
On the search space of genetic programming
and its relation to nature’s search space

Marc Ebner
Eberhard-Karls-Universität Tübingen

Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Rechnerarchitektur

Köstlinstraße 6, 72074 Tübingen, Germany
ebner@informatik.uni-tuebingen.de

Abstract- The size of the search space has been analyzed
for genetic programming and genetic algorithms. It is
highly unlikely to find any single individual in this huge
search space. However, genetic programming with vari-
able length structures differs from standard genetic algo-
rithms where fixed size bit strings are used in that usu-
ally many different individuals show the same pheno-
typical behavior due to introns. Therefore, finding any
given behavior is not as difficult as the size of the search
space suggests. A quantitative analysis is presented for
the number of individuals that code for the identity func-
tion. The identity function is important in the analysis
of the search space because it can be used to construct
individuals showing the same behavior as any given in-
dividual. Finally, an analogy is drawn to nature’s se-
quence space which suggests possible directions for fu-
ture research. The representation should be chosen such
that all possible behaviors are reachable within a com-
paratively small number of steps from any given behavior
and the individuals coding for any given behavior should
be distributed randomly in the search space. In addition,
long paths of neutral mutations should lead to individuals
which code for the same behavior.

1 Motivation

The theory of genetic programming [10, 11, 3] is still in its in-
fancy compared to the theory of standard genetic algorithms
[7, 5]. However, the number of experimental studies which
analyze the behavior of genetic programming runs is grow-
ing. The experimental studies are important because they can
help to create evolutionary algorithms that perform more effi-
cient. In addition, the theoretical and experimental results can
uncover paths on how to scale the algorithms to solve larger
and more difficult problems. In particular, the phenomenon
known as bloat, that is the increase of the size of the individ-
uals due to introns, has been analyzed in detail [3, 12, 13].
Goldberg and O’Reilly [6] analyzed the influence of contex-
tual semantics on the structure of the individuals. Koza [10]
analyzed the search space of genetic programming by ran-
domly generating individuals. He looked at the difficulty of
finding an 11-multiplexer, a 6-multiplexer, a 3-multiplexer,
the odd-3-parity function and the exclusive-or function by
random search. Koza also performed a detailed study on the

search space of boolean functions with 2 and 3 arguments
[10]. In this case, individuals consisting of 20 internal and 21
external nodes were randomly generated. The functions with
2 and 3 arguments can be partitioned into different equiva-
lence classes. For each class Koza counted the number of
individuals that are an instance of the corresponding class.
Some functions were found easier than others.

Most experiments in genetic programming are performed
at a rather abstract level with not much relation to natural
evolution. In contrast to this, Banzhaf [2] developed a genetic
programming paradigm which mimics natural evolution. He
used a genotype-phenotype mapping which allows for a high
degree of redundancy and neutral mutations. He evolved bit
strings which are transcribed, edited and finally translated to
yield the phenotype. Keller and Banzhaf [9] showed that this
paradigm performed better on a symbolic regression problem
than a common genetic programming approach.

In this paper we present results on characteristics of the
search space of genetic programming. We show that although
it is highly unlikely to find any single individual in this search
space it is much easier to locate an individual showing the
same behavior. This assumes that a representation is used
where introns can occur. In particular, we counted the num-
ber of individuals that code for the identity function. Finally,
we draw an analogy between genetic programming and na-
ture’s sequence space. This analogy could promote the use of
a certain type of representation that makes the search much
easier. To simplify the following discussion we call evolu-
tionary algorithms that work with the traditional fixed length
bit strings genetic algorithms [7, 5] and evolutionary algo-
rithms that evolve programs or variable length structures ge-
netic programming [10, 11, 3].

2 The size of the search space of genetic pro-
gramming

One of the major differences between genetic algorithms and
genetic programming is the size and the characteristics of the
search space. The search space of genetic programming is
usually much larger than the search space of genetic algo-
rithms. Let l be the length of a bit string which is used to
code an individual in the genetic algorithm paradigm. Then
the search space of this representation contains2l different in-
dividuals (assuming a binary representation and a one-to-one



1

10^50

10^100

10^150

10^200

10^250

0 1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 tr

ee
s

Depth of tree

F=1, T=1
F=2, T=2
F=3, T=2
F=4, T=2

Figure 1: Number of different trees with maximum depthd.
The graph has a logarithmic scale.

correspondence between genotypes and phenotypes). Now
let us take a look at the size of the search space of tree-based
genetic programming after which we will look at the charac-
teristics of the search space. For simplicity we only consider
binary trees. That is, we are limiting the search space to func-
tions with only two arguments. LetF be the number of differ-
ent primitive functions and letT be the number of different
terminal symbols. Let Trees(d) be the number of different
trees that can be represented with a maximum depth ofd. A
tree which has only one node, its root, has depth 0. We can
calculate the number of trees that can be represented with a
maximum depth ofd + 1 by choosing an arbitrary function
as the root node and all possible subtrees with a maximum
depthd. To this number we have to add the number of trees
that consist of a single terminal symbol. Therefore, the num-
ber of different trees with a maximum depthd is given by the
following recursive equation:

Trees(0) = T (1)

Trees(d) = F � Trees2(d� 1) + T (2)

The number of different trees with a maximum depthd can
also be written as

Trees(d) = 2d�1Xi=0 td;iF iT i+1 (3)

wheretd;i is the number of trees that can be represented withi
primitive functions and which have a maximum depthd. The
number of different structures is obtained by settingF andT to one. One can get a grasp on the growth of the function
Trees(d) by looking at the last term, the number of full trees
with depthd. There existF 2d�1T 2d different trees that have
the structure of a full binary tree.

The number of different trees for a given number of ele-
mentary functions and terminal symbols is shown in Table 1.
We are using symbolic regression [10] as an example. Many

1

10^50

10^100

10^150

10^200

10^250

10^300

0 100 200 300 400 500 600

N
um

be
r 

of
 tr

ee
s

Number of inner nodes

F=1, T=1
F=2, T=2
F=3, T=2
F=4, T=2

Figure 2: Number of different trees withn inner nodes. The
graph has a logarithmic scale.

optimization problems can in fact be formulated as symbolic
regression. Therefore, symbolic regression is very suitable
to analyze the search space of genetic programming. If one
is using addition (+), subtraction (-), multiplication (*) and
division (/) as elementary functions and the variableX and
one constant as terminal symbols we haveF = 4 andT = 2.
Table 1 shows that already for small depths, small numbers
of primitive functions and terminal symbols the search space
grows rapidly. Figure 1 shows the number of different trees
as a function of maximum depth.

Usually the maximum depth of a tree is not the only pa-
rameter that limits the search space of genetic programming.
The maximum number of nodes of an individual is often also
limited. The number of different trees that can be represented
with exactlyn inner nodes is specified by the following re-
cursive equation.

Trees(0) = T (4)

Trees(n) = n�1Xi=0 F � Trees(n � 1� i) � Trees(i) (5)

A tree withn inner nodes can be constructed by using all pos-
sible combinations of two subtrees that together haven � 1
inner nodes. The root of this new tree can be any primitive
function. We have Trees(n) = tn;nFnTn+1. The number of
different binary trees withm nodes is 1m+1 �2mm � [4]. There-

foretn;n = 12n+2�4n+22n+1�with m=2n+1. The number of differ-
ent trees with a maximum ofn inner nodes for different num-
bers of primitive functions and terminal symbols is shown in
Figure 2. Table 2 shows the number of different trees with a
maximum of 1000 inner nodes, a number that is commonly
used in genetic programming experiments.

3 The impact of introns on the search space

We now take a look at some characteristics of the search space
of genetic programming. The characteristics of the search



Maximum depth of tree 0 1 2 3 4 5 ... 12F = 1; T = 1 1 2 5 26 677 458330 ... 4.27�10724F = 2; T = 2 2 10 202 81610 1.33�1010 3.55�1020 ... 4.35�102668F = 3; T = 2 2 14 590 1.04�106 3.27�1012 3.21�1025 ... 2.80�103325F = 4; T = 2 2 18 1298 6.74�106 1.82�1014 1.32�1029 ... 7.96�103803
Table 1: Number of different trees with a maximum depthd and given number of primitive functions and terminal symbols.

Maximum number of inner nodes 0 1 2 3 4 5 ... 1000F = 1; T = 1 1 2 4 9 23 65 ... 2.73�10597F = 2; T = 2 2 10 74 714 7882 93898 ... 5.01�101199F = 3; T = 2 2 14 158 2318 38606 691790 ... 6.05�101375F = 4; T = 2 2 18 274 5394 120082 2.87�106 ... 5.20�101500
Table 2: Number of different trees with a maximum ofn inner nodes and given number of primitive functions and terminal
symbols.

space of genetic programming are different from the charac-
teristics of the search space of genetic algorithms. With ge-
netic algorithms one usually uses a coding where each phe-
notype has exactly one corresponding individual. Therefore,
there usually exists only one individual which codes for the
solution to the problem. In contrast to genetic algorithms with
genetic programming there usually exist many different indi-
viduals in the search space that map to the same phenotype.
The different individuals are a result of program code that
does not add to the behavior of the phenotype. These seg-
ments are called introns in analogy to natural evolution. In-
trons are parts of the genotype that are not expressed in the
phenotype of the individual. Banzhaf et al. [3] give the fol-
lowing definition for introns. Introns are parts of the genotype
that emerge as a result of the evolution of individuals with a
variable length representation and have no influence on the
survival of the individual.

Experiments have shown that the growth of introns are
a result of the use of genetic operations such as mutation,
crossover and selection [3, 12, 13]. Although introns have
no influence on the survival of the individual they do have
an influence on the survival rate of their offspring [3]. If a
crossover operation is performed, each of two highly fit indi-
viduals is segmented into a subtree and remaining part of the
individual. The segments are swapped and merged to pro-
duce an offspring. It is hoped that this operation will produce
another highly fit individual. Most of the time, however, an
individual is torn to pieces and the resulting program is of no
use at all. If an intron exists in the genotype of an individual
then it can happen that the crossover operation happens inside
this segment of the genotype. In this case the offspring has
the same fitness as its parent. Therefore, the probability that
an offspring has the same fitness as its parent increases with
the number and the size of its introns. The individuals bloat
because this is the only way to increase their effective fitness.
The effective fitness of an individual is the fitness that takes
the negative influence of genetic operators into account. Evo-
lution stagnates if the fraction of introns grows very much.

The fraction of introns of an individual could be used as an
indicator which shows that a local optimum has been reached.

There is a difference between the type of introns that can
occur with tree-based genetic programming and linear genetic
programming. See Banzhaf et al. [3] for an introduction to
genetic programming with linear genotypes. For the follow-
ing discussion we are again assuming that we are doing sym-
bolic regression as a sample problem. The program that is
evolved using linear genetic programming can contain addi-
tional code to the part which codes for the symbolic expres-
sion. This code is called dead or useless code, or if jumps are
used, it is called unreachable code [1]. An example of an in-
dividual that contains dead code is shown in Figure 3. On the
right side of the figure the individual is shown as it could ap-
pear in tree-based genetic programming. The segment shown
in light gray does not add to the behavior of the individual.
On the left an individual from linear genetic programming is
shown. This individual shows the same behavior as the indi-
vidual on the right. In addition to the fragment shown in light
gray the individual also contains code fragments which rep-
resent useless code. These fragments are drawn in dark gray.
They change variables which are no longer used or which are
calculated again before they are used.

Because of introns a number of individuals correspond to
the same solution in genetic programming. Therefore, de-
pending on the set of primitive functions and the set of ter-
minal symbols, it could happen that quite a large number of
solutions occur in the search space. In fact, any solution is
represented infinitely often in the search space provided that
no limit is set on the tree depth and no limit is set on the
number of nodes. This reduces the difficulty of the prob-
lem considerably. Again we are using the problem of doing
symbolic regression. As primitive functions we used addi-
tion (+), subtraction (-), multiplication (*) and protected di-
vision (/). Protected division returns 1 if the absolute value of
the divisor is less than10�10. As terminal symbols we used
the variableX and the constant1. We made a brute force
search and counted the number of individuals that represent



+

1 *

-

2X

+

1

z = x + 1

y = y + 1

z = x - 2

x = y + z

z = y * z

y = 1 - z

x = 2

z = 1 + z

y = 1 * x

1 X

*

Figure 3: The types of introns in tree-based genetic programming differ from those of linear genetic programming. It is again
assumed that one is doing a symbolic regression. The tree on the right is an example of an individual from tree-based genetic
programming. The tree also contains a part that does not add to the behavior of the individual (shown in light gray). The tree on
the left is an example of the same individual as it could appear in genetic programming with a linear genotype. Both individuals
show the same phenotypical behavior. For the individual shown on the left it is assumed thatx, y, andz are registers which
can be used by the program. Input is supplied to the program via thex register and the result of the computation is read from
thez register. In addition to the code fragment shown in light gray the parts shown in dark gray also do not add to the behavior
of the individual.

Maximum depth 0 1 2 3F = 2; T = 2, and primitive functions:+- 1 1 13 3173F = 3; T = 2, and primitive functions:+-* 1 3 44 27586F = 3; T = 2, and primitive functions:+-/ 1 2 40 28648F = 4; T = 2, and primitive functions:+-*/ 1 4 108 185709

Table 3: Number of functions withf(x) � x.

the functionf(x) � x, that is if jf(x) � xj < 10�10 for allx 2 f�; e; 1; 2; 3; 7; 12g we say thatf(x) � x. The num-
ber of trees grows very rapidly with the depth of the trees,
therefore we could only perform the search for small depths.
The number of trees that represent the identity function are
shown in Table 3 as a function of depth for different subsets
of the four primitive functions. Figure 4 shows the fraction
of functions that code for the identity function. LetI(d) be
the number of individuals that code for the identity function.
Assuming that a solution occurs only once in the search space
of depthds the same behavior can at least be foundI(d� ds)
times in a search space with a maximum depthd with d � ds.
This follows from the fact that we can simply replace the ter-
minalX in the individual coding for the identity function with
the required solution.

4 Analogies between the search space of genetic
programming and sequence space

Again we can draw an analogy to natural evolution. Sequence
space is spanned by DNA-, RNA- and protein sequences.
Kauffman [8] and Schuster [14] analyzed sequence space.
Kauffman stated that a limited number of enzymes can cover
sequence space completely. Therefore, the coding has to be
highly redundant. Sequences that code for all common shapes
are located in the vicinity of any randomly selected sequence

0

0.05

0.1

0.15

0.2

0.25

1 2 3

P
er

ce
nt

ag
e 

of
 tr

ee
s 

w
ith

 f(
x)

=
x

Depth of tree

+-
+-*
+-/

+-*/

Figure 4: Fraction of number of functions that have a maxi-
mum depth ofd that code forf(x) � x.

[14]. There are few shapes that are common and many shapes
are rare. In addition, different sequences that code for a spe-
cific shape are randomly distributed in sequence space. Long
paths of neutral mutations lead to sequences which code for
identical shapes. The number of different shapes and chem-
ical reactions is much less than the number of possible se-
quences. From this fact it follows, as Kauffman states [8],



that the evolution of life is not as unlikely as the number of
possible sequences suggests.

5 Conclusion

Just like in nature the coding of individuals in genetic pro-
gramming is usually highly redundant. The above analysis
(Table 3 and Figure 4) has shown that a large number of in-
dividuals exist which code for the same solution. Therefore,
finding a solution using genetic programming is not as un-
likely as the size of the search space suggests.

The comparison of the search space of genetic program-
ming to nature’s search space could provide directions for fu-
ture research. It could be beneficial to use a representation
such that any random behavior can be reached within a lim-
ited distance from any given behavior. In addition, individ-
uals which code for the same behavior should be distributed
randomly in the search space and long paths of neutral mu-
tations should lead to individuals which code for the same
behavior.

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers, Prin-
ciples, Techniques, and Tools. Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 1986.

[2] W. Banzhaf. Genotype-phenotype-mapping and neutral
variation – a case study in genetic programming. In Y.
Davidor, H.-P. Schwefel, and R. Männer, editors,Paral-
lel Problem Solving from Nature – PPSN III. Proceed-
ings of the International Conference on Evolutionary
Computation, pages 322–332, Berlin, 1994. Springer-
Verlag.

[3] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.
Genetic Programming - An Introduction: On The Auto-
matic Evolution of Computer Programs and Its Appli-
cations. Morgan Kaufmann Publishers, San Francisco,
California, 1998.

[4] T. H. Cormen and C. E. Leiserson und R. L. Rivest.In-
troduction to Algorithms. The MIT Press, Cambridge,
Massachusetts, 1990.

[5] D. E. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1989.

[6] D. E. Goldberg and U.-M. O’Reilly. Where does
the good stuff go, and why? how contextual seman-
tics influences program structure in simple genetic pro-
gramming. In W. B., R. Poli, M. Schoenauer, and
T. C. Fogarty, editors,Genetic Programming: Pro-
ceedings of the First European Workshop, EuroGP’98,
Paris, France, April 14-15, pages 16–36, Berlin, 1998.
Springer-Verlag.

[7] J. H. Holland. Adaptation in natural and artifical sys-
tems: an introductory analysis with applications to biol-
ogy, control, and artificial intelligence. The MIT Press,
Cambridge, Massachusetts, 1992.

[8] S. A. Kauffman. The Origins of Order. Self-
Organization and Selection in Evolution. Oxford Uni-
versity Press, Oxford, 1993.

[9] R. E. Keller and W. Banzhaf. Genetic programming us-
ing genotype-phenotype mapping from linear genomes
into linear phenotypes. In J. R. Koza, D. E. Goldberg,
D. B. Fogel, and R. L. Riolo, editors,Genetic Program-
ming 1996, Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford University, pages 116–122,
Cambridge, Massachusetts, 1996. The MIT Press.

[10] J. R. Koza.Genetic Programming, On the Programming
of Computers by Means of Natural Selection. The MIT
Press, Cambridge, Massachusetts, 1992.

[11] J. R. Koza.Genetic Programming II, Automatic Discov-
ery of Reusable Programs. The MIT Press, Cambridge,
Massachusetts, 1994.

[12] W. B. Langdon and R. Poli. Fitness causes bloat: Mu-
tation. In W. Banzhaf, R. Poli, M. Schoenauer, and
T. C. Fogarty, editors,Genetic Programming: Pro-
ceedings of the First European Workshop, EuroGP’98,
Paris, France, April 14-15, pages 37–48, Berlin, 1998.
Springer-Verlag.

[13] W. B. Langdon and R. Poli. Genetic programming bloat
with dynamic fitness. In W. Banzhaf, R. Poli, M. Schoe-
nauer, and T. C. Fogarty, editors,Genetic Program-
ming: Proceedings of the First European Workshop,
EuroGP’98, Paris, France, April 14-15, pages 97–112,
Berlin, 1998. Springer-Verlag.

[14] P. Schuster. Extended molecular evolutionary biol-
ogy: Artificial life bridging the gap between chemistry
and biology. In C. G. Langton, editor,Artificial Life:
An Overview, pages 39–60, Cambridge, Massachusetts,
1995. The MIT Press.


