
GP-based software quality prediction

Matthew Evett
Dept. Computer Science & Engineering

Florida Atlantic University
Boca Raton, Florida 33431

(561)297-3459; matt@cse.fau.edu

Taghi Khoshgoftar
Dept. Computer Science & Engineering

Florida Atlantic University
Boca Raton, Florida 33431

(561)297-3994; taghi@cse.fau.edu

Pei-der Chien
Dept. Computer Science & Engineering

Florida Atlantic University
Boca Raton, Florida 33431

chienp@cse.fau.edu

Edward Allen
Dept. Computer Science & Engineering

Florida Atlantic University
Boca Raton, Florida 33431

allene@cse.fau.edu

ABSTRACT

Software development managers use
software quality prediction methods to
determine to which modules expensive
reliability techniques should be applied.
In this paper we describe a genetic pro-
gramming (GP) based system for target-
ting software modules for reliability en-
hancement. The paper describes the GP
system, and provides a case study using
software quality data from two actual
industrial projects. The system is shown
to be robust enough for use in industrial
domains.

1 Introduction
Highly reliable software is becoming an essential ingredient
in many systems. Public safety and the fabric of modern life
depend on software-intensive systems. We can ill afford for
important systems to fail due to inadequate software reliabil-
ity.

Correcting software faults late in the development life cycle
(i.e., after deployment into the field) is often very expensive.
Consequently, software developers apply various techniques
to discover faults early in development(Hudepohlet al.1996).
These reliability improvement techniques include more rigor-
ous design and code reviews, automatic test case generation
to support more extensive testing, and strategic assignment of
key personnel. While these techniques do not guarantee that
all faults are discovered, they greatly decrease the probability
of a fault going undiscovered before release. When a fault
is discovered, it can be eliminated, and the repaired module
possibly resubmitted for further reliability review.

Unfortunately, reliability enhancement can be quite expen-
sive, so these techniques usually cannot be applied to all the

software modules comprising a project. Software develop-
ment managers must attempt to apply reliability improvement
techniques only where they seem likely to pay off, that is, to
those software modules that appear likely to suffer the most
problems. In this paper, we describe a genetic programming
(GP) based system for targeting software modules for relia-
bility enhancement.

One of the strongest criticisms of current GP research is
that too much of it focuses on toy domains, that GP is not used
on real-world problems. In this paper, we present industrial
case studies to illustrate our methodology. We apply our GP-
based system to software quality data from actual software
development projects in two different industrial domains. The
results demonstrate that our GP-based system does an excel-
lent job of software quality prediction, and would be a useful
tool for managers of large software projects.

Although genetic algorithms have been applied to software
testing and software quality modeling for several years, this
study is the first application of GP to software engineering
that we know of (an extensive survey of on-line evolutionary
computation and computer science bibliographies did not re-
veal any similar studies). Because this study only introduces
the application of GP to software engineering, we see many
opportunities for future research.

2 Software Quality Modeling
Our previous software quality modeling research has focused
on classification models to identifyfault-proneandnot fault-
prone modules(Khoshgoftaaret al. 1996a, Khoshgoftaaret
al. 1996b). A software development manager could use such
models to target those software modules that were classified
as fault-prone for reliability improvement techniques.

However, such models require thatfault-pronebe defined
before modeling, usually via a threshold on the number of
faults expected, and software development managers often do
not know an appropriate threshold at the time of modeling. If
the threshold is set too high, no modules may be classified as

fault-prone, even though in any large project some modules
are bound benefit from reliability improvement. If, on the
other hand, the threshold is set too low, more modules may be
classified as fault-prone than resource limitations (manpower,
deadlines) will permit for reliability improvement.

In such cases, a prediction of the rank-order of modules,
from the least to the most fault-prone, is more useful(Ohlsson
and Alberg 1996). With a predicted rank-order in hand,
the manager can select, for reliability enhancement, as many
modules from the top of the list as resources allow.

Our goal is to develop models that predict the relative qual-
ity of each module, characterized as the module’s relative
ranking among other modules in terms of the number of faults
it is likely to produce. We used GP to create models that pre-
dict the number of faults expected in each module, but we use
these predictions only to rank the modules. Our evaluation of
the quality of the generated models is based on ordinal crite-
ria, rather than the amount of error in the predicted number of
faults.

Most quality factors, including faultiness, are directly mea-
surable only after software has been deployed. Fortunately,
prior research has shown that software product and process
metrics(Fenton and Pfleeger 1997) collected early in the soft-
ware development life cycle can be the basis for reliability
predictions. These metrics are quantities such as the number
of lines of code, the degree of reuse, the number of faults in
previous releases, etc. See Section 3.1 for a detailed list of the
metrics used in this paper’s case studies. Our GP system uses
these metrics as the basis for the models it generates.

Our case studies of the models generated by our GP system
are based on actual industrial software development projects.
Our case study data consisted of the software metrics for each
module in these projects, as well as the number of faults de-
tected in the modules after deployment. The exact methodol-
ogy used by our GP system to create models on the basis of
this data, and our evaluation methodology is explained below.

2.1 Methodology for Evaluating the GP Sys-
tem

An observationis a software module represented by a tuple
of software measurements,xj . The dependent variable of
a model is the number of faults,F (j), for each observation
j. The s-expressions resulting from our GP system are the
models. Let bFi(xj) be the estimate ofF (j) by modeli. We
develop software quality models based on data from a com-
pleted past project where measurements and the number of
faults are available for each module, using this methodology:

1. Impartially split the available data intotraining andval-
idationdata sets.

2. Run the GP system multiple times. For each run:

(a) The GP system has access only to thetrainingdata.
The best-of-run is the model returned as the result
of the run. The details of the GP process are de-
scribed in Section 2.3.

(b) Use each best-of-run model to predict the number
of faults in thevalidationmodules, and order them
accordingly.

(c) Evaluate each best-of-run model using ordinal cri-
teria (based on the dependent variable, the actual
number of faults observed after deployment,) de-
tailed in Section 2.2.

3. Summarize the model evaluations over the runs for each
past project.

Part of our model evaluation (Step 2c) includes a compari-
son of the ordering obtained by each model to a random order-
ing, and to the ordering obtained by using the actual observed
faults. The first comparison indicates whether a GP result is
really different from a random ordering result. (A random or-
dering emulates a development strategy that randomly selects
modules for reliability enhancement treatment, a not uncom-
mon strategy in some development environments. The second
comparison (i.e., to the actual ordering) indicates how near
the model is to a perfect model.

2.2 Ordinal Evaluation
Each individual of our GP populations (including the best-of-
runs) is a model that predicts the number of faults for any soft-
ware module, given a set of software product measurements
for that module. We do not expect a model’s prediction of the
number of faults of each module to be perfect. In Step 2b of
our modeling methodology, we evaluate a model’s usefulness
by its ability to approximately order modules from the most
fault-prone to the least fault-prone.

According to Pareto’s Law applied to software engineer-
ing, 20% of the modules will typically account for about 80%
of the faults. These proportions were true for our case study,
where more than 70% of the modules had zero or only one
fault. The purpose of the model should be to identify the top
20% of the fault-prone modules. Moreover, resources may be
limited for reliability enhancement treatments. Thus, in this
study, a manager will probably be interested in reviewing less
than 25% of the modules. In this context, letC be manage-
ment’s preferred set of cutoff percentiles of modules ranked
by faults, and letnc be the number of percentiles inC. In
these terms, Pareto’s Law implies that the modules above the
80th percentile (i.e., the top 20% of the modules) have 80% of
the faults. In the case study, we chose 90, 85, 80, and 75 per-
centiles. Another project might choose different percentiles,
but this set illustrates our methodology.

LetGtot be the total number of actual faults in the validation
data set’s software modules. Our ordinal evaluation procedure
(used in Step 2c for each model) is: Given an individual,i,
and a validation data set indexed byj:

1. Determine the perfect ranking of modules,R, by order-
ing modules according toF (j). Let R(j) be the per-
centile rank of observationj.

2. Construct a random ranking of the modules,R
0. Let

R0(j) be the percentile rank of observationj.

3. Determine the predicted ranking,bRi, by ordering mod-
ules according tobFi(xj). Let bRi(j) be the percentile
rank of observationj.

4. For each cutoff percentile value of interest,c 2 C:

(a) Calculate the sum of actual faults,Gc, in modules
above the cutoff forR.

Gc =
X

j:R(j)�c

F (j) (1)

(b) Calculate the sum of actual faults,G0
c, in modules

above the cutoff forR0.

G0
c =

X
j:R0(j)�c

F (j) (2)

(c) Calculate the sum of actual faults in modules above
the cutoff, bGc(i), for bRi.

bGc(i) =
X

j:bRi(j)�c

F (j) (3)

5. Calculate the percentage of total faults accounted for
by each ranking, namely,Gc=Gtot, G0

c=Gtot, andbGc(i)=Gtot. Note that the first of these ratios provides in-
sight into the importance of each percentile level. Com-
parisons of the other ratios to the first indicate how ac-
curately the other rankings reflect this importance.

6. Calculate how closely the faults accounted for by the
random and model rankings match those of the perfect
ranking as ratios,G0

c=Gc and bGc(i)=Gc. Let

�c(i) =
bGc(i)

Gc

(4)

The percentage of the actual faults,�c(i), for a percentile
level c, is our primary measure of the accuracy of each
ranking.

2.3 Details of GP System
Function and terminal sets The function set consists of

F = f+;�;�; =; sin; cos; exp0; logg (5)

whereexp0(x) = exp(
p
x), to lessen the risk of arithmetic

overflow. Divide (=), exponentiation (exp0), and natural log-
arithm (log) are modified to protected against invalid inputs.
The terminal set,T , consists of the available software product
metric variables (the independent variables of the data sets)
and the ephemeral random constant generator function,<,
taken from Koza(Koza 1992).

Initial population. We use the ramped half-and-half
method (50% of individuals are created as full trees, and 50%
are created using thegrow method). Thepopulation sizeis
constant atM = 2; 000 individuals. The maximum depth of
initial s-expression trees was 6, while the minimum was 3.
(The depth limit for subsequent generations was 17 levels.)

Fitness function. In some GP systems, the fitness of an in-
dividual can be influenced by that of its ancestors, but here it
is not. Thus, we omit the generation of an individual from our
notation, below.

Raw fitnessof individual i is defined as a logarith-
mic/exponential function of the absolute errors in predictions
of faults.

fraw(i) = log

0
@X

j2O

exp j(bFi(xj)� F (j))j
1
A (6)

wherej is an index over all observations,O, in the training
data set. This functional form is a starting point for further
research. Because our goal is to minimize error, we letstan-
dardized fitnesssimply be equal to raw fitness

fstd(i) = fraw(i) (7)

We use adjusted fitness,fadj, as the fitness function in our
GP system, using the usual definition:

fadj(i) =
1

1 + fstd(i)
(8)

Run termination criterion. A run is terminated if an indi-
vidual i with fadj(i) = 1 is encountered, a “perfect” solution
to the problem, or when the maximum number of generations
is reached. The maximum number of generations is50.

Selection and population redefinition. The probability of
cross-over ispc = 0:90. The probability of reproduction is
pr = 0:09. The probability of mutation ispm = 0:01. (All
typical values for GP systems (Koza 1992).)

Reproduction. The system uses a straightfitness-
proportionatemethod to select candidates for reproduction
(i.e., no elitism).

Cross-over. The tournamentselection method is used to
choose each parent for cross-over. The tournament size is
nt = 7 individuals(Koza 1994). One cross-over node in each
parent’s s-expression is independently chosen using a uniform
probability distribution. If cross-over creates an offspring that
violates the maximum depth of tree parameter, the result is
discarded and new cross-over points are chosen until a pair of
valid offspring are produced.

Mutation. A straightfitness-proportionatemethod is used
to select candidates for mutation. A mutation point is ran-
domly chosen. When mutation produces a tree that violates
the maximum depth of tree parameter, the result is discarded
and the mutation process is repeated with the same parent un-
til a valid offspring is produced.

Table 1 The Tableau used in the case studies.

Terminal set: Software product metrics avail-
able from each data set and<,
varying over the range [0,1].

Function set: f+;�;�; =; sin; cos; exp0; logg
Initialization: Ramped half-and-half.
Fitness cases: 188 (CCCS) and 117 (LTS) mod-

ule observations, each a tuple of
numeric software metrics.

Raw fitness: Log of sum of errors in the pre-
dicted number of faults (see 6).

Std. fitness: same as raw fitness.
Wrapper: Ranks fitness cases on basis of

predicted number of faults.
Parameters: M = 2000,G = 50.
Success Pred.: Ranking of modules obtained by

best-of-generation exactly equals
that based on actual faults.

ADFs?: No

Result designation. We used a technique called “canary
functions” to limit the effect of overfitting. We detail canary
functions and their efficacy elsewhere(Evettet al.1998).

The canary function should be distinct from the fitness
function, but also related toward meeting the same overall
goal as the fitness function—in this case, generating a ranking
of the modules that maximizes the ordinal evaluation criteria
(Section 2.2). For the case studies in this paper, our canary
function,C, was defined on an individuali as:

C(i) = avg
c2C

�c(i) (9)

where�c is as defined in 4, but evaluated over the training
data set, andC is the set of cutoff percentiles of interest. The
averaging over the cutoff percentiles provides equal emphasis
to each cutoff. The hope is that because the canary function
differs from the fitness function, its value will begin to de-
grade significantly from the fitness function at about the time
overfitting occurs. Our experiments (Evett et al. 1998) have
supported this hypothesis.

At the end of each generation, the canary function is eval-
uated on the best-of-generation individual. The result of each
run is the best-of-generation individual that obtained the high-
est value for the canary function. In other words, the result of
each run is the best-of-generation individual with the best per-
centage of actual faults, averaged over the percentile levels of
interest. We call this the result individual,ir. The tableau for
the GP system is given in Table 1.

3 Case Study
Our case study consisted of evaluating the GP system on data
sets from two industrial software projects.

Table 2 Software Product Metrics

Symbol Description
�1 Number of unique operators
N1 Total number of operators
�2 Number of unique operands
N2 Total number of operands
V (G) McCabe’s cyclomatic complexity
V2(G) Extended cyclomatic complexity

V2(G) = V (G) + number of logical operators
LOC Lines of code
ELOC Executable lines of code

3.1 Command, Control and Communications
System

The Command, Control and Communications System,CCCS,
is a large military data communications system written in
Ada. Generally, each module is an Ada package, consisting of
one or more procedures. The developers had collected soft-
ware product metrics from the source code of each module.
The value of these metrics comprised the independent vari-
able components of each observation tuple. Table 2 lists the
software metrics used in theCCCScase study.

Note that the metrics collected forCCCSdo not constitute
a canonical set of software metrics—there is no such thing.
Software development managers and institutions collect those
metrics they feel are important. for their own domains. One
of the goals of our system is to provide a methodology that
can adapt to a variety of projects, and the product metrics
associated with them. This study is an extension of our earlier
work (Khoshgoftaar et al. 1998).

We randomly selected 282 modules for our experiment.
Applying data splitting, we impartially partitioned this data
into two subsets, two thirds of the modules (188) for train-
ing the GP system (the training data), and the remaining third
(94 modules) for validating the predictive accuracy of the best
model from each run (the test data). The top 20% of the mod-
ules contained 82.2% of the faults.

3.2 Empirical Results, CCCS
We completed 30 runs of the GP system, using all the obser-
vations in theCCCStraining data set as the fitness cases. The
Lil-gp system, by Zongker et al, formed the kernel of our GP
system. The set of software quality models consisted of the
result individual,ir, from each run.

We used each software quality model,i, to predict the num-
ber of faults,bFi(xj), for each module,j, in the validation data
set, and then we ordered the modules by these predicted num-
bers, forming a ranking,bRi.

We evaluated the rankings at cutoff percentile values of
75%, 80%, 85%, and 90%. If a result individual,i, did not
obtain a minimally satisfactory percentage of actual faults,
C(i) � C0, over the training data set, then it was not in-
cluded in the analysis below. (Recall thatC is based on�c.)

Table 3 Statistical Summary for CCCS:

Rank� %-ile �c(ir)
c Median Mean Std Dev

90 82.89% 79.42% 8.18%
85 85.08% 84.82% 9.65%
80 86.87% 84.75% 9.27%
75 87.32% 85.74% 5.72%

Table 4 CCCS.

Rank� %-ile Ranking
c Actual,R Random,R0 Model, bRi

Faults,G�

Gc G0
c

bGc

90 152 23 120.6
85 181 37 153.52
80 198 47 167.81
75 213 60 182.63

% of Faults,G�=Gtot

90 63.07% 9.65% 50.07%
85 75.10% 15.43% 63.70%
80 82.16% 19.63% 69.63%
75 88.38% 25.01% 75.78%

% of Actual,G�=Gc

90 100% 15.30% 79.42%
85 100% 20.54% 84.82%
80 100% 23.89% 84.75%
75 100% 28.29% 85.74%

The threshold wasC0 = 0:70, which is somewhat less than
the accuracy implied by Pareto’s Law. The use of the thresh-
old weeded out runs that somehow got stuck in poor local
minima in the search space. We made 30 runs of the GP sys-
tem, of which 5 were unsatisfactory over the training data set.
The evaluation below is based on the 25 satisfactory models
applied to the validation data set.

Table 3 is a statistical summary over the 25 satisfactory
models of the proportion of actual faults�c(i) at each per-
centile level,c, calculated over the validation data set.

Table 4 shows more detailed evaluation results averaged
over the 25 models. (For the table,Gtot = 241.) For compar-
ison, the table includes evaluation results derived from ran-
dom models and a perfect model (corresponding to ranking
R.) For the random model, we averaged the results of 25 ran-
dom rankings of the observations in the validation data set to
form the ranking,R0.

The first section of Table 4 shows the average sum of faults,
“G�, for each range of percentiles of fault-prone modules.
For example, the top 10% of the modules (ranked by actual
faults) account for 152 of the total number of faults in all mod-
ules,Gtot. Whereas the top 10% of random ranking accounts
for only 23 of the faults, on average, the satisfactory models

accounted for 120.6 faults. The second section of the table
shows the same data as in the first section, but as a propor-
tion ofG�=Gtot. In each of the percentile ranges studied, the
models yield rankings much closer to the actual proportion of
faults than a random selection ordering. Thus, we conclude
that the models are much better than a random sampling strat-
egy. The third section of the table again shows the same data
as the first, but as a proportion,G�=Gc, of the number of
actual faults within each percentile (based on the actual rank-
ing). This is the “average percent of actuals”, also known
as�c(i), calculated for each ranking mode. For example, on
average, the top 10% of the modules in a random ranking ac-
count for only 15.30% (i.e.23=52) as many faults as are in
the top 10% when ranked by the actual number of faults. On
the other hand, the average GP-derived model accounts for
79.42% of the actual number. The average percent of actu-
als was almost 85% of a perfect model (the leftmost column)
for the 75, 80, and 85 percentiles, and almost 80% for the 90
percentile. This indicated how closely the averaged sum of
predictions for a range of percentiles approaches perfection.
The results indicate that this system would be a useful tool for
software quality management.

3.3 Legacy Telecommunication System
The second element of our case study was a large legacy
telecommunications system,LTS, written by professional pro-
grammers in a large organization. This embedded computer
application included numerous finite state machines and inter-
faces to other kinds of equipment. It was written in a propri-
etary procedural high level language similar to Pascal. The
entire system had over50; 000 procedures; the portion we
studied had over38; 000 procedures in 171 modules.

TheLTS data consisted of 19 product metrics for the mod-
ules. Prior research (Khoshgoftaar et al. 1996a) with this data
set has shown that many of these metrics have little or no re-
lation to faultiness. We used principal component analysis (a
statistical method) to transform the product metrics data into
five new domain metrics. The value of the five domain met-
rics and two process metrics that typically correlate strongly
with faultiness (development code churn, DEVNC and de-
bug code churn, FIXNC) comprised the independent variable
components of each observation tuple.

We used all 171 modules in our experiments. As with the
CCCSdata set, we applied data splitting, impartially partition-
ing the observations into two subsets: two thirds of the mod-
ules (114) as training data, and the other third (57) as testing.
The top 20% of the modules contained 81.7% of the faults.

3.4 Empirical Results, LTS
We completed 30 runs of the GP system, using all the training
observations of the LTS data as the fitness cases. We gen-
erated the same types of rankings (R,R0 and bR as with the
CCCS data using the software quality models resulting from
the runs. We used the same criteria to exclude “unsatisfac-
tory models” from the statistical analysis. Of the 30 models,
6 did not achieve the threshold ofC0 = 0:70, and so were

Table 5 Statistical Summary: 24 satisfactoryLTS runs.

Rank� %-ile �c(ir)
c Median Mean Std Dev

90 92.56% 86.58% 13.85%
85 94.20% 87.67% 14.22%
80 93.41% 87.66% 12.12%
75 91.72% 87.86% 10.95%

Table 6 Model results averaged over the 24 satisfactory
LTS runs. Gtot = 56714.

Rank� %-ile Ranking
c Actual,R Random,R0 Model, bRi

Faults,G�

Gc G0
c

bGc

90 36254 5988 31389
85 41834 8511 36676
80 46335 11300 40617
75 49003 14038 43054

% of Faults,G�=Gtot

90 63.93% 10.56% 55.35%
85 73.77% 15.01% 64.67%
80 81.70% 19.93% 71.62%
75 86.41% 24.75% 75.92%

% of Actual,G�=Gc

90 100% 16.52% 86.58%
85 100% 20.35% 87.67%
80 100% 24.39% 87.66%
75 100% 28.65% 87.86%

excluded.
Table 5 is analogous to Table 3, showing the proportion of

actual faults�c(i) at each percentile level,c, calculated over
the LTS validation data set. While Table 6 is analogous to
Table 4 and shows a comparison of the value of the rankings
obtained by the models against random and perfect rankings.

The results indicate that this system would be a useful tool
for software quality management.

4 Conclusions
This study is the first that we know of to apply genetic pro-
gramming to software quality modeling. In particular, GP can
be used to generate software quality models whose inputs are
software metrics collected earlier in development, and whose
output is a prediction of the number of faults that will be dis-
covered later in development or during operations.

We established ordinal evaluation criteria, rather than the
amount of error, for the models produced by the GP sys-
tem. This is especially appropriate for targeting reliability
enhancement activities to the most fault-prone modules.

We conducted industrial case studies of software from a

military communications system and a legacy telecommuni-
cation system. The GP system used a conventional terminal
set, function set, and fitness function(Koza 1994). The per-
formance of the GP-derived models, on actual industrial data,
indicated that this system could be a valid software quality
management tool.

Acknowledgements
This work was supported in part by a grant from Nortel. The
findings and opinions in this study belong solely to the au-
thors, and are not necessarily those of the sponsor.

References
Evett, M.P., T.M. Khoshgoftaar, P.D. Chien and E.B. Allen

(1998). Addressing overfitting in genetic programming
with canary functions. Technical Report TR-CSE-98-6.
Florida Atlantic Univ.. Boca Raton, FL.

Fenton, Norman E. and Shari Lawrence Pfleeger (1997). Soft-
ware Metrics: A Rigorous and Practical Approach. 2d
ed.. PWS Publishing. London.

Hudepohl, John P., Stephen J. Aud, Taghi M. Khoshgoftaar,
Edward B. Allen and Jean Mayrand (1996). EMERALD:
Software metrics and models on the desktop. IEEE Soft-
ware13(5), 56–60.

Khoshgoftaar, T. M., E. B. Allen, N. Goel, A. Nandi and
J. McMullan (1996a). Detection of software modules
with high debug code churn in a very large legacy
system. In: Proceedings of the Seventh International
Symposium on Software Reliability Engineering. IEEE
Computer Society. White Plains, NY. pp. 364–371.

Khoshgoftaar, Taghi M., Edward B. Allen, Kalai S.
Kalaichelvan and Nishith Goel (1996b). Early quality
prediction: A case study in telecommunications. IEEE
Software13(1), 65–71.

Khoshgoftaar, Taghi M., Matthew P. Evett, Edward B.
Allen and Pei-Der Chien (1998). An application of ge-
netic programming to software quality prediction. In:
Computational Intelligence and Software Engineering
(Witold Pedrycz and Jim F. Peters, Eds.). World Sci-
entific. Singapore. Forthcoming.

Koza, J. (1992). Genetic programming: on the programming
of computers by means of natural selection. MIT Press.

Koza, J. (1994). Genetic programming II: Automatic Discov-
ery of Reusable Subprograms. MIT Press. Cambridge,
MA.

Ohlsson, Niclas and Hans Alberg (1996). Predicting fault-
prone software modules in telephone switches. IEEE
Transactions on Software Engineering22(12), 886–894.

