Skip to main content

Negative Slope Coefficient: A Measure to Characterize Genetic Programming Fitness Landscapes

  • Conference paper
Genetic Programming (EuroGP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3905))

Included in the following conference series:

Abstract

Negative slope coefficient has been recently introduced and empirically proven a suitable hardness indicator for some well known genetic programming benchmarks, such as the even parity problem, the binomial-3 and the artificial ant on the Santa Fe trail. Nevertheless, the original definition of this measure contains several limitations. This paper points out some of those limitations, presents a new and more relevant definition of the negative slope coefficient and empirically shows the suitability of this new definition as a hardness measure for some genetic programming benchmarks, including the multiplexer, the intertwined spirals problem and the royal trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, K. (ed.) Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Clergue, M., Collard, P., Tomassini, M., Vanneschi, L.: Fitness distance correlation and problem difficulty for genetic programming. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2002, New York City, USA, pp. 724–732. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  3. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, pp. 93–108. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Forrest, S., Mitchell, M.: What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Machine Learning 13, 285–319 (1993)

    Article  Google Scholar 

  5. Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of the fitness landscapes. In: Whitley, D., Vose, M. (eds.) Foundations of Genetic Algorithms, vol. 3, pp. 243–269. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  6. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico, Albuquerque (1995)

    Google Scholar 

  7. Kinnear Jr., K.E.: Fitness landscapes and difficulty in genetic programming. In: Proceedings of the First IEEEConference on Evolutionary Computing, Piscataway, NY, pp. 142–147. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  8. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  9. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  10. Madras, N.: Lectures on Monte Carlo Methods. In: American Mathematical Society, Providence, Rhode Island (2002)

    Google Scholar 

  11. Manderick, B., de Weger, M., Spiessens, P.: The genetic algorithm and the structure of the fitness landscape. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 143–150. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  12. Mitchell, M., Forrest, S., Holland, J.: The royal road for genetic algorithms: fitness landscapes and ga performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems, Proceedings of the First European Conference on Artificial Life, pp. 245–254. The MIT Press, Cambridge (1992)

    Google Scholar 

  13. Naudts, B., Kallel, L.: A comparison of predictive measures of problem difficulty in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 4(1), 1–15 (2000)

    Article  Google Scholar 

  14. Punch, W.: How effective are multiple populations in genetic programming. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Goldberg, D., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 308–313. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  15. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani (eds.) Biological Evolution and Statistical Physics. Lecture Notes Physics, vol. 585, pp. 187–207. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)

    Article  MATH  Google Scholar 

  17. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Science, University of Lausanne, Switzerland (2004), Downlodable version at, http://www.disco.unimib.it/vanneschi

  18. Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness clouds and problem hardness in genetic programming. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 690–701. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Vanneschi, L., Tomassini, M., Clergue, M., Collard, P.: Difficulty of unimodal and multimodal landscapes in genetic programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1788–1799. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness distance correlation in genetic programming: a constructive counterexample. In: Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, pp. 289–296. IEEE Press, Piscataway (2003)

    Google Scholar 

  21. Vérel, S., Collard, P., Clergue, M.: Where are bottleneck in nk-fitness landscapes? In: CEC 2003: IEEE International Congress on Evolutionary Computation, Canberra, Australia, pp. 273–280. IEEE Press, Piscataway (2003)

    Google Scholar 

  22. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanneschi, L., Tomassini, M., Collard, P., Vérel, S. (2006). Negative Slope Coefficient: A Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds) Genetic Programming. EuroGP 2006. Lecture Notes in Computer Science, vol 3905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11729976_16

Download citation

  • DOI: https://doi.org/10.1007/11729976_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33143-8

  • Online ISBN: 978-3-540-33144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics