
Dynamic Scheduling with Genetic Programming

Domagoj Jakobović and Leo Budin

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
{domagoj.jakobovic, leo.budin}@fer.hr

Abstract. This paper investigates the use of genetic programming in
automatized synthesis of scheduling heuristics. The applied scheduling
technique is priority scheduling, where the next state of the system is
determined based on priority values of certain system elements. The
evolved solutions are compared with existing scheduling heuristics for
single machine dynamic problem and job shop scheduling with bottleneck
estimation.

1 Introduction

Scheduling is concerned with the allocation of scarce resources to activities with
the objective of optimizing one or more performance measures, which can as-
sume minimization of makespan, job tardiness, number of late jobs etc. Due
to inherent problem complexity and variability, a large number of scheduling
systems employ heuristic scheduling methods. Among many available heuristic
algorithms, the question arises of which heuristic to use in a particular environ-
ment, given different performance criteria and user requirements. The problem
of selecting the appropriate scheduling policy is an active area of research [1][2],
and a considerable effort is needed to choose or develop the algorithm best suited
to the problem at hand. A solution to this problem may be provided using ma-
chine learning, genetic programming in particular, to create problem specific
scheduling algorithms.

The combinatorial nature of most scheduling problems allows the use of
search based and enumerative techniques [1], such as genetic algorithms, branch
and bound etc. These methods usually offer good quality solutions, but at the
cost of a large amount of computational time needed to produce such a solution.
Furthermore, search based techniques are not applicable in dynamic or uncertain
conditions where there is need for frequent schedule modification or reaction to
changing system requirements. Scheduling with heuristic algorithms that define
only the next state of the system is therefore highly effective in most instances.

Genetic programming has rarely been employed in scheduling, mainly be-
cause it is unpractical to use it to search the space of potential solutions (i.e.
schedules). It is, however, very suitable for the search of the space of algorithms
that provide solution to the problem. Previous work in this area of research
includes evolving scheduling policies for single machine unweighted tardiness
problem [3][4][5], single machine scheduling subject to breakdowns [6], classic
job shop tardiness scheduling [7][8] and airplane scheduling in air traffic control

[9][10]. In most cases the authors observe performance comparable to the human-
made algorithms. The scheduling procedure is however defined only implicitly
for a given scheduling environment. In this paper we structure the scheduling
algorithm in two components: a meta-algorithm which uses priority values to
perform scheduling and a priority function which defines values for different el-
ements of the system. This approach allows easier creation of various heuristics
in an arbitrary scheduling environment. To illustrate this methodology we ad-
dress the problem of scheduling with dynamic job arrivals, for which there is a
possibility of inserted idleness in resource usage. We also tackle the problem of
bottleneck identification in multiple machine environments and define an appro-
priate algorithm structure for job shop scheduling. The obtained results can be
used in a more realistic weighted variant of the presented problems.

2 Priority Scheduling with Genetic Programming

A natural representation for the solution of a scheduling problem is a sequence of
activities to be performed on each of the machines. While this representation is
most suitable for use in combinatorial optimization, it presents only a solution to
the specific scheduling instance, which means that a new solution must be found
for different initial conditions. With genetic programming, we have the ability
to represent a solution for all the problem instances in a scheduling environment
with an algorithm that can be used to generate a schedule.

The scheduling method applied in this work is priority scheduling, in which
certain elements of the scheduling system are assigned priority values. The choice
of the next activity being run on a certain machine is based on their respective
priority values. This kind of scheduling algorithm is also called, variously, ’dis-
patching rule’, ’scheduling rule’ or just ’heuristic’. The term scheduling rule, in
a narrow sense, often represents only the priority function which assigns val-
ues to elements of the system (jobs in most cases). For instance, a scheduling
process may be described with the statement ’scheduling is performed using
SPT rule’. While in most cases the method of assignment of jobs on machines
based on priority values is trivial, in some environments it is not. This is par-
ticularly true in dynamic conditions where jobs arrive over time or may not be
run before some other job finishes. That is why a meta-algorithm must be de-
fined for each scheduling environment, dictating the way activities are scheduled
based on their priorities and possible system constraints. This meta-algorithm
encapsulates the priority function, but the same meta-algorithm may be used
with different priority functions and vice versa. The time complexity of priority
scheduling algorithms depends on the meta-algorithm, but it is in most cases neg-
ligible compared to search-based techniques, which allows the use of this method
in on-line scheduling [11] and dynamic conditions (all heuristics presented here
provide a solution for several hundred instances in less than a second).

The described structure of the scheduling algorithm allows modular develop-
ment and the possibility of iterative refinement, which is particularly suitable for
machine learning methods. In this work the meta-algorithm part is defined man-

ually for a specific scheduling environment, such as dynamic one machine or job
shop. The priority function is evolved with genetic programming using appro-
priate functional and data structures. This way, using the same meta-algorithm,
different scheduling algorithms best suited for the current criteria can be devised.
The task of genetic programming is to find such a priority function which would
yield the best results considering given meta-algorithm and user requirements.

3 Single Machine Dynamic Scheduling

Problem Statement. In a single machine environment, a number n of jobs Jj

are processed on a single resource. In a static problem each job is available at time
zero, whereas in a dynamic problem each job has a release date rj . The processing
time of the job is pj and its due date is dj . The relative importance of a job
is denoted with its weight wj . In this environment the non-trivial optimization
criteria include weighted tardiness and weighted number of late jobs, which are
defined as follows: if Cj denotes the finishing time of job j, the job tardiness Tj

is defined as
Tj = max {Cj − dj , 0} . (1)

Lateness of a job Uj is taken to be 1 if a job is late, i.e. if its tardiness is greater
than zero, and 0 otherwise. Weighted tardiness for a set of jobs is defined as

Tw =
∑

j
wjTj (2)

and weighted number of late jobs as

Uw =
∑

j
wjUj . (3)

In the evaluation of scheduling heuristics we use a large number of test cases
with different number of jobs, job durations and weights. In order for all the test
cases to have a similar influence to the overall quality estimate of an algorithm,
we define normalized criteria for each test case. Normalized weighted tardiness
is defined as

Tw =

n∑
j=1

wjTj

n · w̄ · p̄
, (4)

and normalized number of late jobs as

Uw =

n∑
j=1

wjUj

n · w̄
, (5)

where n represents the number of jobs in a test case, w̄ the average weight and p̄
the average duration of all jobs. The average duration is not included in weighted
number of late jobs because that criteria does not include any quantity of time
dependent on job’s processing time. The total quality estimate of an algorithm
is expressed as the sum of normalized criteria over all the test cases.

Scheduling Heuristics. In a dynamic environment the scheduler can use algo-
rithms designed for a static environment, but two things need to be defined for
those heuristics: the first is the subset of the jobs to be taken into consideration
for scheduling, since some jobs may arrive in some future moment in time. The
second issue is the method of evaluation of jobs which have not yet arrived, i.e.
the question should the priority function for those jobs be different and in what
way. This can be resolved in the following ways:

1. no inserted idleness - we only consider jobs which are immediately available;
2. inserted idleness - waiting for a job is allowed and waiting time is added to

job’s processing time in priority calculation;
3. inserted idleness with arbitrary priority - waiting is allowed but the priority

function must be defined so it takes waiting time into account.

When using existing heuristics for comparison, we apply the second approach
where necessary, i.e. if priority function does not take job’s release date into ac-
count. The genetic programming, on the other hand, is coupled with the third
approach, as it has the ability to learn and make use of waiting time information
on itself. Scheduling heuristics that presume all the jobs are available are modi-
fied so that the processing time of a job includes job’s time till arrival (waiting
time), denoted with

wtj = max {rj − time, 0} . (6)

Thus, if an algorithm uses the processing time of a job, that time is increased
by wtj of the job. This modification is not necessary for algorithms that are
specifically designed for dynamic conditions, i.e. which already include release
date information in priority calculation. It can be shown that, for any regular
scheduling criteria [12], a job should not be scheduled if the waiting time for that
job is longer than the processing time of the shortest of all currently available
unscheduled jobs. In other words, we may only consider jobs j for which

wtj ≤ min
i
{pi} ,∀i : ri ≤ time . (7)

This approach may be illustrated with the following meta-algorithm using
an arbitrary priority function:

while there are unscheduled jobs do
wait until machine is ready;
pMIN = the duration of the shortest available job;
calculate priorities of all jobs with wtj < pMIN ;
schedule job with best priority;

end while
In the above algorithm, ’best’ priority may be defined as the one with the

greatest or the lowest value, which is purely a matter of definition. For purposes
of efficiency comparison we used the following heuristics: weighted shortest pro-
cessing time (WSPT), earliest due date (EDD), weighted Montagne heuristic
[12] (MON), Rachamadugu & Morton heuristic [13] (RM) and X-dispatch bot-
tleneck dynamics heuristic [12] (XD). Each heuristic is defined with its priority

function which is used as described in the above meta-algorithm. All except the
XD heuristic, which is the only one designed for dynamic job arrivals, are mod-
ified to include job waiting time; WSPT heuristic, for instance, has the priority
function

πj = wj/(pj + wtj) . (8)

Test Cases. Each scheduling instance is defined with the following parameters:
the number of jobs, their processing times, due dates, release dates and weights.
Job durations may take integer values between 1 and 100 and their weights values
between 0.01 and 1 in steps of 0.01. The values of processing times are generated
using uniform, normal and quasi-bimodal probability distributions among the
different test cases. Release times are chosen randomly in the interval

rj ∈

[
0,

1
2

n∑
i=1

pi

]
. (9)

Job due dates are generated using two parameters: T as due date tightness
and R as due date range, which both assume values in interval [0,1]. For each
test case due dates are generated with uniform distribution in the interval

dj ∈

[
rj +

(
n∑

i=1

pi − rj

)
· (1− T −R/2) , rj +

(
n∑

i=1

pi − rj

)
· (1− T + R/2)

]
.

(10)
Due date tightness parameter represents the expected percentage of late jobs

and due date range defines the dispersion of due date values. The numbers of jobs
in test cases are 12, 25, 50 and 100 whereas parameters T and R assume values
of 0.2, 0.4, 0.6, 0.8 and 1 in various combinations. We define 100 scheduling
instances that are used as fitness cases in learning process and additional 600
instances that are used for evaluation purposes only.

Scheduling with Genetic Programming. The task of genetic program is to
find a priority function which is best suited for use with given criteria and meta-
algorithm. After the learning process, the best found priority function is tested
on evaluation test cases. The solution of genetic programming is represented
with a single tree that embodies the priority function. The choice of functions
and terminals is a crucial step in the overall optimization process since they
must allow the program to use all the relevant information and form an efficient
solution. The complete set of primitives used as tree elements is presented in
Table 1.

Weighted Tardiness Problem. The described genetic programming process
can be used for optimization of an arbitrary scheduling criteria, but the most
common one for single machine environment is weighted tardiness. Fitness value

Table 1. The function and terminal set for dynamic one machine problem

Function name Definition

ADD, SUB, MUL binary addition, subtraction and multiplication operators

DIV protected division: DIV (a, b) =

{
1, if |b| < 0.000001

a/b, otherwise

POS POS (a) = max {a, 0}
Terminal name Definition

pt processing time of a job (pj)

dd due date (dj)

w weight (wj)

N total number of jobs

Nr number of remaining (unscheduled) jobs

SP sum of processing times of all jobs

SPr sum of processing times of remaining jobs

SD sum of due dates of all jobs

SL positive slack, max {dj − pj − time, 0}
AR job arrival time (waiting time), max {rj − time, 0}

of a genetic program solution is defined as sum of normalized criteria values,
defined as (4), over all 100 learning test cases (smaller values are better). The
genetic programming parameters are given in Table 2 (we did not perform any
additional parameter tuning to show that even with ’common’ parameter values
good results could be obtained).

Table 2. The genetic programming parameters

Parameter / operator Value / description

population size 10000

selection steady-state, tournament of size 3

stopping criteria maximum number of generations (300) or maximum
number of consecutive generations without best solution
improvement (50)

crossover 85% probability, standard crossover

mutation standard, swap and shrink mutation, 3% probability for
each

reproduction 5% probability

initialization ramped half-and-half, max. depth of 5

We conducted 20 runs using the defined meta-algorithm and achieved mean
best result of 331.0 with standard deviation σ = 1.92. The overall solution was
chosen among best solutions of each run as the one with the best performance

on the unseen set of 600 evaluation test cases. The results in the form of total
normalized criteria values are presented in the lefthand side of Table 3 (’Twt’
denotes weighted tardiness and ’Uwt’ weighted number of tardy jobs). Apart
from total criteria values, the performance measure for each heuristic may also
be described as the percentage of test cases in which the heuristic achieved the
best known result (or the result that is not worse than any other heuristic). This
value can be denoted as the dominance percentage, and comparative results for
all the heuristics are shown in the righthand side of Table 3.

It can be perceived that the evolved scheduling heuristic achieved the best
overall performance for both scheduling criteria. In addition, we performed ex-
periments with weighted number of tardy jobs as the fitness function and, as
expected, the evolved algorithm’s efficiency for that criteria was improved. At
the same time, the performance in regard of weighted tardiness decreased sig-
nificantly, so we may conclude that optimization with weighted tardiness as
performance criteria pays off better considering overall algorithm quality.

Table 3. Normalized criteria and dominance percentages for one machine problem

Normalized criteria Dominance percentage

Twt Uwt Twt Uwt

GP 330.6 188.8 80 % 49 %

XD 389.7 194.1 21 % 30 %

RM 451.7 210.6 9 % 17 %

MON 623.1 216.7 3 % 8 %

WSPT 845.0 201.6 0 % 21 %

EDD 1280.9 440.0 14 % 13 %

4 Job Shop Scheduling

Problem Statement. Job shop scheduling includes running n jobs on m ma-
chines where each job has m operations and each operation is to be processed on
a specific machine (more general model involves arbitrary number of operations
for any job). Duration of one operation of job j on machine i is denoted with
pij . Every machine and job is considered to be available for processing from the
beginning. The operations of each job have to be completed in a specific sequence
which differs from job to job. In addition to weighted tardiness and number of
tardy jobs, another non-trivial and widely used criteria are weighted flowtime
and makespan. Normalized weighted flowtime of a set of jobs is defined as

Fw =

n∑
j=1

wjFj

n · w̄ · p̄
, (11)

where Fj equals to the completion time of the last operation of a job, Cj . Nor-
malized makespan is similarly defined as

Cmax =
max {Cj}

n · p̄
. (12)

Although the jobs are considered to be available from the time zero, schedul-
ing on a given machine is inherently dynamic because an operation may only
be ready at some time in the future (after the completion of the job’s previous
operation). We therefore modify the processing time of an operation as in the
single machine dynamic problem (inserted idleness approach).

Scheduling Heuristics. Job shop priority scheduling involves determining the
next operation to be processed on a given machine. The scheduling on a machine
may only occur if the machine is available and if either of the following is true:
there are operations ready to be processed on that machine or there are opera-
tions which will be ready for processing at a known time in future. The latter
situation occurs if the previous operation of a job has already started and we
know the time it will finish. This procedure can be described with the following
meta-algorithm:

while there are unprocessed operations do
wait for a machine with pending operations;
calculate priorities of all pending operations;
schedule best priority operation;
update machine and next job’s operation ready time;

end while
The choice of operations considered for scheduling is still restricted to those

operations whose waiting time (6) is smaller than the duration of the shortest
available operation. In efficiency comparison we used the following job shop
heuristics: WSPT, processing time to the total work remaining (WSPT/TWKR),
weighted total work remaining (WTWKR), dynamic slack per remaining process
time (SLACK/TWKR), COVERT (cost over time) and Rachamadugu & Morton
job shop heuristic (RM). Each heuristic is described with its priority function;
detailed descriptions of the listed heuristics can be found in [14] and [12].

Test Cases. The operations processing times and job weights are generated
randomly as for the one machine environment. Job numbers are 12, 25, 50 and
100 whereas the number of machines takes values of 5, 10, 15 or 20 in a test
case. The expected total duration of all the jobs is defined as

p̂ =
1
m

n∑
j=1

m∑
i=1

pij , (13)

and job due dates are generated randomly with parameters T and R in the
following interval:

dj ∈ [p̂ (1− T −R/2) , p̂ (1− T + R/2)] . (14)

We define 160 test cases for learning and 320 evaluation test cases, in addition
to 80 instances taken from [15], used for evaluation only.

Scheduling with Genetic Programming. As in the single machine case, the
solution of genetic programming is a single tree which represents the priority
function to be used with defined meta-algorithm. The choice of functions is
similar to the previous implementation, but the terminals are radically different,
because they must include different information of the system state. The set of
functions and terminals is presented in Table 4.

Table 4. The function and terminal set for job shop problem

Function name Definition

ADD, SUB, MUL,
DIV, POS

as in Table 1

SQR protected unary square root: SQR(a) =

{
1, ifa < 0√
a, otherwise

IFGT comparison operator: IFGT (a, b, c, d) =

{
c, ifa > b

d, otherwise

Terminal name Definition

pt operation processing time (pij)

dd job due date (dj)

w job weight (wj)

CLK current time

AR operation waiting time: max {rij − time, 0} , where rij denotes
finishing time of the previous operation (before machine i)

NOPr number of remaining job operations

TWK total processing time of all operations of a job

TWKr processing time of remaining operations of a job

PTav average duration of all the operations on a given machine

HTR head time ratio: the ratio of the total time the job has been in
the system and total duration of job’s completed operations

We conducted 20 experiments optimizing weighted tardiness criteria with
mean best value over the runs 147.5 and σ = 1.07. The best solution was com-
pared with the existing scheduling heuristics on the evaluation set of 400 (320
+ 80) test cases. The results in normalized criteria values and dominance per-
centages are shown in Table 5.

Scheduling with Adaptive Heuristic. It has already been shown [8] that
the identification of the bottleneck resource, i.e. the resource with substantially
higher load, may improve the scheduling process. As it is generally not known
in advance which machine could become a bottleneck, we may try and develop a

Table 5. Normalized criteria and dominance percentages for job shop problem

Normalized criteria Dominance percentage

Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

GP 146.1 70.9 105.8 133.5 88 % 12 % 73 % 0 %

RM 158.0 68.5 110.0 121.6 5 % 14 % 1 % 5 %

COVERT 179.8 73.4 119.0 118.7 0 % 11 % 0 % 31 %

WSPT 161.6 69.3 107.9 121.7 2 % 13 % 16 % 5 %

SPT/TWKR 195.5 74.6 123.2 118.9 0 % 11 % 0 % 35 %

WTWKR 166.1 68.4 109.0 127.8 4 % 17 % 10 % 4 %

SL/TWKR 225.5 77.0 134.3 123.7 0 % 11 % 0 % 14 %

EDD 206.1 76.5 123.7 128.0 1 % 11 % 0 % 6 %

heuristic to determine such resource on line. We propose a genetic programming
approach where there are two distinctive agents, or scheduling heuristics, and
GP is responsible for evolving the rule to decide which heuristic is to be ap-
plied on a given machine. The solution of genetic programming consists of three
parts (represented as trees): the first part, or the decision tree, determines which
heuristic should be used at a given moment. The other two parts (scheduling
trees) are applied depending on the result of the decision tree. Scheduling trees
use the same primitives as in Table 4, but the decision tree should be able to
recognize increased load on a machine with appropriate set of terminals. The
terminals which can be used in the decision tree are presented in Table 6 (the
functions are the same in all trees).

Table 6. The terminal set for decision tree

Terminal name Definition

MTWK total processing time of all operations on a machine

MTWKr processing time of all remaining operations on a machine

MTWKav average duration of all operations on all machines

MNOPr number of remaining operations on a machine

MNOPw number of waiting operations on a machine

MUTL utilization: the ratio of duration of all processed operations on a
machine and total elapsed time

As the result of the decision tree is a numeric value, we have to interpret it
in some way and define the scheduling process. This procedure can be described
with the following meta-algorithm:

for each machine i do
calculate decision tree value (Pi);

end for
while there are unprocessed operations do

wait for a machine with pending operations;
Pi = decision tree value for current machine;
if Pi > Pm, ∀m then

calculate priorities using the second tree;
else

calculate priorities using the first tree;
end if
schedule best priority operation;
update machine and next job’s operation ready time;

end while
Using the above adaptive structure, we conducted 20 runs with the same

evolution parameters and achieved mean best result of 146.05 and σ = 1.25.
The overall best solution (denoted GP-3) is compared with existing scheduling
algorithms and with single tree heuristic (denoted GP). The first row of Table 7
shows the results in comparison with existing heuristics and the bottom two rows
compare the described methods (we include only GP values for brevity since the
other heuristics are unchanged). The t-test on the results of the methods rejects
the null hypothesis with t = 1.89 and p < 0.067 for normalized criteria and with
t = 4.08 and p < 3.34 × 10−3 for dominance percentages (when compared to
existing heuristics). The difference between the two algorithms in terms of abso-
lute criteria values is not great, which can in part be attributed to the relative
proximity to the optimal solution. On the other hand, the relative dominance of
the multiple tree algorithm is much greater, as it is able to find non-dominated
solution in a majority of problem instances.

Table 7. Performance of single tree (GP) and multiple tree solution (GP-3)

Normalized criteria Dominance percentage

Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

GP-3 143.8 67.2 104.5 132.9 94 % 17 % 86 % 0 %

GP 146.1 70.9 105.8 133.5 31 % 11 % 24 % 1 %

GP-3 143.8 67.2 104.5 132.9 64 % 17 % 64 % 0 %

5 Conclusion

This paper shows genetic programming can be used to build scheduling algo-
rithms whose performance is measurable with human-made heuristics for a spe-
cific scheduling environment. We addressed the issue of dynamic single machine
scheduling for which a suitable meta-algorithm and appropriate data structures

are defined. Additionally, a multiple tree adaptive heuristic is proposed for job
shop scheduling problem, where decision tree is used to distinguish between re-
sources based on their load characteristics. The results are promising, as for
given problems the evolved heuristics exhibit better performance than existing
scheduling methods. The presented methodology can be particularly useful in
scheduling environments where there are no adequate algorithms and could al-
leviate the design of an appropriate scheduling procedure.

References

1. Jones, A., Rabelo, L.C.: Survey of job shop scheduling techniques. Technical report,
NISTIR, National Institute of Standards and Technology, Gaithersburg (1998)

2. Walker, S.S., Brennan, R.W., Norrie, D.H.: Holonic job shop scheduling using a
multiagent system. IEEE Intelligent Systems (2) (2005) 50

3. Dimopoulos, C., Zalzala, A.: A genetic programming heuristic for the one-machine
total tardiness problem. In: Proceedings of the Congress on Evolutionary Compu-
tation. Volume 3. (1999)

4. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming
for a classic one-machine scheduling problem. Advances in Engineering Software
32(6) (2001) 489

5. Adams, T.P.: Creation of simple, deadline, and priority scheduling algorithms
using genetic programming. In: Genetic Algorithms and Genetic Programming at
Stanford 2002. (2002)

6. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject
to machine breakdowns with genetic programming. In: Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, IEEE Press (2003) 1050

7. Atlan, B.L., Polack, J.: Learning distributed reactive strategies by genetic pro-
gramming for the general job shop problem. In: Proceedings 7th annual Florida
Artificial Intelligence Research Symposium, IEEE, IEEE Press (1994)

8. Miyashita, K.: Job-shop scheduling with gp. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann (2000)
505

9. Cheng, V., Crawford, L., Menon, P.: Air traffic control using genetic search tech-
niques. In: IEEE International Conference on Control Applications, Hawai’i, IEEE
(1999)

10. Hansen, J.V.: Genetic search methods in air traffic control. Computers and Oper-
ations Research 31(3) (2004) 445

11. Pinedo, M.: Offline deterministic scheduling, stochastic scheduling, and online
deterministic scheduling: A comparative overview. In Leung, J.Y.T., ed.: Handbook
of Scheduling. Chapman & Hall/CRC (2004)

12. Morton, T.E., Pentico, D.W.: Heuristic Scheduling Systems. John Wiley & Sons,
Inc. (1993)

13. Mohan, R., Rachamadugu, V., Morton, T.E.: Myopic heuristics for the weighted
tardiness problem on identical parallel machines. Technical report, The Robotics
Institute, Carnegie-Mellon University (1983)

14. Chang, Y.L., Sueyoshi, T., Sullivan, R.: Ranking dispatching rules by data envel-
opment analysis in a job shop environment. IIE Transactions 28(8) (1996) 631

15. Taillard, E.: Scheduling instances. ”http://ina.eivd.ch/Collaborateurs/etd/
problemes.dir/ordonnancement.dir/ordonnancement.html” (2003)

