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Introduction!

We are conducting a series of investigations
whose primary objective is to demonstrate that
boundedly rational agents, operating with fairly
elementary computational mechanisms, can adapt to
achieve approximately optimal strategies for
bargaining with other agents in complex and dynamic
environments of multilateral negotiations that humans
find challenging. In this paper, we present results
from an application of genetic programming (Koza,
1992) to model the co-evolution of simple artificial
agents negotiating coalition agreements in a three-
agent cooperative game.2 The following sections
summarize part of the scientific literature that
motivates this research, describe briefly the genetic
programming approach we use to model this game,
then present results demonstrating that, through a
process of co-evolution, these artificial agents adapt to
formulate strategies that cope reasonably well under
difficult circumstances to negotiate coalition
agreements that not only rival those achieved by
human subjects but also approximate those prescribed
by cooperative game theory as the solution of this
game.

Background

Adaptive processes of  multilateral
negotiations. Results from the rapidly growing
collection of laboratory studies indicate various ways
in which humans depart in multilateral negotiations
from the perfect rationality envisioned in the theory of

I File: gpconf08.doc, July 18, 1995. We thank
David K. Hildebrand and two anonymous referees for
helpful comments, and Martin McCormick for
conducting some of the simulations.

Technically, this is a cooperative game with
sidepayments represented in characteristic function
form. Two papers (Dworman, Kimbrough and Laing,
1995 and 1995b) that provide additional
documentation on this research and our present
implementation are available on the Internet at URL:
http://opim.wharton.upenn.edu/users/sok/comprats/
ourdocs.html.

games (e.g., Aumann, 1989; Camerer, 1990),
consonant with a strong research tradition initiated in
the seminal work of Allen Newell and Herbert Simon
(e.g., Newell and Simon, 1972; Newell, 1990). We
interpret these results to indicate the following general
scenario (cf. Albers and Laing, 1991). People
approach somewhat novel multi-person conflict
situations, not de nova, but from perspectives of
tentative rules of thumb developed from their previous
experience. They cope with this new environment by
keying on prominent features of the situation and
employing simple heuristics to form an initial, but
tentative, assessment of the bargaining problem. As
suggested by behavioral decision theory (cf. Tversky
and Kahneman, 1974; Dawes, 1988), this "first-cut"
analysis produces the starting points ("anchors") from
which subsequent adjustments are made, whether via
cognitive or adaptive responses, to the competitive
process of negotiations. This adjustment process is
sensitive to vagaries in the co-evolution of the parties
as they respond to one another. It is only with
considerable experience that players begin to
approach outcomes approximating a game-theoretic
equilibrium.  Even then, people have difficulty
articulating a well-defined, comprehensive strategy.
Their behavior seems to be based on rules of thumb
that represent, at best, mere fragments of the type of
complete and optimal strategies identified in the
theory of games for negotiating coalition agreements
(cf. Selten, 1988, ch. 9; Laing, 1991). Players apply
these strategy fragments myopically, and have great
difficulty anticipating the other players' moves. Thus,
although there is some learning with experience, much
of the movement towards the game-theoretic solution
appears to result from adaptive, rather than cognitive,
processes.

Game-theoretic approaches. In response to
these results from laboratory studies, recent progress
in game-theoretic reasoning injects into the analysis
some elements of nonrational behavior. For one
example, Selten (1988, ch. 1) introduced small
probabilities that each player might make a mistake
("tremble") when implementing (but not computing) a
strategy. For another example, to account for the fact



that humans can cooperate in the finitely repeated
prisoners' dilemma, Kreps, Milgrom, Roberts, and
Wilson (1982) introduced the possibility that one
player believes that another player is, with some small
probability, a "crazy type" who is programmed to
always play a particular strategy, such as "tit-for-tat."
The rational player takes this into account and may
conclude that it pays to emulate the “crazy type,” at
least for a while. Paradoxically, such injections of a
little nonrationality into the analysis greatly
complicate the decision problem facing any player
who is computing a best response. Such work testifies
to the increasingly sophisticated body of rigorous
ideas we call game theory that continues to yield
significant insights into the structure of mixed-motive
situations. Yet such attempts to incorporate elements
of nonrationality into game theory just nibble at the
edges of the basic problem, because they do not
generate a plausible causal explanation of how finite
agents, such as humans, cope with the complexities of
mixed-motive situations.

A fundamentally more direct approach is to
assume that boundedly rational players address
complex game situations, not by solving the game de
nova, but rather by employing fairly simple rules of
thumb that help to govern behavior but are too
incomplete to constitute a well-formulated strategy.
Aumann (1989) calls this “rule rationality,” in contrast
to “act rationality.” From this perspective, the rules
may evolve with experience over a sequence of
games, and help to determine the starting point of
deliberations within any bargaining game. The
process of negotiations from this initial stage within
the play of the game is guided by these rules and the
dynamic processes of competition. Thus, in contrast
to previous game theory’s almost exclusive focus on
equilibrium and scant attention to the processes
through which equilibrium is reached in rational play,
we think the time is ripe to investigate the adaptive
coping processes through which boundedly rational
agents adjust to complex, dynamic, and reactive
environments.

Some research in animal behavior (e.g.,
Hammerstein and Reichert, 1988), inspired by the
seminal work of the biologist Maynard Smith (1982),
is based upon this boundedly-rational process model.
This approach assumes that each animal is born
genetically endowed with specific pure strategies, and
that the population as a whole evolves to a distribution
of pure strategies that constitutes a mixed-strategy

(Nash) equilibrium. The biological approach has been
used also to wunderstand markets and formal
organizations (Cornell and Roll, 1981).

Finite automata and genetic algorithms. A
related approach is to represent alternative, complete
strategies as a set of finite-state automata that compete
with each other in a tournament of, say, repeated two-
agent, binary choice (cooperate vs. defect), prisoners'
dilemma games (e.g., Abreu and Rubenstein, 1988;
Miller, 1989; Andreoni and Miller, 1990). These
structures play a tournament of repeated prisoners'
dilemma games with each other. The strength (cf.
fitness) of each structure increments or decrements in
accordance with the payoff this strategy wins in each
game it plays. At the end of the tournament, the next
generation of structures is created by means of a
genetic algorithm. Miller's results, for example,
indicate that, after an initial adjustment period from
the random start, the frequency of cooperation and the
average payoffs realized from the repeated game
encounters increase across generations until a plateau
is reached. Moreover, the top performers that emerge
from Miller's computer studies perform credibly
against strategies submitted by game theorists for
Axelrod's (1984) second tournament of repeated
prisoners' dilemma games.

Two problems. These results indicate that
adaptive processes can generate relatively simple but
reasonably successful and robust strategies for dealing
with a difficult environment. Yet studies such as
Miller's, however promising and provocative, have
two limitations.  The first, which we call the
complexity problem, is that the artificial agents are
playing in a fairly simple environment. How will they
perform in more complex environments, especially
environments with a richer variety of relevant
information and in the presence of multiple other, co-
evolving agents? The second limitation, which we
call the encoding problem, arises from the fact that all
these experiments employed a specific, usually fairly
clever, representation of the agent's problem. The
investigator imposed this encoding, rather than
permitting the agents to discover a useful formulation
of their problem. In sum, recent computational work
with genetic algorithms is providing important new
insights into bounded rationality. This work,
however, lacks generality in at least two important
ways, leading us to use a genetic programming
approach.



Fitness

Average number of points attained per game in which agent attained the floor.

Generations = 4,000
Population size = 50

Parameters

Creation procedure = Ramped half-and-half (Initial population: random)
Selection = Fitness proportionate

Syntactic Structure strategy
if-then-else-stmt
condition-stmt
action-stmt
condition-fn
action

condition

offer

if-then-else-stmt

(IF-THEN-ELSE condition-stmt action-stmt action-stmt)
(condition-fn condition-stmt condition-stmt) | condition
if-then-else-stmt | action

AND | OR | NOT

ACCEPT | offer

{player-id amount-lower-bound amount-upper-bound}
{player-id amount}

Figure 1: Tableau for strategies of each agent

Methods

Our application of genetic programming can
best be understood in light of the two problems
discussed in the last paragraph: complexity and
encoding.

Complexity. We have designed and conducted
a series of computer simulations to investigate the
evolution of alternative strategies for bargaining in
three-agent coalitions games (Dworman, 1993;
Dworman and Schoenberg, 1993; Dworman, 1994;
Dworman, Kimbrough and Laing, 1995). In these
games, three agents negotiate competitively to decide
which two-agent coalition forms and to agree on a
division between the coalition partners of the points
constituting this coalition's value. The agent who is
excluded from the coalition wins zero. The game is
not symmetric, in that each coalition (i) of two
players has a unique value: v(AB)=18, v(AC)=24,
v(BC)=30. This is a dynamic environment in which
three agents are co-evolving throughout while they
negotiate a considerably more difficult decision
problem than has been addressed in the previous
research cited above. We are addressing a more
complex decision problem than has been reported in
the literature.

Encoding. The finite automata and genetic
algorithm experiments, discussed above as well as our
earlier work (Dworman, 1993; Dworman and
Schoenberg, 1993; Dworman, 1994) have relied upon
experimenter encoding of the agents' problem
representation.  Ultimately one cannot avoid this

entirely, but we believe genetic programming can
increase substantially the distance between what the
experimenter determines and what the agents discover
for themselves.

Experimental Design3

Strategy Trees. Our simulation is summarized
by the tableau in Figure 1. Each agent’s alternative
strategies for playing the game are represented by a
population of 50 strongly-typed GP ftrees. Each
strategy is a nested IF-THEN-ELSE statement. The
condition statement applies only to the most recent
offer made to the agent. If the condition statement
evaluates to TRUE then the first of the two action
statements is evaluated. Otherwise, the second action
statement is evaluated. The condition statement may
be a condition or a Boolean combination of
conditions. Action statements are either ACCEPT, an
offer (which implies a rejection of the previous
proposal), or another IF-THEN-ELSE statement.
Therefore, the strategies can be of almost arbitrary
complexity by nesting Boolean condition statements
and IF-THEN-ELSE action statements.* The output of a
strategy is either the ACCEPT symbol or an offer. The
condition and offer terminals are represented by a
triple of values and a pair of values respectively.

3This section summarizes the design- of our
simulations. For greater detail, see (Dworman,
Kimbrough, and Laing; 1995b.)

4Actually, we limit the complexity of the
strategies to a maximum tree depth of 8. See
Dworman, Kimbrough, and Laing (1995b) for details.



These complex data structures (CDS) were introduced
because a coalition structure consists of two pieces of
information: A set of players in the proposed
coalition, and a distribution of the coalition’s value
over those players. Therefore, combinations of player
names and payoff amounts are essential building
blocks for constructing strategies.

Conditions specify contingencies for the
strategy and evaluate to TRUE or FALSE. A condition
CDS - written as {Player Lower-Bound Upper-
Bound} - evaluates to TRUE if, in the proposed
agreement, the specified player would receive a
payoff between Lower Bound and Upper Bound
(inclusive). For example, suppose B offers 5 points to
A. Taking v(AB)=18 into account, this implies the
proposed coalition agreement ((B 13)(A 5)). Then the
following conditions in A’s strategies would evaluate
as follows:

{A 514} TRUE: A’s proposed payoff of 5 points
lies in the closed interval [5,14].

maintained. Crossover swaps subtrees from two
parents. Mutation changes the symbol at a randomly
picked function node or a terminal node in the tree. If
a terminal node is chosen then a new CDS may be
created for that node. We provide two additional
operators — CDS crossover and CDS mutation — to
evolve the genetic material inside the CDS terminals.
Crossover and mutation operate on entire subtrees or
nodes of a program free; they do not operate on the
values inside a CDS. Therefore, without CDS-specific
operators, the values inside a CDS would never
change, and the agent would be prevented from
evolving new offers or conditions.

Both of the CDS operators work on a randomly
chosen field within a CDS. CDS mutation toggles a
random bit in the chosen field, thereby creating a new
value. CDS crossover selects two CDSs, one from
each parent, then picks a random point in the chosen
field’s bit string and swaps the right-hand sides of that
field’s bit string in the two CDSs. Again, both CDS

Agent A (IF-THEN-ELSE {A 2 8} ACCEPT {C 18})
Agent B (IF-THEN-ELSE (NOT {B 10 30}) {C 15} ACCEPT)
Agent C (IF-THEN-ELSE {B 10 30}

(IF-THEN-ELSE {C 0 16} {B 12} ACCEPT)
(IF-THEN-ELSE (OR {C 20 30} {A 12 18}) ACCEPT {A 5} ))

Figure 2: An example of a strategy for each agent

{B 2 10} FALSE: B’s proposed payoff of 13 would
exceed the Upper Bound.
{C0 12} TRUE: C would win 0 points (implicitly).
An offer signifies a rejection of the current
proposal and a subsequent counteroffer. An offer
CDS - written as {Player Amount} — represents a
proposal to the specified respondent (Player) who
would receive the payoff stipulated by Amount. The
initiator’s own proposed payoff equals the coalition’s
value minus Amount. Therefore, if Player C makes
the offer {A 10}, then, given v(AC) = 24, the
proposed coalition agreement is ((C 14)(A 10)).
Figure 2 gives an example of a strategy for
each agent. In the first example, agent A will accept
any proposal in which it is offered between 2 and 8
points (inclusive). Otherwise, it will reject the offer
and propose an ((A 6)(C 18)) split of v(AC)=24.
Genetic Operators. We employ four genetic
operators to create new strategies, and constrain these
operators to ensure that the syntactic structure is
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operations are constrained to ensure legal syntactic
structures.

When a child is created without crossover (e.g.,
reproduction) it is probabilistically subjected to
mutation and CDS mutation. When children are
created via crossover the post-crossover children are
probabilistically  subjected to mutation, CDS
crossover, and CDS mutation.

Strategy Evaluation. Our research simulated
negotiations in the three-player cooperative game
defined earlier. [Each agent is represented by a
population of 50 strategies. A tournament is used to
evaluate all the strategies. Ideally, every strategy in
an agent’s population of rules would play each
combination of opponent agents’ strategies and do so
three times, so that each of the players in the
combination is given a turn to begin the negotiations.
Unfortunately, that would require 3(503) = 375,000
games per generation, and thus is not feasible.
Instead, selecting randomly without replacement, we



match each strategy of a player with exactly 250
combinations of the other two players’ strategies.
Each selected combination then plays three games,
each initiated by a different player. Thus, each
strategy plays 750 games in the tournament. A
strategy’s strength (fitness) is based on its score in the
tournament, which we calculate as the average payoff
(points) won by the strategy in the outcomes of games
in which, sometime during the negotiations, it attained
the floor.

Each game is played as follows: To start the
game, we make a null offer to the agent selected to be
the first initiator. If the agent accepts, the game ends
and all agents receiveé zero points. Otherwise, this
agent makes an offer to another agent. If this other
agent accepts, the game ends, and the coalition
partners win the payoffs as specified in the offer,
while the third player wins zero. If the responder does
not accept, then it becomes the initiator and makes an
offer, tacitly rejecting the previous offer. The game
continues in this fashion until an agreement is
reached, or until a specified maximum number (here,
6) of offers have been rejected, in which case the
game ends by default, and all three agents receive a
payoff of zero.5 Figure 3 presents the bargaining
sequences that would be generated in the three games
played by the strategies displayed in Figure 2.

First Initiator: Bargaining Sequence:
A A: ((A6)C18))
C: ((C19)(A 5)
A: ACCEPT
B B: ((B 15)(C 15))
C: ((C 18)(B 12))
B: ACCEPT
C C:((C19)AS5)
A: ACCEPT
Figure 3. Three games played by the strategies
displayed in Figure 2

Simulation Termination. We terminate the
simulations when a specified number of generations
(here 4000) has been completed, rather than using a
stopping criterion based on the extent to- which
optimum behavior is approximated. We are interested
in the behaviour of this system over time, and the

5 The restriction to 6 offers per game is not
very limiting. In our simulations, almost all
agreements are reached within 3 offers. Initially, we
limited games to 10 offers, but discovered that any
game that went beyond 5 offers continued until the
game ended by default. Therefore, we lowered the
limit to 6 to speed up the simulations.

extent to which these simple, heuristically-driven,
adaptive agents that do not calculate optimal strategies
can realize optimal or near-optimal behavior in
dynamic, complex bargaining situations.

Results: Artificial Agents and Human Subjects

This section analyzes data from 36 simulations
of this model through 4000 generations. In discussing
these results we shall compare where possible the
behavior of these artificial agents with the behavior of
human subjects who were observed in a laboratory
study of a game that is comparable to ours (Kahan and
Rapoport, 1974: Game IV, Experiments 1-3
combined, »=48 triads).6

The simulations are based on a 12-cell
experimental design consisting of a Cartesian product
of parameter values for the genetic programming
representation.’” In each of these twelve cells, separate
runs were conducted for three different seeds of the
pseudo-random number generator. The data result
from 12x3 = 36 simulations. We recorded data at the
random start (generation 0), and then every five
generations in the 4000-generation runs; thus the
results for each of the 36 runs are based on variables
contained in 801 reports, each of which averages the
results from up to 3(players) x SO(rules/player) x
750(games/rule) = 112,500 distinct bargaining
sequences played in the tournament for that
generation. Due to space limitations, we shall report
the results in terms of averages of these variables.

Game length and agreement frequencies.
Overall, these simple artificial agents are reasonably
successful in reaching coalition agreements. On
average, even during the first 1000 generations, they
require less than two rounds to agree on an outcome.
Typically, the first or second offer from an agent is
accepted. Moreover, fully 84.6% of the games result
in an agreement, rather than ending by default through
failing to agree after 6 rounds of offers. Although this
is a high level of agreement, the artificial agents are

6 The characteristic function of their Game IV
is: v’(AB)=66, v’'(AC)=86, v’(BC)=106, else v’(S)=0.
To compare payoffs achieved by human subjects in
Game IV to those obtained by our artificial agents, we
use the following transformation for positive-valued
coalitions: v(8) = 0.3[v’(8)-6] if v’(8)>0; hence
v(AB)=18, v(BC)=24, v(BC)=30.

7 For all runs reported in this paper, mutation
probability = 0.5. The 12-cell design is based on the
full Cartesian product (2x2x3) of the following
parameter sets: crossover fractions = {0.2, 0.5}, leaf
crossover probabilities = {0.2, 0.5}, and leaf mutation
probabilities = {0.2, 0.5, 0.8}. See Dworman,
Kimbrough, and Laing (1995b) for details.



somewhat less successful than human subjects in
forming agreements: all 48 of Kahan and Rapoport’s
triads succeeded in forming a coalition.

Equilibrium. We are interested particularly in
determining the extent to which these simple,
cognitively constrained agents can co-evolve in this
rather complex bargaining environment to produce
coalition agreements that approximate those

prescribed by the theory of cooperative games. .

Various solution concepts from cooperative game
theory prescribe for this game a quota solution (e.g.,
see Shubik, 1982: 177n), akin to a vector of
equilibrium prices, which specifies the equilibrium
values of the three agents’ positions in this situation
when each agent seeks to maximize its total payoff.
Specifically, the quota solution to this game is ¢ = (q,,,
Qg 9.) =(6, 12, 18). It prescribes that if coalition (i)
forms in this game, then the payoffs should be divided
between coalition partners in accordance with their
quotas, while the third player must, in this game, win
zero. For example, the quota solution prescribes that
if A and B form a coalition, then they should split
V(AB) = 18 such that A wins q, = 6 points and B gets
qy = 12. Note that q, + q; = v(AB).

We now describe the extent to which, at
“equilibrium,” the artificial agents reach agreements
approximating those prescribed by game theory, even
though they are being selected in the evolutionary
process on the basis of their fitnesses as measured by
the average payoffs they win in the tournaments, and
not by how closely their payoffs approach the quota
solution.

In these simulations, “equilibrium” is at best
transitory.  In particular, crossover and mutation
episodically can cause severe disruptions which
reverberate throughout the co-evolving system of
agents. To measure the extent to which the system is
presently in a state that approximates an equilibrium,
we use the following operational construct. Let x(z)
denote any variable x at a point ¢ in the sequence of
generation reports. In particular, we shall be
concerned with the case in which x(t) represents the
average payoff won as a member of a coalition
agreement by an agent’s best rule, that is, the agent’s
rule that wins overall the greatest average payoff.
First, let us define x(2) to be settled prima facie if both
of the following conditions obtain: (1) the m:=5
immediate predecessors of x(?), with mean x(m,z),
have a standard deviation no greater than ¢:=0.5, and
(2) x(1) deviates no more than d from x(m,f). Second,
if x(¢) is settled prima facie, then we define to be
settled retrospectively any of its m immediate
predecessors that deviates no more than d from x(m,z).
Then, we say that x(7) is settled at t if it is settled
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prima facie or retrospectively at 7. Finally, we define
the system of agents to be settled at ¢ if, for each of the
three agents, the average payoff won by that agent’s
best rule when it succeeds in forming a coalition
agreement is settled at 2= We shall report results in
terms of weighted averages for those generations
(n=3158, out of a total of 801x12=9612 generation
reports) during which, in this sense, the systems were
settled.

Coalition frequencies. During these periods of
relative stability, the artificial agents formed coalitions
with the following frequencies: p(AB)= 0.359,
p(AC)=0.360, p(BC)=0.162. This contrasts with the
oft-observed proclivity of human subjects in
characteristic-function games to opt for the “most
valuable” coalition: the 48 coalitions observed by
Kahan and Rapoport are distributed n(AB)=6,
n(AC)=7, n(BC)=35. Yet if payoffs conform to the
quota solution then each player should be indifferent
as to which coalition that player joins. Thus, it might
seem that, at equilibrium, all two-person coalitions
should be equally likely to form in this game.’
Apparently the artificial agents, ignorant of the this
game’s characteristic function, were not distracted by
the fact that (BC) is the “most valuable” coalition.

Coalition payoffs and the quota. According
to the quota solution, players A, B, and C,
respectively, should win payoffs of 6, 12, and 18 as
members of the coalition. During the periods in
which the system was settled, the best rules of
artificial agents A, B, and C, respectively, averaged in
their coalition agreements a payoff of 8.6, 11.9, and
18.5 points. (For these same periods, the payoffs won
by each of the agent’s median rules averaged only
about a half-point less: 8.1, 11.4, and 18.1,
respectively.) Thus, A’s best rule averages 2.6 points
more than the quota in these simulations. In
comparison, human subjects in Kahan and Rapoport’s
experiments average 4.8, 12.7 and 17.7 (transformed
— see prior footnote) to players A, B, and C,
respectively. Presumably, A is disadvantaged by the
proclivity of human subjects, unlike the artificial

8 We have restricted these agents to employ
strategies that do not select actions probabilistically
(i.e., pure strategies). In contrast, for a game in which
negotiations are governed by rules that differ from
those used in our games, Selten (1988: ch. 11) has
characterized probabilistic strategies for negotiating
three-person quota games that, at equilibrium, both
implement the quota solution and generate precise
coalition probabilities such that, indeed, BC is the
most likely coalition.



agents, to form the (BC) coalition. Players B and C
approximate their quotas in both the human and
artificial data.

Overall, the mean absolute deviation from the
quota solution is roughly 2.5 points in the artificial
data, rivaling that of 2.0 points in the human data.
Moreover, in the artificial data, the distance from the
quota decreases in a strictly monotonic progression as
the number of agents whose best rule is settled
increases in unit steps from 0 to 3: the more settled the
system, the more it approaches the game-theoretic
solution. In addition, fully 94.2% of the coalition
agreements formed by artificial agents, but only
68.7% of those formed by the humans in Kahan and
Rapoport’s laboratory study, lie closer to the quota
solution than to an even split of the coalition’s value.
In this respect, the artificial agents, perhaps because
they are not encumbered by equity considerations or
the cognitive and social prominence of even splits, are
closer than humans to the game-theoretic solution.

Opportunity costs and best responses. But
do these rules approximate optimal responses to the
environment? The quota solution can be implemented
by a class of (Nash) equilibrium strategies, and thus is
consistent with optimal play of the bargaining
situation represented as a noncooperative game in
extensive (game-tree) form (Selten, 1988, ch. 9;
Laing, 1991). At a Nash equilibrium, each agent’s
strategy is a best response to the strategies being
played by the other agents, and thus incurs no
opportunity cost. '

We operationalize opportunity cost in this
situation as follows. Consider any game in the
tournament in which a rule obtains the floor in the
negotiations. At this stage in the bargaining, the rule
can make an offer to either of the other two agents.
We compute the rule’s opportunity cost for this game
as the maximum payoff the rule could win by making
an offer that would be accepted immediately, minus
the actual payoff achieved by the rule in this game’s
outcome. For example, consider the bargaining
sequence displayed in Figure 3 for the game in which
B is the first initiator. B achieves a payoff of 12
points in this game’s outcome. Yet the strategies
shown in Figure 2 reveal that A (respectively, C)
would accept an offer from B in which B wins 16
points (respectively, 13). The maximum of these
opportunities for B is 16. Thus, in agreeing to an offer
of 12 points, B incurs an opportunity cost of 16-12 =
4. Clearly, B’s strategy is not a best response to the
strategies of the other agents. At a Nash equilibrium,
each agent’s opportunity cost would be zero.

The opportunity costs incurred in the
simulations during the settled periods by the best rule

of agents A, B and C averaged approximately 0, 3 and
4 points, respectively. Thus, A employs a strategy
that is a best response to the strategies being played by
the other agents, but B and C do not. We wonder
whether the human subjects in the Kahan and
Rapoport study formulated strategies that more closely
approximated a Nash equilibrium.

Conclusion

We are encouraged by these results. In a
cognitively deprived, information poor environment
(e.g., no memory of previous play, lack of full
knowledge of the game’s conditions) these artificial
agents have been able to evolve strategies that reach
coalition agreements in the neighborhood of those
prescribed by the quota solution and rival those of
human subjects. The artificial agents do so with rules
that are non-optimal: even the best rules of B and C
incur significant opportunity costs. Nonetheless, these
agents achieve reasonably effective play in this game.
That this has been done in the current context, when a
normative solution is known, augers well for contexts
in which no unique solution is known to exist. We
may hope that computational approaches, GP in
particular, will yield insights into games for which
solution theory provides no clear answer.

Finally, the performance of these artificial
agents should be seen, and must be evaluated, in the
context of the large search space they face.
Conservatively calculated (Dworman, Kimbrough,
Laing, 1995), the search space is at least on the order
of 1012, Note further that: (1) These (artificial)
players are co-evolving; they are not playing against
constant opponents; and (2) In a run of 4000
generations, the maximum number of rules created in
the simulation is 6 x 103, yet the search space is at
least on the order of 1012, Given this, we can but
stand in awe of these simple agents’ performance in
achieving quite reasonable coalition agreements.

These results encourage us to believe that
cognitively limited, adaptive artificial agents can co-
evolve to approximate optimal behavior in even more
complex and dynamic environments.
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