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Abstract. Wireless sensor networks (WSNs) are medium scale mani-
festations of a paintable or amorphous computing paradigm. WSNs are
becoming increasingly important as they attain greater deployment. New
techniques for evolutionary computing (EC) are needed to address these
new computing models. This paper describes a novel effort to develop a
series of variations to evolutionary computing paradigms such as Genetic
Programming to enable their operation within the wireless sensor net-
work. The ability to compute evolutionary algorithms within the WSN
has innumerable advantages including, intelligent-sensing, resource opti-
mized communication strategies, intelligent-routing protocol design, nov-
elty detection, etc to name a few. In this paper we first discuss an evolu-
tionary computing algorithm that operates within a distributed wireless
sensor network. Such algorithms include continuous evolutionary com-
puting. Continuous evolutionary computing extends the concept of an
asynchronous evolutionary cycle where each individual resides and com-
municates with its immediate neighbors in an asynchronous time-step
and exchanges genetic material. We then describe the adaptations re-
quired to develop practicable implementations of evolutionary computing
algorithms to effectively work in resource constrained environments such
as WSNs. Several adaptations including a novel representation scheme,
an approximate fitness computation method and a sufficient statistics
based data reduction technique lead to the development of a GP imple-
mentation that is usable on the low-power, small footprint architectures
typical to wireless sensor motes. We demonstrate the utility of our for-
mulations and validate the proposed ideas using a variety of problem sets
and describe the results.

1 Introduction

Amorphous or paintable computers are very large arrays of low powered comput-
ers. Computers with a few hundred kilobytes of RAM and short range wireless
communications are deployed with a density of tens to hundreds of elements
per square centimeter. These computers are unreliable and have no global ad-
dressing scheme. This new genre of computing poses many new and interesting
problems to the programmer and algorithm designer. How do you take advan-
tage of a massively distributed computer whose individual elements are very



resource constrained? How do you write distributed algorithms without a global
addressing scheme or predictable topology? William Butera, V. Michael Bove,
and James McBride of the MIT Media Lab proposed a series of algorithms
for performing media processing and storage on paintable computers [1]. Their
paintable computer architecture is the basis for the one used in this research.

A paintable computing element runs process fragments (pfrags), containing
code and data used as part of a global program. These fragments have read-write
access to the home-page of the processor they are running on. A home-page con-
tains key value pairs and is somewhat analogous to a tuple space. Process frag-
ments have read-only access to the home-pages of proximal processing elements.
Process fragments can migrate to neighboring processing elements.

Currently, no known implementations of paintable computing exist except
validated simulations. On the other hand there is the wireless sensor network
technology that has been gaining tremendous importance in recent years. Several
problems that theoretically present themselves in paintable computing often can
be manifested as challenges in wireless sensor network environments due to their
similarity in terms of being highly resource constrained. In this paper we de-
velop genetic programming solutions that effectively work in the wireless sensor
network environment and demonstrate the utility of continuing this direction of
research to realize the goals towards paintable computing.

There are innumerable technological hurdles that must be overcome for ad-
hoc sensor networks to become practical. A single unit of WSNs is often termed
as a ‘mote’. The individual motes are incredibly resource constrained. They
are characterized by a limited processing speed, storage capacity, and commu-
nication bandwidth. Moreover, their lifetime is determined by their ability to
conserve power. Everything we take for granted in personal computing at the
PC or desktop level comes at a huge premium in WSNs. All things considered,
such constraints demand new hardware designs, network architectures, software
applications, and therefore new learning algorithms that maximize the motes
capabilities while keeping them inexpensive to deploy and maintain.

Developing GP solutions to work in WSNs is the primary focus of this work.
Specifically, we describe the following contributions:

– A novel framework for performing genetic programming on a wireless sensor
mote.

– A continuous algorithm to effectively evolve an in-network GP solution.

This paper is organized as follows: In the next section we outline the neces-
sity for developing effective evolutionary computing solutions for wireless sensor
networks. In section 3 we outline the changes and adaptations required to de-
velop small-footprint GP. In section 3.1 we outline the details for developing a
continuous algorithm that asynchronously computes a symbolic regression solu-
tion along with the distributed architecture it follows to do this computation.
We then demonstrate the utility of our proposed algorithms by conducting ex-
periments on a variety of problem sets and present the results. A brief discussion
of these results concludes the paper.



2 Background and Related Work

There is significant interest within the GP community to derive effective formu-
lations that help solve real world problems. The domain of wireless sensor net-
works and amorphous computing is one such real world domain that is gaining
tremendous importance. GP solutions have been previously proposed for several
problems that manifest themselves in sensory computing systems. Seok et al de-
scribe a technique to perform calibration of sensors using Genetic Programming
on evolvable hardware [7]. Ziegler and Banzhaf proposed to use evolutionary
techniques to develop a sensory nose for a robot [9]. The Mate system proposed
by Levis is a tiny virtual machine for sensor networks [2]. The contribution in
this paper is geared more toward adapting the GP system to work in a resource
constrained environment and make decisions on the sensory data. For example,
consider the problem of determining correlation between light and temperature
signals in a sensor network. It is known within the signal processing community
that these two parameters display similar variations under most environmen-
tal conditions. By adapting GP to work on an intelligent sensor node (termed
mote) one can compute the exact correlation function that best describes the re-
lationship between sensory attributes based on input data. Another example of a
problem the proposed architecture can help address is the problem of optimized
routing to save communication costs in WSNs. In this case, the proposed system
can be instructed to compute an optimal routing path computed locally using
the signal strength as an input parameter. Distributed systems that compute an
optimization problem have been studied extensively and GP solutions have been
proposed to solve problems in those domains [8]. Along similar lines, effective
decision making using multi-agent teams was proposed by Luke et al [3]. From
a computation environment perspective, Nordin et al explore ways to evolve
machine code for embedded systems [6]. Our work extends these efforts and fo-
cuses on developing a GP system that effectively works in resource constrained
environments.

With the MEMS revolution, micro-sensors are now following manufactur-
ing curves that are at least related to Moore’s Law. Such current trends in
paintable or spray computing are summarized by Mamei [4]. They also high-
light the need for intelligent in-network processing architecture such as the one
we propose in this paper. Nagpal et al present a programming methodology
for self-assembling complex structures from vast numbers of locally-interacting
identically-programmed agents, using techniques inspired by developmental bi-
ology [5]. Our work is inspired by this effort to develop a GP paradigm that can
later be extended to include self-assembly type optimization problems.

Basic and Parallel Evolutionary Algorithm

The basic evolutionary algorithm (BEA) is the most common model for evolu-
tionary computation, however, it is clearly innapropriate for a wireless sensor
network. If each mote were running a BEA they would likely take too long to



converge to be effective, nor would the algorithm exploit the parallel nature of
a WSN.

Evolutionary algorithms tend to be highly parallelizable and many specific
algorithms have been developed which take advantage of this. Two signifant
models of parallel algorithms for evolutionary computing are the island model
and the cellular evolutionary model:

Island Model has a separate evolutionary algorithm running on each available
processing node. If the initial populations on each node are sufficiently ran-
domized, the algorithm will explore different parts of the search space in
parallel. Every few generations, one or more of the potential solutions in the
population of each node is copied to one or more of the other neighboring
nodes. These individuals are chosen using selection. This technique shares
the best solutions, which usually contain good partial solutions, with other
nodes in the same parallel algorithm. The good partial solutions are either
introduced to different gene pools or, if already present, reinforce the good
partial solution by increasing their influence. This model not only efficiently
distributes the work of the evolutionary algorithm, it has been shown to pro-
duce better results then a single basic evolutionary algorithm with a greater
population size.

Cellular Model1 places each potential solution on a separate processing node.
Each individual node can choose potential mates from neighboring nodes us-
ing some selection method. A typical cellular evolutionary algorithm chooses
one population member each generation to participate in selection, crossover,
and mutation and this member is replaced by its offspring. The cellular model
is very effective on massively parallel computers such as vector computers.

3 Evolutionary Algorithms on a Mote

WSNs are an excellent target for distributed evolutionary computing. WSNs
require learning algorithms that are capable of learning independent of the op-
eration of other motes, but are also capable of using information available glob-
ally within the network to better optimize for local conditions. A distributed
evolutionary algorithm can achieve both of these goals. Each mote can indepen-
dently evolve, yet recombine genetic information from the surrounding motes to
improve its suitability to the local environment.

In addition, evolutionary algorithms or learning algorithms in general must
be designed to address the resource constraints present in a wireless sensor net-
work, while taking advantage of the unique properties of a wireless network.
Specifically, the ability to wirelessly broadcast information is a feature of wireless
sensor motes not generally used in traditional distributed computing systems.

The parallel evolutionary algorithm described in this paper is based on tradi-
tional parallel algorithms like the Island Model [2], but modifications are made

1 The cellular model is so named because it has been shown to simulate a certain class
of cellular automata



to allow the algorithm to operate in a resource constrained wireless sensor net-
work. Because wireless sensor motes are capable of broadcasting data, rather
than point-to-point communication, we make use of this by distributing genetic
information in a broadcast manner. This reduces the total bandwidth require-
ments, as well as converves the limited battery power of the wireless modes, as
wireless transmitting is generally the most power hungry mode of these devices.

3.1 Broadcast-Distributed Parallel Genetic Programming

The Broadcast-Distributed Parallel genetic programming model (BDP) runs si-
multaneously on each mote in the network. The primary phases of the algorithm
are fitness evaluation, genetic reproduction with local and remote genetic infor-
mation and broadcast of genetic information. See Figure 1.

Random Initial Generation

Evaluate Fitnesss

Perform Local Genetic Operations

Perform Crossover
on Local Population
and Mates from 
Neighbors if 
Available

Broadcast 
Random Individual

Mate List

Fig. 1. Broadcast-Distributed Parallel Algorithm

The broadcast-distrbuted parallel evolutionary algorithm (BDP) is based on
an island parallel model. Each mote carries its own population, and distributes
genetic information in an asynchronous fashion. There is no need to have any
physical clock on the motes running the algorithm. Exchanges of genetic infor-
mation are made when the mote completes the computation of a each generation,
which involves local reproduction, reproduction with local and remote genetic
information, and finally calculating the fitness for the entire population. Con-
ceptually, if the motes in a WSN running the BDP algorithm are too far apart
to be able to communicate, each will operate as if they were running the BEA
because they are unable to inject any external genetic information.



After each generation of the BEA on a mote Mb a random member of the
population {Mpi

b | i < |Mp
b |} is selected and broadcast to remote motes2. The

entire individual is sent. However, the size of any given individual is particularly
small, on the order of a few bytes.

Each mote Mr within wireless range of a broadcasting mote (henceforth re-
ferred to as neighbors) receives the broadcast Mpi

b and appends it to a list of
incoming genetic information (the mate list), Mm

r . When enough genetic mate-
rial is received by a mote, that is when |Mm

r | > a, where a is some arbitrary
constraint based on the available memory on the mote, a selection is performed
on Mm

r and the internal population Mp
r and a crossover operation is performed.

crossover(Mpj
r ,Mmk

r ) for some j < |Mp
r |, k < |Mm

r |

No data is exchanged in the reverse direction from Mr to Mb as a result of
this crossover operation. However, at the end of the next internal generation,
mote Mr will broadcast a random mote as described above. Because Mr was
a neighbor of Mb so that it received Mpi

b during a broadcast transmission, it
is likely that Mb will remain a neighbor when their roles are reversed. Thusly,
crossover will generally be equilibrious as exchanges will likely occur in both
directions, although not necessarily in the same discreet generation.

It is worth noting that some motes will have an advantage if they have more
neighbors. They will not only exchange more of their own genetic information,
but they also will receive more genetic information, therefore they may exhibit
quicker fitness improvements when compared with lone mote that lacks many
neighbors.

The number of neighbors may vary within the set of motes with time. This
modifies the chance a particular member is selected given its current position and
the current time. This makes an examination of the survivability of a particular
member in time difficult and has not yet been addressed but the overall result of
selection is not affected. That is, the most fit member of a motes population is
selected and its partial solutions survive. This maintains the selective pressure of
the algorithm which causes the overall fitness of the population to improve. Since
the individuals involved in crossover depend entirely and only on the results of
selection then, as selection is fundamentally the same in a BDP and an BEA,
crossover is also comparable.

3.2 Resource Constraints

The motes in a wireless sensor network are typically very low power compared
to traditional PCs. They generally have have far less total storage, perhaps no
secondary storage (i.e. disk storage), and may rely on the operating system,
software and data all fitting in a small amount of solid-state primary storage.

2 Mb is a broadcasting mote, Mr is a receiving mote, Mp is the population on a mote,
Mm is the mate list on a mote



Many enhancements can be made to reduce the space requirements of both the
evolutionary algorithm software binary, as well as the data representation and
run-time memory requirements.

There are obvious memory usage improvements acheivable by using a steady
state algorithm with an in place replacement strategy instead of a generational
algorithm that replicates the entire population with each generation, before re-
placing the old population with the new; roughly half the amount of memory is
needed when using a steady state algorithm.

The encoding strategy for individuals can significantly alter the memory
requirements for a single mote in a BDP network. Particularly for evolutionary
algorithms such as genetic programming, where the size of an individual is not
fixed. It is necessary to set reasonable upper bounds on the allowable size of an
individual, this is achieved by adding a limit to the allowable tree depth of a
candidate solution.

It is also necessary to weigh the differences in using an interpreted language
versus a compiled language to develop an implementation. An interpreted lan-
guage (e.g. Perl, Lisp or Java) requires an entire virtual machine to be running
on a mote; this would lead to a very sizeable increase in the memory footprint
as well as executable code size. However a compiled language has the advan-
tage of being customized and run to a specific platform, and therefore omits any
penalties introduced by having a virtual machine present.

The obvious approach in a language offering dynamic memory allocation
such as C is to store individuals as trees of dynamically allocated nodes in the
program heap. Under this scheme each node is composed of a datum and two
pointers to its left and right children. On the target system in question this
solution weighs in at nine bytes per node.

Maintaining the program trees in blocks of statically allocated memory is
attractive because the code for dynamically allocating memory (malloc and
free in C) can be omitted from the final binary, provided dynamically allocated
memory is not used elsewhere. Dynamic functionality is not available at all in the
standard libraries of the smallest conceivable target platforms; it would require
a significant increase in source code size.

The most compact memory usage for program tree storage is to using a
constant size for each operator or terminal in the program tree. The offset of the
left sub-tree is therefore constant, and can be used to form the structure of the
tree. The offset for the right sub-tree is related to the size of the left sub-tree
and can be calculated by recursing down the left sub-tree. Since most operations
already involve an in order traversal of the program tree this representational
scheme requires little additional code. This method is essentially a form of prefix
notation. Because operators and terminals are well defined and each operator
requires exactly two operands it is possible to evaluate the tree without any
additional structure other than order.

The downside of this strategy is that any operation such as mutation or
crossover which adjusts the size of the tree at anything other that the right most



leaf node will require a resizing of the entire data structure. This is a reasonable
tradeoff in severely memory constrained motes.

By using a prefix notation and reducing the size of symbols in the program
tree, we can reduce the memory requirements to just 5.6% of the memory con-
sumed by most traditional GP representations using dynamic memory alloca-
tion. In terms of computation this method is no more expensive than any other
representation for operations which otherwise require a traversal of the tree.

3.3 Memory Usage Requirements

By using the techniques described the memory requirements of the basic and
parallel algorithms was significantly reduced. Equation 1 shows the total memory
requirements for each node3.

mem = b + v + p + i (1)
where:

b ' 6kB program binary
v = |vars| × sizeof(float) input variables

p = |pop| × (2depthmax − 1)
× sizeof(tree node) + (2× sizeof(uint)) population

i = |mates| × (2depthmax − 1)
× sizeof(tree node) + (2× sizeof(uint)) mate list

For typical parameter sizes the memory requirements of the algorithm are
tenable even on very low-powered WSN devices. The memory requirements are
even more impressive when compared with parallel GP implementations that
make little or no attempt to restrict memory usage. See Table 1.

population typical parallel GP BDP percentage of
on mote memory usage4 memory usage typical

50 187kB 14.4kB 7.7%
100 296kB 20.4kB 6.8%
200 514kB 32.5kB 6.3%
500 1168kB 68.9kB 5.9%

4 for a standard parallel GP implementation with pro-
gram binary ∼80kB and using 9B per tree node

Table 1. Typical Memory Requirements

3 For the TinyOS architecture: sizeof(float) = 32 bits, sizeof(tree node) = 4 bits,
sizeof(uint) = 16 bits



3.4 Improving Training Efficiency

The major impediment to compute an evolutionary algorithm over large datasets
is the the amount of data required to be present in-memory while training. We
attempt to alleviate this problem by reducing the amount of training data neces-
sary to achieve converge. This involves reducing the training set to a minimal set
of variant data. The training set must be diverse enough to encompass the en-
tire search space, but also sparse enough to avoid over training on any particular
area of the search space.

In an attempt to minimize memory usage due to training data storage while
maintaining speed and scalability we examined a clustering approach to train-
ing data sampling. Test data was generated by choosing cluster centroids and
creating a random set of points within a certain distance of those centroids. The
number of points per cluster and the number of clusters are variable.

Figure 2 shows a visualization of the full data from one test run, consisting
of 500 training data points over four variables. In creating the three dimensional
image the fourth value and correct answer are ignored, however the images serve
to represent both the clustered nature of the training data and the significant
reduction in the number of points thanks to the clustering approach.

Fig. 2. Result of Clustering to Reduce Training Data

4 Performance Analysis

Both the BEA and BDP algorithms were run with a variety of equations, ranging
from simple 3 variable to large 10 variable symbolic regression problems. The
convergence properties of both algorithms were experimentally measured. The
number of motes in the network was varied as well as the population on each
mote.

It is clear that the broadcast distribution does not have a negative effect
on the ability of the algorithm to converge on a solution. The evolutionary
pressure is still sufficient, and the distributed algorithm significantly outperforms
a single BEA running with the same population size indicating that the effect
of broadcast distribution is positive.



Because generations is no longer a valid term when referring to a BDP we
instead refer to the count of genetic operations (mutation and crossover) either
on a single mote or all of the motes in the network.
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Fig. 3. Varying the Number of Motes in Network

Figure 3 shows that more genetic operations are performed before converging
on the solution when the number of motes in the network is increased. This
is intuitive; when there are more motes in the network, each is independently
computing, resulting in a greater number of genetic operations as a whole, before
a solution is found. This does not mean that the time required for the network
to converge increases, because as more motes are added, more of the genetic
operations are being done in parallel.
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Fig. 4. Varying the Population on Each Mote

The same effect is also observed with the population size is increased on each
mote. Figure 4 shows this behavior.

Figure 5 show the convergence properties of the BEA and BDP. The graphs
are an aggregate of the run results of several different problems. The BDP is
slower to improve fitness, but makes more steady progress towards an optimal
solution.
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Fig. 5. Convergence of the BEA and BDP Algorithms

Problem BEA BDP

P1 6692 8350
P2 7207 9208
P3 84942 18828
P4 130759 23649
P5 315275 43997
P6 DNF 45756
P7 DNF 99893
Table 2. Aggregate Genetic Operations Until Convergence Over Various Symbolic
Regression Problems

It is also worth noting that we observed the BDP algorithm with total pop-
ulation size p where each mote has a population of |M |/p to be less prone to
stagnation than a population of size p running the BEA algorithm. This is due
to the propensity of good solutions to distribute slowly throughout the network,
this mitigates factors that can occasionally over-emphasize highly fit solutions
in the BEA. The effect of this is shown in Table 2, the problems that could not
be solved by the BEA in a reasonable amount of time were due to over-emphasis
of highly fit but sub-optimal solutions.

5 Conclusions and Future Work

In this work we argue that broadcast-distributed parallel genetic programming
shows promise as a model for evolutionary computing on wireless sensor net-
works. We show empirically via simulations that it is possible to use the broad-
cast nature of communication between motes to improve the ability of single
motes to find a solution via exchange of genetic information across the network.
It is also possible to build GP implementations that are practicable on resource
constrained WSN motes.

Future work will attempt to determine how well BDP will allow motes to
evolve solutions that are ideal for their local conditions, and whether such motes
will benefit from the receipt of genetic information for neighboring motes that



likely share similar conditions. These experiments will also focus on obtaining
data from actual motes in real environments.
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