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Abstract. In this paper we continue our study on adaptive genetic pro-
gramming. We use Stepwise Adaptation of Weights (saw) to boost per-
formance of a genetic programming algorithm on simple symbolic re-
gression problems. We measure the performance of a standard gp and
two variants of saw extensions on two different symbolic regression prob-
lems from literature. Also, we propose a model for randomly generating
polynomials which we then use to further test all three gp variants.

1 Introduction

We test a technique called Stepwise Adaptation of Weights (saw) on symbolic re-
gression. We use a genetic programming algorithm and adapt its fitness function
using the saw technique in an attempt to improve both algorithm performance
and solution quality. Also, we present a new variant of the saw technique called
Precision saw.

Previous studies on constraint satisfaction [6] and data classification [4] have
indicated that saw is a promising technique to boost the performance of evol-
utionary algorithms. It uses information of the problem from the run so far to
adapt the fitness function of an evolutionary algorithm.

In a regression problem we are looking for a function that closely matches an
unknown function based on a finite set of sample points. Genetic programming
(gp) as introduced by Koza [9] uses a tree structure to represent an executable
object or model. Here we will use gp to search for functions that solve a symbolic
regression problem.

The next section defines the symbolic regression problem and how this is
solved using genetic programming. In Sect. 3 we provide information on the saw
technique and show how this technique can be applied to symbolic regression.
In Sect. 5 we explain our experiments and we provide results. Finally we draw
conclusions and we provide ideas for further research.

2 Symbolic Regression with Genetic Programming

The object of solving a symbolic regression problem is finding a function that
closely matches some unknown function on a certain interval. More formally,
given an unknown function f(x) we want to find a function g(x) such that



f(xi) = g(xi) ∀xi ∈ X, where X is a set of values drawn from the interval we
are interested in. Note that we normally do not know f(x) precisely. We only
know the set of sample points {(x, f(x))|x ∈ X}. In this study we use predefined
functions and uniformly draw a set of 50 sample points from it to test our
regression algorithms equivalent to the experiments with these functions in [10].

We use a genetic programming algorithm to generate candidate solutions,
i.e., g(x). These functions are presented as binary trees built up using binary
functions and a terminal set. The precise definition of these sets and other para-
meter settings varies between the two experiments presented later. Therefore,
we defer the presentation of these parameters until Sect. 5 where we conduct
our experiments.

The selection scheme in an evolutionary algorithm is one of its basic com-
ponents. It needs a way to compare the quality of two candidate solutions. This
measurement, the fitness function, is calculated using knowledge of the problem.
In symbolic regression we want to minimise the total error over all samples. This
is defined as the absolute error in (1), which will be the fitness function for the
standard gp algorithm.

ε =
∑
x∈X

|f(x)− g(x)| (1)

Other fitness functions can be used. For instance, based on the mean square
error. We use this simple approach and make it adaptive in the next section.

3 Stepwise Adaptation of Weights

The Stepwise Adaptation of Weights (saw) technique was first studied on the
constraint satisfaction problem (csp). Solving a csp can mean different things.
Here the object is to find an instantiation of a set of variables such that none of
the constraints that restrict certain combinations of variable instantiations are
violated. This is a np-hard problem on which most evolutionary computation
approaches will fail because they get stuck in local optima. The saw technique
is designed to overcome this deficiency.

In data classification the problem is to find a model that can classify tuples
of attributes as good as possible. When we observe this problem with constraint
satisfaction in mind we can draw some analogies. For instance, in csp we have
to deal with constraints. Minimising the number of violated constraints is the
object and having no violated constraints at all yields a solution. Similarly, in
data classification, minimising the number of wrongly classified records is the
object, while correctly classifying all records yields a perfect model.

The idea of data classification can further be extended to symbolic regression.
Here we want to find a model, i.e., a function, that correctly predicts values of
the unknown function on the sampled points. The object is minimising the error
of prediction, consequently having no error means having found a perfect fit.

This is where saw steps into the picture by influencing the fitness function
of an evolutionary algorithm. Note that in all the problems mentioned above
the fitness has to be minimised to reach the object. The idea behind saw is to



adapt the fitness function in an evolutionary algorithm by using knowledge of
the problem in the run so far.

Algorithm 1 Stepwise adaptation of weights (saw)
set initial weights (thus fitness function f)
set G = 0
while not termination do

G = G + 1
run one generation of gp with f
if G ≡ 0 (mod ∆T ) then

redefine f and recalculate fitness of individuals
fi

end while

The general mechanism for saw is presented in Figure 1. The knowledge of
the problem is represented in the form of weights. We add a weight wi to every
sample point xi ∈ X. These weights are initially set to one. During the run of the
genetic programming algorithm we periodically stop the main evolutionary loop
every ∆T generations and adjust the weights by increasing them. Afterwards,
we continue the evolutionary loop using the new weights incorporated into the
fitness function as shown in (2).

saw fitness(g,X) =
∑

xi∈X

wi|f(xi)− g(xi)| (2)

The adaptation of weights process takes the best individual from the current
population and determines the error it makes on each sample point. Each of the
weights wi corresponding to the error made on point xi is updated using the
error value |f(xi)− g(xi)|. We try two variants for altering weights.

– Classic saw (csaw) adds a constant value ∆wi = 1 to each wi if the error
on sample point xi is not zero. This is based on the approach of violated
constraints [6].

– Precision saw (psaw) takes ∆wi = |f(xi) − g(xi)| and adds ∆wi to the
corresponding weight wi.

4 Problem generator

Besides testing our two gp variants on two problems taken from literature we
present here a method for generating symbolic regression problems. This enables
us to study the performance of these techniques on a large set of polynomials
of a higher degree. The regression of higher degree polynomials finds its use in
different application areas such as computer vision and economics [2].

We generate the polynomials using a model of two integer parameters 〈a, b〉,
where a stands for the highest possible degree and b determines the domain size



from which every ei is chosen. When we have set these parameters we are able
to generate polynomials in the form as shown in (3). The values ei are drawn
uniform random from the integer domain bounded by −b and b.

a∑
i=0

(
eix

i
)
, where ei ∈ {w|w ∈ Z ∧ −b ≤ w ≤ b} (3)

The function f(x) is presented to the regression algorithms by generating 50
points (x, f(x)) uniformly from the domain [−1, 1]. This method for generating
X will also be used for the two Koza functions [10].

5 Experiments and Results

5.1 Koza functions

To test the performance of the two variants of saw we do a number of experi-
ments using three algorithms. First, the genetic programming algorithm without
any additional aids (gp). Second, the variant where we add saw with a constant
∆w (gp-csaw). Last, the variant where we add saw with ∆wi = |f(xi)− g(xi)|
(gp-psaw).

We measure performance of the algorithms on two simple symbolic regression
problems. Each algorithm is tested with two different population sizes as shown
in Table 1. We use 99 independent runs for each setting in which we measure
mean, median, standard deviation, minimum and maximum absolute error (ε).
Furthermore we count the number of successful runs. Where we define a run
successful if the algorithm finds a function that has an absolute error below
10−6.

Besides comparing the three genetic programming variants we also provide
results obtained by using splines on the same problems. This places our three
algorithms in a larger perspective.

Table 1. Experiment parameters: six different experiments where each experiment
consists of 99 independent runs

experiment populations size number of generations

1 100 100
2 100 200
3 100 500
4 100 1000
5 500 100
6 500 200

Here we present two experiments with functions taken from [10]. All genetic
programming systems used the parameters shown in Table 2.



Table 2. Parameters and characteristics of the genetic programming algorithms for
experiments with the Koza functions

parameter value

evolutionary model (µ, 7µ)
fitness standard gp see (1)
fitness saw variants see (2)
stop criterion maximum generations or perfect fit
functions set {∗, pdiv,−, +}
terminal set {x}
populations size see Table 1
initial depth 3
maximum depth 5
maximum generations see Table 1
survivors selection keep best populations size offspring
parent selection random
∆T (for saw) 5

Quintic polynomial This quintic polynomial is taken from [10] and is defined
by (4). The function is shown in Fig. 1. When we try to regress this function
using standard cubic regression we get a total error (as measured with ε) of
1.8345.

f(x) = x5 − 2x3 + x, x ∈ [−1, 1] (4)

-1 -0.5 0 0.5 1

f(
x)�

x

Fig. 1. The quintic polynomial on the interval [−1, 1] (left)

Table 3 shows the results of the experiments on the quintic polynomial. Look-
ing at the mean and the median for all experiments we conjecture that gp-psaw
produces the best solutions. gp-csaw is not always better than gp, but it has
the best results when we observe the maximum error, i.e., the worst result found.
The best solution (1.704× 10−7) is found twice by gp-csaw.

We look at the individual runs of experiment 4 (population size of 100 and
1000 generations) and determine all the successful runs and see that gp has 76
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Fig. 2. Absolute error (ε) over evaluations for one run of the three algorithms for the
quintic polynomial (right)

successful runs out of 99, gp-csaw has 78 successful runs out of 99 and gp-psaw
has 85 successful runs of 99. These result are set out in Fig. 3 together with their
uncertainty interval [13]. We use the usual rule of thumb where we need at least
a difference two and a half times the overlap of the uncertainty interval before we
can claim a significant difference. This is clearly not the case here. In experiment
6 (population size 500 and 200 generations) gp fails 2 times out of 99. The other
two algorithms never fail. This is a significant difference, albeit a small one as
the uncertainty intervals still overlap.

Sextic polynomial This sextic polynomial is taken from [10] and is defined in
(5). Figure 4 shows this function on the interval [−1, 1]. When we do a cubic
regression on the function we get a total error (measured with ε) of 2.4210.

f(x) = x6 − 2x4 + x2, x ∈ [−1, 1] (5)

Table 4 shows the results of the experiments on the sextic polynomial. gp-
psaw has the best median in one experiment and best mean in three experiments.
gp-csaw never has the best mean but has the best median three times. If we are
only interested in the best solution over all runs we have an easier job comparing.
The best solution (1.013 × 10−7) is found in experiment 2 by gp-psaw in just
200 generations and by gp-csaw in experiment 5 within 100 generations.



Table 3. Experiment results for the quintic polynomial, all measurements taken with
absolute error (ε)

experiment median
(×10−7)

mean
(×10−1)

stddev
(×10−1)

minimum
(×10−7)

maximum

1. gp 4.610 1.351 2.679 2.640 1.050
gp-csaw 4.605 1.339 2.599 2.445 1.102
gp-psaw 4.391 1.286 2.972 2.598 1.559

2. gp 4.354 1.274 2.610 2.640 1.034
gp-csaw 4.303 1.226 2.376 2.445 0.8525
gp-psaw 4.200 1.049 2.254 2.543 1.317

3. gp 3.972 1.120 2.571 2.640 1.034
gp-csaw 4.019 1.107 2.204 1.704 0.8525
gp-psaw 3.855 0.7785 2.049 2.449 1.111

4. gp 3.763 1.161 2.547 2.324 1.034
gp-csaw 3.693 0.8323 1.803 1.704 0.6969
gp-psaw 3.669 0.6513 1.856 2.114 1.111

5. gp 3.465 2.045×10−1 1.544×10−2 1.965 1.433×10−1

gp-csaw 3.465 3.570×10−5 8.463×10−8 2.412 9.965×10−7

gp-psaw 3.395 3.382×10−5 4.384×10−8 1.974 5.071×10−7

6. gp 3.343 2.045×10−1 1.544×10−2 1.965 1.433×10−1

gp-csaw 3.446 3.512×10−5 8.337×10−8 2.412 9.965×10−7

gp-psaw 3.325 3.331×10−5 4.533×10−8 1.937 5.071×10−7

Table 4. Experiment results for the sextic polynomial, all measurements taken with
absolute error (ε)

experiment median
(×10−7)

mean
(×10−1)

stddev
(×10−1)

minimum
(×10−7)

maximum

1. gp 2.182 1.490 3.987 1.723 2.844
gp-csaw 2.182 1.525 4.036 1.353 2.844
gp-psaw 2.182 1.212 2.569 1.213 1.720

2. gp 2.182 1.179 2.882 1.172 1.730
gp-csaw 2.098 1.244 3.626 1.244 2.491
gp-psaw 2.115 1.135 2.495 1.013 1.720

3. gp 1.953 0.8001 2.318 1.171 1.730
gp-csaw 1.916 0.8366 2.328 1.172 1.222
gp-psaw 1.984 0.8403 2.226 1.013 1.720

4. gp 1.888 0.6963 2.258 1.135 1.730
gp-csaw 1.824 0.6100 1.741 1.048 1.161
gp-psaw 1.899 0.5084 1.418 1.013 5.467×10−1

5. gp 1.385 1.507×10−6 3.280×10−7 1.087 2.912×10−7

gp-csaw 1.385 3.390×10−2 2.500×10−1 1.013 2.255×10−1

gp-psaw 1.385 2.485×10−2 2.460×10−1 1.125 2.460×10−1

6. gp 1.260 1.417×10−6 3.029×10−7 1.087 2.912×10−7

gp-csaw 1.363 3.390×10−2 2.500×10−1 1.013 2.255×10−1

gp-psaw 1.260 2.485×10−2 2.460×10−1 1.115 2.4560×10−1
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Fig. 3. Number of successful runs with uncertainty intervals for the quintic polynomial
in experiment 4 (left) and experiment 6 (right)
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Fig. 4. The sextic polynomial on the interval [−1, 1]

Similar to the quintic polynomial we examine the individual runs of exper-
iment 4 (population size of 100 and 1000 generations) and determine all the
successful runs. Here gp has 84 successful runs out of 99. gp-csaw has 81 suc-
cessful runs and gp-psaw has 87 successful runs. These result are set out in
Fig. 6 together with the uncertainty interval [13]. Although differences seem
larger than with the quintic polynomial we still cannot claim a significant im-
provement. Tides turn compared to the quintic polynomial as here gp-csaw
fails twice, gp-psaw fails once and gp always succeeds. This leads to a signific-
ant difference with overlapping uncertainty intervals between gp and gp-csaw.

5.2 Randomly generated polynomials

Here we test our three gp variants on a suite of randomly generated polynomials.
These polynomials can have at most a degree of twelve. The parameters of the
underlying gp system are noted in Table 5
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Fig. 5. Absolute error (ε) over evaluations for one run of the three algorithms for the
sextic polynomial (right)

We generate polynomials randomly with the model from Sect. 4 with para-
meters 〈12, 5〉. We generate 100 polynomials and do 85 independent runs of each
algorithm where each run is started with a unique random seed.

The previous simple functions had a smaller maximum degree and could
therefore be efficiently solved with cubic splines. Here we need a technique that
can handle a higher degree of polynomials. Hence, we try a curve fitting algorithm
that uses splines under tension [3] on every generated polynomial. The results are
very good as the average total error over the whole set of polynomials measured
as the absolute error (ε) is 1.3498346× 10−4.

We present the results for the set of randomly generated polynomials in
Table 6. Clearly, the new variant gp-psaw is better than any of the others as
long as we do not update the saw weights too many times. This seems like a
contradiction as we would expect the saw mechanism to boost improvement,
but we should not forget that after updating the weights the fitness function
has changed so we need to re-calculate the fitness for the whole population.
This re-calculateion can be performed by either re-evaluating all individuals or
by using a cache-memory which contains the predicted value for each point and
individual. Because we have used a general library we opted for the re-evaluation.
Also, when we would extend the system in such a way that the data points would
change during the run this would render the cache useless. But, in a gp system
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Fig. 6. Number of successful runs with uncertainty intervals for the sextic polynomial
in experiment 4 (left) and experiment 6 (right)

Table 5. Parameters and characteristics of the genetic programming algorithms for
experiments with the random polynomials

parameter value

evolutionary model steady state (µ + 1)
fitness standard gp see (1)
fitness saw variants see (2)
stop criterion maximum evaluations or perfect fit
functions set {∗, pdiv,−, +,¬, y3}
terminal set {x} ∪ {w|w ∈ Z ∧ −b ≤ w ≤ b}
populations size 100
initial maximum depth 10
maximum size 100 nodes
maximum evaluations 20,000
survivors selection reverse 5-tournament
parent selection 5-tournament
∆T (for saw) 1000, 2000 and 5000 generations

this will cost us fitness evaluations, leaving less fitness evaluations for the gp.
Thus less points of the problem space are visited.

The comparison with the splines on tension only remains. The error of the
splines on tension is incredibly low. As such our results are significantly worse.
One reason could be the number of evaluations that are performed at maximum.
Here we have set this at 20,000. If we look at the right hand of Figure 4 we notice
that the absolute error suddenly drops after 10,000 evaluations. If we take into
account that our current polynomials have a degree that is up to twice that of
the sextic polynomial we can expect that a better solution will not be found
before this 20,000 mark.



Table 6. Experiment results for 100 randomly generated polynomials, results are av-
eraged over the 85 independent runs. The error is measured as absolute error (1)

algorithm ∆T mean stddev minimum maximum

gp 21.20 10.30 5.82 48.60
gp-csaw 1000 21.55 10.33 5.79 48.05
gp-csaw 2000 21.21 10.24 5.83 48.74
gp-csaw 5000 21.25 10.47 5.75 49.31
gp-psaw 1000 21.46 10.52 6.41 50.80
gp-psaw 2000 20.45 10.05 5.90 48.06
gp-psaw 5000 20.28 9.87 5.96 48.18

6 Conclusions

We have shown how the saw technique can be used to extend genetic program-
ming to boost performance in symbolic regression. We like to point out that the
simple concept behind saw makes it very easy to implement the technique in ex-
isting algorithms. Thereby, making it suitable for doing quick try outs to boost
an evolutionary algorithms performance. As saw solely focuses on the fitness
function it can be used in virtually any evolutionary algorithm. However, it is
up to the user to find a good way of updating the weights mechanism depending
on the problem at hand. This paper shows two ways in which to add saw to a
genetic programming algorithm that solves symbolic regression problems. By do-
ing this, we add another problem area to a list of problems that already contains
various constraint satisfaction problems and data classification problems.

When we focus on a comparison of mean, median and minimum fitness it
appears that our new variant of the saw technique (Precision saw) has the upper
hand. In most cases it finds a better or comparable result than our standard gp,
also beating the Classic saw variant. Moreover, it seems that the saw technique
works better using smaller populations. Something that is already concluded by
Eiben et al. [5].

When we restrict our comparison to the number of successes and fails we
find that there is only a small significant difference when we run the algorithms
with a populations size of 500. Then gp+psaw is the winner for the quintic
polynomial and gp for the sextic polynomial.

Our gp algorithms perform poorly on the suit of randomly generated poly-
nomials compared to splines on tension. We suspect the cause to lie in the
maximum number of evaluations. The Koza functions have showed us that the
drop in absolute error can happen suddenly. We conjecture that our gp systems
need more time on the higher degree polynomials before this drop occurs.

7 Future Research

We need to enhance our polynomial generator as we still have unanswered ques-
tions about which polynomials are easy to regress and which are not. Maybe we



can alter or bias the generators parameters such that we can model polynomials
of which we have prior knowledge. A technique that is used in fields such as
constrained optimisation [12] and constraint satisfaction [1].

The performance of genetic programming is seen as an interesting problem
to overcome as many other techniques exist to boost performance of genetic
programming [7, 15, 8]. These technique often are bias towards handling large
data sets which is not the case for the problems we have described.

Looking at symbolic regression as used in this paper presents a problem that
is viewed as a static set of sample points. That is, the set of sample points is
drawn uniformly out of the interval of the unknown function and stays the same
during the run. Therefore, the problem is not finding an unknown function, but
just a function that matches the initial sample points. To circumvent this we
could use a co-evolutionary approach [14] that adapts the set of points we need
to fit, thereby creating an arms-race between a population of solutions and a
population of sets of sample points.
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