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Abstract. Genetic Programming has been slow at realizing other pro-
gramming paradigms than conventional, deterministic, sequential von-
Neumann type algorithms. In this contribution we discuss a new method
of execution of programs introduced recently: Algorithmic Chemistries.
Therein, register machine instructions are executed in a non–determinis-
tic order, following a probability distribution. Program behavior is thus
highly dependent on frequency of instructions and connectivity between
registers. Here we demonstrate the performance of GP on evolving solu-
tions to a parity problem in a system of this type.

1 Introduction

Representations in genetic programming encode functionality both explicitly by
choosing from a set of operations and implicitly by choosing a position within
the genome. While it is “easy” to inherit the explicitly encoded portion of func-
tionality, variable genome length leads to difficulties in inheritance of implicitly
encoded functionality.

In this contribution we present a different way of looking at transformations
from input to output that does not require a prescribed sequence of computa-
tional steps and therefore no implicitly coded functionality. Instead, the elements
of the transformation, which in our case are single instructions from a multiset
I = {I1, I2, I3, I2, I3, I1, . . .} are drawn in a random order to produce a trans-
formation result. In this way we dissolve the explicit sequential order usually
associated with an algorithm for our programs.

A program in this sense is thus not a sequence of instructions but rather an
assemblage of instructions that can be executed in arbitrary order. By randomly

� The authors gratefully acknowledge support from a grant of the Deutsche For-
schungsgemeinschaft DFG (German Research Foundation) to W.B. under Ba
1042/7–3.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 C.W.G. Lasarczyk and W. Banzhaf

choosing one instruction at a time, the program proceeds through its transfor-
mations until a predetermined number of instructions has been executed. It is
therfore more akin to a chemical system with data as educts and products, and
operations as reactions than to an ”orderly” execution of code.

Programs of this type can be seen as artificial chemistries, where instructions
interact with each other (by taking the transformation results from one instruc-
tion and feeding them into another). Different multisets can be considered dif-
ferent programs, whereas different passes through a multiset can be considered
different behavioral variants of a single program.

Because instructions are drawn randomly in the execution of the program,
it is really the concentration of instructions that matters most. It is thus ex-
pected that “programming” of such a system requires the proper concentration
of instructions, while an explicit sequencing is not required.

At first, this kind of repeated execution of instructions seems to be a waste of
computational power. While it is always possible to transform a snapshot1 of an
individual into a linear program, hardware centered improvements of execution
speed are imaginable, too. E.g., a huge number of processors could execute the
same multiset of instructions in parallel. In the extreme case of the number
of processors equal to the number of instructions running time is reduced to
a minimum predetermined by depth of data flow. Specialized multiprocessor
systems, such as the wavescalar–architecture[1, 2], hold potential to achieve this
speed up using less processors.

Due to the stochastic nature of results, it might be advisable to execute a
program multiple times before a conclusion is drawn about its ”real” output. In
this way, it is again the concentration of output results that matters. Therefore,
a number of n passes through the program should be taken before any reliable
conclusion about its result can be drawn. Reliability in this sense would be
in the eye of the beholder. Should results turn out to be not reliable enough,
simply increasing n would help to narrow down the uncertainty. Thus the method
is perfectly scalable, with more computational power thrown at the problem
achieving more accurate results.

We believe that, despite the admitted inefficiency of our approach in the
small, it might well beat sequential or synchronized computing at large, if we
imagine tens of thousands or millions of processors at work.

Algorithmic Chemistries were considered earlier in the work of Fontana [3]. In
our contribution we use the term as an umbrella term for those kinds of artificial
chemistries [4] that aim at algorithms. As opposed to terms like randomized or
probabilistic algorithms, in which a certain degree of stochasticity is introduced
explicitely, our algorithms have an implicit type of stochasticity. Executing the
sequence of instructions every time in a different order has the potential of
producing highly unpredictable results.

It will turn out, however, that even though the resulting computation is un-
predictable in principle, evolution will favor those multisets of instructions that

1 Ambiguousness starts, if different instructions share the same target.
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turn out to produce approximately correct results after execution. This feature of
approximating the wished-for results is a consequence of the evolutionary forces
of mutation, recombination and selection, and will have nothing to do with the
actual order in which instructions are being executed. Irrespective of how many
processors would work on the multiset, the results of the computation would
tend to fall into the same band of approximation. We submit, therefore, that
methods like this can be very useful in parallel and distributed environments.

Following previous work on Artificial Chemistries (see, for example [5, 6, 7, 8]),
[9] introduces a very general analogy between chemical reaction and algorithmic
computation, arguing that concentrations of results would be important. [10] was
the first step in this new direction. Here we want to deepen our understanding
of the resulting system by studying the GP task of even-parity.

2 Algorithmic Chemistry

On executing a sequence of instructions using linear GP[11], each point in exe-
cution time is assigned to exactly one instruction, which is executed at that very
moment. This principle is even the same, if instructions are stored in a tree like
data structure (e.g. Tree–GP[12]).

Applying Tree–GP, functional dependence of instructions is related to their
distance within the tree. Subtrees possess sub–functionality, an edge carries an
implicit specification for the subtree it connects to the tree. This specification has
to be satisfied during recombination. Using linear GP, functional dependence is
determined by both, distance within the genome and source and target registers
used by instructions. Therefore successful recombination has to consider both.

2.1 GP to AC — A Gradual Transition

Here we shall use 3–address machine instructions. The genotype of an individual
is a list of those instructions. Each instruction consists of an operation, a desti-
nation register, and two source registers2. Initially, individuals are produced by
randomly choosing instructions. As is usual, we employ a set of fitness cases in
order to evaluate (and subsequently select) individuals.

A time–dependent probability distribution determines the sequence of in-
structions. Linear GP uses a discrete distribution:

Pt(X = xi) =
{

1, if i = t
0, else , t, i ∈ 1, 2, . . . , n. (1)

Position in memory is denoted by xi, and the individual consists of n instruc-
tions. Starting at t = 1 exactly one instruction gets executed at each moment
in time, followed by the next instruction in memory until at t = n all instruc-
tions got executed in exactly the same order as they appear in memory. This
is shown on left side of Fig. 1. Thus, the location in memory space determines

2 Operations, which require only one source register, simply ignore the second register.
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Fig. 1. Execution of an individual. Transition from memory to execution order is
determined by a time dependent distribution function. Left side shows transition using
distribution function of Eq. 1, emulating linear GP. On right side transition occurs by
using a normal distribution. Different gray tones of distribution functions represent
different points in time

the particular sequence of instructions. Classically, this is realized by the pro-
gram counter. Each instruction is executed, with resulting data stored in its
destination register.

If we use a distribution to access instructions as described above, we come to
a new class of algorithms by changing this distribution. On the right side of Fig. 1
shows a different execution order result from using a Gaussian distribution. If the
standard deviation σ is increased the influence of time on instruction selection
decreases. In the extreme case σ → ∞ a uniform distribution results and all
instructions have the same probability to be drawn at any moment. This we call
an Algorithmic Chemistry.

Using a uniform distribution, behavior of a program during execution will
differ from instance to instance. There is no guarantee that an instruction is ex-
ecuted, nor is it guaranteed that this happens in a definite order or frequency. If,
however, an instruction is more frequent in the multi-set, then its execution will
be more probable. Similarly, if it should be advantageous to keep independence
between data paths, the corresponding registers should be different in such a
way that the instructions are not connecting to each other. Both features would
be expected to be subject to evolutionary forces.

As shown in Fig. 2, also 1–Point–Crossover could be described, using time
depended distributions. While the first part of an offspring is formed by instruc-
tions drawn from first parent during time interval 1 ≤ t ≤ c1(≤ n1), the second
part is drawn from second parent during time interval (1 ≤)c2 ≤ t ≤ n2.

Though the instructions inherited from each of the parents are located in
contiguous memory locations, the actual sequence of the execution is not de-
termined by that order once we use a distribution to access instructions. The
probability that a particular instruction is copied into an offspring again de-
pends on the frequency of that instruction in the parent. Inheritance therefore
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Fig. 2. Recombination accesses parents instruction via the same time dependent dis-
tribution function Pt(x) used at evaluation. While we take instruction from the first
parent during time span 1 ≤ t ≤ c1, we draw instruction from the second parent dur-
ing time span c2 ≤ t ≤ n2. In contrast to the depict situation Pt(x) is the same for
accessing both parents instructions

is inheritance of frequencies of instructions, rather than of particular sequences
of instructions.

Estimation of Distribution Algorithms (EDAs). Estimation of Distribu-
tion Algorithms[13] are a relatively new class of approaches to evolutionary com-
putation. These population based algorithms generate offsprings by two steps,
omitting crossover and mutation. At first, they estimate the probability distri-
bution of a selected subset of the current population, and subsequently they
sample a new population from this distribution. We can think of an Algorithmic
Chemistries as an implicit description of an instruction distribution by storing
a set of samples from this distribution. Recombination is similar to creating a
new common distribution based on two of the selected individuals and sampling
an offspring from it. While this kind of sampling is not able to create something
new, mutation is still needed.

2.2 Algorithmic Chemistry in Detail

Having derived execution, utilizing a 3–address–machine, and crossover of indi-
viduals on Algorithmic Chemistry for Genetic Programming(ACGP) from linear
GP, we explain further details in this section, including additional information
on crossover and evaluation.

Registers. We distinguish between three different kinds of registers:

– connection registers
– input registers
– registers containing constant values
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While instructions could read from all of them, and thus can use them as a
source register, they can just write to connection registers. Therefore these are
the only valid targets to store instruction results. Information flows among them
in the course of computation. The number of connection registers could be set
as an evolution parameter. Values in connection registers are set to zero at
the beginning of an evaluation. Each input register contains data of a single
fitness case at the beginning of execution, where the number of these registers is
determined by the problem tackled. The third type of registers contain constant
values evolved during evolution. The choice of a result register out of connection
registers is done by evolution.

More About Crossover and Evaluation. Parents are chosen randomly for
each offspring. Crossover rate assigns the proportion of offspring created by
recombination, the rest of offsprings is created by reproductive cloning. In both
cases mutation is applied afterwards. During crossover constant register values
will be copied with equal probability from each parent, as is done for the choice
of the result register if necessary.

The number of executed instructions on linear GP and Tree–GP is limited by
the number of instructions contained in an individual’s genome. As described in
Sec. 1 an instructions in an Algorithmic Chemistry can be executed successfully
– in fitness improving sense – if all required sources contain correct inputs.
Therefore, it could be reasonable to increase the upper limit on execution and
cycle (Pn+t = Pt) through individuals more than once. In the case of a constant
uniform distribution, as used by the Algorithmic Chemistry presented here, this
means that we could execute available instructions multiple times by drawing
them randomly. The number of cycles, is an additional evolution parameter.

Because evaluating an individual is a stochastic process, it could be useful
to evaluate individuals more than once and combine the results to get a single
fitness value. We will discuss this in detail later.

Initialization and Mutation. Initialization and mutation of an individual
are the same for both the ACGP and usual linear GP. Mutation changes sin-
gle instructions by changing operation, target register and the source registers
according to a prescribed probability. Register values are mutated by using a
Gaussian with mean at present value and standard deviation 1.

Selection. We use a (µ, λ)–strategy. In doing so a set of µ parents produce λ
offspring first. The λ best individuals of these offspring form the set of next
generation’s parents.

3 Results and Outlook

Since in [10] we already discussed an approximation and a real-world classifica-
tion problem, we now evolve a Boolean function using Genetic Programming of
Algorithmic Chemistries.
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3.1 Even–Parity Problem

Boolean problems are used as popular benchmark problems in GP. The even-
parity problem, widely discussed in [12], tries to generate the value of a bit, so
that with an input of three external bits, even parity is provided. The individuals
can use four logical operations {AND, OR, NAND, NOR}. The cost for random
search has been discussed in [14].

ACGP uses real–valued registers. For boolean operations, > 0 values will be
mapped to true, ≤ 0 values to false. The fitness function corresponds to the
fraction of fitness cases an individual could not generate even parity for. The
solution hoped for is to have a fitness of zero.

3.2 ACGP Settings

We do non claim, that we use optimized settings. Nevertheless we think it is
important to describe the amount of optimization done so far and describe our
settings.

To chose an appropriate setting we create a space filling latin hypercube
design with 50 runs on a reduced subspace of our parameter space. Roughly
speaking this means, that we divide each parameter into 50 evenly spaced levels3

and then choose 50 points in parameter space maximizing minimum distance
between points considering theses levels.

Table 1. ACGP settings and ranges of our space filling design

design range
parameter setting min max

offsprings 450 200 500
crossover rate 0.45 0.0 0.6
mutation rate 0.01 0.0 0.05
initial length 50 10 50
maximal length 150 300 500

cycles 3.5 1 5
connection register 40 30 60

parents 100
evaluations per ind. (m) 1,2,4,8,16 8
evolved constants 2

For each design point we start four runs, executing 1010 instructions each.
Influenced by those runs showing good average test performance we choose our
setting. Table 1 shows ranges of considered parameter subspace and finally se-
lected settings.

3 We even do so for integers and round afterwards.



8 C.W.G. Lasarczyk and W. Banzhaf

8 fitnesscases (m=1)

fitness

fr
eq

en
cy

0.0 0.4 0.8

0
15

00
32 fitnesscases (m=4)

fitness

fr
eq

en
cy

0.0 0.4 0.8

0
10

00

128 fitnesscases (m=16)

fitness

fr
eq

en
cy

0.0 0.4 0.8

0
40

0

Fig. 3. Fitness distribution of a single initial individual using different training set
sizes. These training sets are generated by multiplication of original set containing
8 fitness cases m times. As this is an individual of initial population mean value is
expected to be 0.5, standard deviations of noise are σm=1 = 0.163, σm=4 = 0.083 and
σm=16 = 0.041

3.3 Stochastic Noise

During the observation of the even–parity problem a difficulty has occurred,
that is unknown for other GP variants: Originating from the small training set
of only 8 fitness cases the stochastic noise gains in influence. Through the non–
deterministic order of execution of instructions, a multiple execution of a single
individual can lead to different results. Especially at the beginning of evolution,
while instructions of a chemistry are purely random, and different instructions
share the same target register.

To reduce this noise we initially use the concept of repeated evaluation. To
do this, we not only execute the algorithmic chemistry of the individual once
on the training set of 8 fitness cases, but m times. Accordingly, with m = 2
the fitness corresponds to the fraction of 16 fitness cases that did not generate
even parity, while there are still just 8 different fitness cases. As a side effect,
the resolution of the fitness calculation increases. Instead of 8 different values
for m = 1 resulting in a 0.125 margin distance, an m = 4 approach results in 32
values with a 0.03125 margin distance.

Figure 3 displays the histograms of the fitness values from 10000 analyses
of an individual of the initial population using differently sized sets as basis of
valuation. In addition to the higher resolution, reduced standard deviation can
be observed.

Each increase on size of training set reduces the number of generations for
an unchanged number of instructions allowed to be executed. In our system the
number of executed instructions serves as a measure of time, each run is allowed
to execute 1010 instructions.

Figure 4 reveals different fitness development for m ∈ {1, 2, 4, 8, 16}, averaged
over 100 runs. For evaluation during the training phase, a corresponding number
of fitness cases was used. A validation was performed in regular intervals, choos-
ing the best individual based on 128 fitness cases. For testing purposes, fitness
is compared to this larger number of fitness cases afterwards.
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(b) 16 fitnesscases (m=2)

instruction executions

fit
ne

ss

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

mean testing fitness
mean of best individual
mean average of population

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(c) 32 fitnesscases (m=4)
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(d) 64 fitnesscases (m=8)
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(e) 128 fitnesscases (m=16)
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Fig. 4. Using different training set sizes we show fitness of best individual, mean
population fitness and fitness on testing set of population’s best individual on validation
set averaged over 100 runs. The chart in bottom right corner is for direct comparison
of achieved testing set fitness
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Fig. 5. Circuit of a solution found using Algorithmic Chemistries

The smaller the size of training set, the better the best individual of a popu-
lation looks on average. Assuming, that the noise for all initial individuals equals
that of figure 3, it easily becomes obvious, that among 100 observed individuals
one might be chosen whose noise leads to a good fitness. This could prove prob-
lematic for evolution, because this selection is not founded and does not hold out
against further evaluation. Also, in the next generation, offspring of individuals
selected this way might underachieve. This leads to early stagnation among runs
with a small training set. For instance, if m = 1 (original training set size) most
runs do not improve much after initialization and good runs are a very rare event
(cf. Fig.4(a) and solid line in Fig.4(f)). Even worse, these runs can pass most
generation tests, because using the same individual m = 1 requires half as much
instruction executions – which are limited – as m = 2.

Things get better for m = 2, Fig.4(b). While evolutionary improvement take
place slowly, these Algorithmic Chemistries continue to evolve. Fitness of the
best individual, however, is on average inferior to the case m = 1, though more
realistic. This trend continues in Fig.4(c-e) with m ∈ 4, 8, 16. Here we can also
observe that testing fitness converges to the mean population fitness, which is
an indication that effective evolutionary progress is more strongly coupled with
population dynamics.

While Algorithmic Chemistries suffer from noise they introduced by non–
deterministic instruction execution, this problem can be handled by increasing
training set size: By duplicating fitness cases, as done here, noise can be reduced.
This reduction in noise, however, comes with an increase in computational power
demand. We expect noise reduction in Algorithmic Chemistries to be an impor-
tant topic for further investigations.

3.4 A Glance at a Solution

Because the data flow of this individual is “nearly unique”, it is easy to extract
the corresponding circuit, as shown in Fig.5. Here “nearly unique” means, that
there are for one connection register two different instructions using it as their
target. Because data flow in Algorithmic Chemistries via connection registers,
this flow can be symbolized on circuits though conductors. “Nearly unique” con-
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ductors are drawn using gray color. Missing uniqueness is caused by a functional
intron like this:

r27 = r27 AND true

The Boolean value true resides in a constant register, and it is obvious that
register r27 is not changed through execution. The evolved solution presented
here consists of two NXOR–gates. These gates test for equivalence and return
‘true’ if their inputs are equal.

3.5 Outlook

While using additional cases to evaluate an individual’s fitness is able to reduce
noise, enlarging a training set is computationally expensive. In fact, applying a
training set m times only reduces noise by

√
m. In the future, therefore, sequen-

tial sampling techniques [15] shall be used to compare the fitness of individuals.
This technique does not fix the number of fitness cases in advance, but ensures
a desired level of confidence by treating fitness cases one at a time.

In Sec.3.2 we used a very simple approach to choose settings for ACGP from
parameter space. In further work we plan to use methodologies described in
[16, 17] useful to analyze and optimize evolutionary algorithms and other search
heuristics. Beside an improved system performance we hope for further insights
in behavior of algorithmic chemistries.

In this study on our Algorithmic Chemistries for Genetic Programming we
considered only uniform distributions of instruction choice. However, other dis-
tributions are possible as well. A uniform distribution is, however, the most
extreme case, since it ignores order completely when drawing instructions from
an equal distribution. By using a normal distribution, we plan to investigate the
algorithmic space between linear GP and ACGP.

As mentioned before, there are already some similarities of EDAs and the
present approach. By mixing all selected Algorithmic Chemistries (creating a
common multi–set of instructions) and drawing new offspring from this “common
distribution” we can go one further step in the direction of EDAs.
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