −−−−= "2

211)(
k

kk BBBB ζζζζ +++= "2
21)(

mξ (
φφφ ,,, 21 " q; θθθ ,",, 21 ;

mξξξ ,,, 21 " kζζζ ,,, 21 "

i

; and are unknown parameters to be estimated from
the time series data. The backshift operator B shifts the subscript of a time series
observation backward in time, that is, . As can be seen, the
autoregressive moving average (ARMA) model is a special case of the bilinear
model where

ktt
k yy −=B

ξ and 0=iζ for all i.
The RPBL model is evolved by FEP using the following configuration. The

individual vectors of the population consist of the model orders followed by the
model parameters, as given by }]{},{},{},{,,,,[jjjji kmqpx ζξθφ= . In the
initial population, p, q, m, and k parameters were selected randomly from

 and the model coefficients were selected uniformly from [-1, 1]. }20,,2,1 "{
MODEL IDENTIFICATION FOR FEP

The identification procedure consists of determining the orders p, q, m and k
of the model, and estimating the parameters. The model order is determined as
the order that minimizes the Minimum Description Length (MDL) criterion
defined as [10]

)(21()log()(2 +− eN σγ number of independent parameters) log()γ−N
max(

,
),, kmqwhere N is the number of observations of the time-series, ,p

and ∑
+=

−







−

=
N

t
tte zz

N 1

22)ˆ(1
γγ

σ

=γ

tẑ is the predicted output at time t. This criterion tries to minimize both model
order and squared error at the same time. Using FEP, the model order is
estimated following Yao and Liu’s method [10]: Each individual in the
population is a vector of the model order followed by the model parameters. In
each generation, the model orders and model parameters are perturbed with
continuous Cauchy random numbers and selected according to the MDL fitness
criterion. The model orders are rounded to the nearest integer to obtain new
model orders. The fittest vector after there is no more improvement in the fitness
contains the desired model order and the model parameters.
EXPERIMENTS AND RESULTS

The time series used in the following experiments are scaled to lie between
–1 and 1 before modeling. The mean square errors (MSEs) and times are all
averaged over 10 runs, and σ is the standard deviation.
The Mackey-Glass equation

The first time series considered in this study is generated by the Mackey-
Glass equation. The equation for the discretized Mackey-Glass map is

 4

)(
)(1

)()()1(tax
tx

tbx
txtx

c
−

−+
−

+=+
τ

τ ,

where a=0.1, b=0.2, c=10, and τ=16. The Mackey-Glass map is seeded with 17
pseudo-random numbers, creating a 1200 points series. The first 1000 points are
discarded to remove the initial transients. The next 100 points are used as the
training set and the last 100 points are used as the test set, see Figure 1. Results
from GP and FEP are shown in Table 2.

 GP FEP

Training
MSE 5.687× 510− 4.735× 510 −

 2.333× 510−

510−

Test

2.613× 510 −

Test
MSE 5.038× 4.648× 410 −

σ 2.123× 510−

Time

1.851× 410 −

Time
(sec) 254.5 76.1

σ 159.8 3.7

Trainσ

Table 2: Results for the Mackey-
Glass time series

Figure 1: MackDey-Glass map

It can be seen that the models evolved by GP give much smaller MSE than
FEP in the test data, although they have similar MSE for the training stage.
Since the Mackey-Glass series is a totally deterministic time series, this result
may imply that GP is more suitable for modeling those series with strong signals
and weak noise than FEP. Even though GP takes about four times longer time, it
would be the preferred method due to its better accuracy.
The Sunspot time series

The second experiment was conducted on the yearly sunspot series for the
year 1800-1999 [11], see Figure 2. Once again, the first 100 data points are used
for training and the next 100 are used for testing. See Table 3 for the results.

 GP FEP
Training

MSE 2.409× 210− 4.019× 210−

 6.11× 310 −

210−

Test

1.34× 310−

Test MSE 4.582× 5.765× 210−

σ 1.582× 210−

Time

4.23× 310−

Time (sec) 205.4 70.1
σ 28.1 4.4

Trainσ

Table 3: Results for the sunspot time
series

Figure 2: Sunspot time series

 5

In modeling the sunspot time series, the accuracy performance between the
two methods is not significantly different. The GP gives slightly better accuracy,
but again, it takes three times as long to compute as the FEP method.
Stock prices time series

Two arbitrarily selected stocks, Compaq Computers (CPQ) on the NY
Stock Exchange, and Microsoft (MSFT) on the NASDAQ, are used as the third
experimental time series. The closing prices of the first 210 trading days in 1999
are used. The first 10 points are need for modeling the first prediction, and the
next 200 points are divided into training and test set in the same manner as
before, see Figure 3. Tables 4 and 5 present the modeling results.

 GP FEP

Training
MSE 6.597× 310 − 6.951× 310−

Trainσ 3.65× 410− 5

310 −

2.30× 10−

Test
MSE 7.076× 6.456× 310−

Testσ 2.19× 310 − 4

Time

3.12× 10−

Time
(sec) 126 64

σ 87.3 6.8

Table 4: Results for the MSFT time
series

Figure 3: MSFT price time

series

 GP FEP
Training

MSE 6.002× 310− 37.003× 10−

Trainσ 1.32× 310− 5

310− 3

9.15× 10−

Test
MSE 2.335× 2.148× 10−

Testσ 4.12× 410− 5

Time

7.39× 10−

Time
(sec) 119.6 68.1

σ 115.3 4.0

Table 5: Results for the CPQ time
series

Figure 4: CPQ price time series

The results from the stock time series are similar to the sunspot results. The
two methods give similar error in both training and testing, but the GP is much
more time consuming. It was noticed that the results generated by FEP in each
trial are consistent, but this is not the case for GP. There are larger variances in
both GP’s MSE and time. One interesting observation in the experiments is that
as the generation increases, the models evolved by FEP tend to become simpler

 6

while those evolved by GP always become more complex. This explains why
GP is not as consistent as FEP. Because while the model becomes more and
more complex, the search space is expanded rapidly, and there are a large
number of local minimums into which GP could fall. In the experiments, the
best solution is always found by GP. This also suggests that GPs have relatively
stronger search ability.

CONCLUSIONS
In this paper, two different nonlinear modeling techniques: Genetic

Programming and Fast Evolutionary Programming are applied to solve three
different kinds of times series modeling problem. The GP has been shown to
have better search ability than FEP, especially when deal with more predictable
time series. FEP performs better when applied to noisier time series. For real
world time series such as sunspot series and stock price series, it could give
predictions not worse than GP, but with much less computational effort.

REFERENCES
[1] Koza, John 1992. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA: The MIT Press.
[2] Kaboudan, M. 1998. A GP approach to distinguish chaotic from noisy signals. Genetic

Programming 1998: Proceedings of the Third Annual Conference, San Francisco. CA: Morgan
Kaufmann, pp. 187-192

[3] Kaboudan, M. Genetic Programming Prediction of Stock Prices, Computational Economics, to
appear.

[4] Fogel, D. and Fogel, L. (1996). Preliminary experiments on discriminating between chaotic
signals and noise using evolutionary programming. Genetic Programming 1996: Proceedings
of the First Annual Conference. Cambridge, MA: The MIT Press, pp. 512-520.

[5] Sathyanarayan, S. and Chellapilla, K. (1996). Evolving reduced parameter bilinear models for
time series prediction using fast evolutionary programming. Genetic Programming 1996:
Proceedings of the First Annual Conference. Cambridge, MA: The MIT Press, pp. 528-535.

[6] Zhang, Y. and Hagan, M. T. (1994), A Reduced Parameter Bilinear Time Series Model, IEEE
Trans. Signal Processing. Vol. 42, no. 7, pp. 1867-1870

[7] Adil Qureshi’s GPsys release 2b in java http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html.
[8] L. J. Fogel, A. J. Owens and M. J. Walsh (1966), Artificial Intelligence Through Simulated

Evolution, New York: John Wiley & Sons.
[9] Rechenberg, I. (1989), Evolution strategy: Nature’s way of optimization. In Optimization:

Methods and Applications, Possibilities and Limitations. Lecture Notes in Engineering 47.
Berlin: Springer-Verlag.

[10] Yao, X. and Liu, Y. (1996), Fast evolutionary programming. Evolutionary Programming V:
Proc. of 5th Annual Conf. On Evol. Prog., MIT Press, Cambridge, MA, forthcoming.

[11] Yearly sunspot data from SIDC: http://sidc.oma.be/index.php3

http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html

