Skip to main content

Complexity and Cartesian Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3905))

Abstract

Genetic Programming (GP) [1] often uses a tree form of a graph to represent solutions. An extension to this representation, Automatically Defined Functions (ADFs) [1] is to allow the ability to express modules. In [2] we proved that the complexity of a function is independent of the primitive set (function set and terminal set) if the representation has the ability to express modules. This is essentially due to the fact that if a representation can express modules, then it can effectively define its own primitives at a constant cost.

Cartesian Genetic Programming (CGP) [3] is a relative new type of representation used in Evolutionary Computation (EC), and differs from the tree based representation in that outputs from previous computations can be reused. This is achieved by representing programs as directed acyclic graphs (DAGs), rather than as trees. Thus computations from subtrees can be reused to reduce the complexity of a function. We prove an analogous result to that in [2]; the complexity of a function using a (Cartesian Program) CP representation is independent of the terminal set (up to an additive constant), provided the different terminal sets can both be simulated. This is essentially due to the fact that if a representation can express Automatic Reused Outputs [3], then it can effectively define its own terminals at a constant cost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction. In: On the Automatic Evolution of Computer Programs and its Applications, dpunkt.verlag, Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  2. Woodward, J.R.: Modularity in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610. Springer, Heidelberg (2003)

    Google Scholar 

  3. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Handley, S.: On the use of a directed acyclic graph to represent a population of computer programs. In: Proceedings of the 1994 IEEE World Congress on Computational Intelligence, Orlando, Florida, USA, pp. 154–159. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  5. Keijzer, M.: Efficiently representing populations in genetic programming. In: Angeline, P.J., Kinnear Jr, K.E. (eds.) Advances in Genetic Programming 2, pp. 259–278. MIT Press, Cambridge (1996)

    Google Scholar 

  6. Roberts, M.E.: The effectiveness of cost based subtree caching mechanisms in typed genetic programming for image segmentation. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 444–454. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woodward, J.R. (2006). Complexity and Cartesian Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds) Genetic Programming. EuroGP 2006. Lecture Notes in Computer Science, vol 3905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11729976_23

Download citation

  • DOI: https://doi.org/10.1007/11729976_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33143-8

  • Online ISBN: 978-3-540-33144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics