Skip to main content

Approximate Dominance for Many-Objective Genetic Programming

  • Conference paper
  • First Online:
  • 492 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 884))

Abstract

In recent years, many-objective optimization has become a popular research topic, after it was noted that algorithms that excelled in solving problems with two objectives were not suitable for problems with more than three objectives. In these more difficult problems, selection pressure towards the Pareto front deteriorates, leading to most solutions becoming non-dominated to each other, which makes selection very difficult. To overcome this, approximate measures, for example epsilon-dominance, relax the competition criteria between solutions and make it easier to eliminate worse solutions that would otherwise be non-dominated. In this paper, epsilon dominance is combined with genetic programming to solve a many-objective optimization problem for the first time. Results show that this combination is promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Giagkiozis, I., Fleming, P.J.: Methods for multi-objective optimization: an analysis. Inf. Sci. 293, 338–350 (2015)

    Article  MathSciNet  Google Scholar 

  2. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–283 (2002)

    Article  Google Scholar 

  3. Elkasaby, A., Salah, A., Elfeky, E.: Multiobjective optimization using genetic programming: reducing selection pressure by approximate dominance. In: Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, Porto (2017)

    Google Scholar 

  4. Masood, A., Mei, Y., Chen, G., Zhang, M.: Many-objective genetic programming for job-shop scheduling. In: 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver (2016)

    Google Scholar 

  5. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_27

    Chapter  MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. In: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Zurich (2001)

    Google Scholar 

  8. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_82

    Chapter  Google Scholar 

  9. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

    Book  MATH  Google Scholar 

  10. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 13 (2015)

    Article  Google Scholar 

  11. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  12. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  13. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  14. Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)

    Article  Google Scholar 

  15. Bandyopadhyay, S., Chakraborty, R., Maulik, U.: Priority-based ϵ dominance: a new measure in multiobjective optimization. Inf. Sci. 305, 97–109 (2015)

    Article  Google Scholar 

  16. Yu, Y., Ma, H., Zhang, M.: F-MOGP: a novel many-objective evolutionary approach to QoS-aware data intensive web service composition. In: Proceedings of 2015 IEEE Congress on Evolutionary Computation (CEC 2015), Sendai (2015)

    Google Scholar 

  17. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  18. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

    Article  Google Scholar 

  19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1st edn. A Bradford Book, London (1992)

    MATH  Google Scholar 

  20. Hadka, D.: MOEA Framework - A Free and Open Source Java Framework for Multiobjective Optimization. Version 2.8 (2015). http://www.moeaframework.org/

  21. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Nanyang Technological University (2009)

    Google Scholar 

  22. Farina, M., Amato, P.: A fuzzy definition of “optimality” for many-criteria optimization problems. Syst. Man Cybern. 34(3), 315–326 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Elkasaby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elkasaby, A., Salah, A., Elfeky, E. (2018). Approximate Dominance for Many-Objective Genetic Programming. In: Parlier, G., Liberatore, F., Demange, M. (eds) Operations Research and Enterprise Systems. ICORES 2017. Communications in Computer and Information Science, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-319-94767-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94767-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94766-2

  • Online ISBN: 978-3-319-94767-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics