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Introduction
The discrete Fourier transform (DFT) and its fast algorithms
(fast Fourier transforms or FFTs) are among the most impor-
tant computational building blocks in signal processing and
scientific computing. Consequently, there is a number of high
performance DFT libraries available including Intel’s Inte-
grated Performance Primitives (IPP), FFTW [6], and libraries
generated by Spiral [9, 10]. When optimizing a DFT library,
all the latest performance-enhancing processor features have
to be used.

Since the introduction of Intel’s SSE and AltiVec/VMX
on PowerPCs, DFT libraries have to be tuned for single in-
struction multiple data (SIMD) vector instructions. These in-
structions pack multiple smaller data words (for instance, four
32-bit floating-point numbers) into wide registers (in our ex-
ample 128-bit wide). While these instructions provide the
potential for tremendous speed-up, using them is challeng-
ing: vector instructions impose many restrictions and must be
carefully selected to provide actual speed-up. Unavoidable
overhead due to data alignment and reorganization often di-
minishes the performance gains and sometimes make vector
code uncompetitive.

Intel recently released the definition of two new vector in-
struction sets:

• Advanced Vector Extension (AVX) [1], the succes-
sor of SSE, defines 256-bit registers that can be used
as 8-way single-precision vectors and 4-way double-
precision vectors, and defines fused multiply-add (FMA)
instructions. It is announced for the Sandy Bridge pro-
cessor family (2010 timeframe).

• Intel’s Larrabee graphics processor is based on the
Larrabee native instruction (LRBni) [7, 8] set that de-
fines 512-bit vectors usable as 16-way single-precision
or 8-way double-precision vectors. LRBni also defines
FMA instructions.

These two new vector instruction sets require a complete
redesign of performance libraries, including DFT libraries.
The long vector lengths (8 and 16) pose a particular challenge
in FFTs, due to their intrinsically complicated data access pat-
terns. The additional FMA instructions (introduced for the
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first time in the Intel architecture) further complicate matters.
The instructions defined by AVX and LRBni are complicated
and heavily parameterized, making them powerful, yet hard
to use. The challenge posed to library developers by these
new instruction sets is compounded by the fact that actual
hardware implementing the instruction sets is not yet avail-
able. This makes performance optimization very difficult.

Related work. Intel’s IPP and MKL, Mercury’s SAL, and
IBM’s ESSL are (assembly level) hand-optimized libraries
that provide highly optimized FFT implementations for the
respective target processors. These libraries support SSE and
AltiVec/VMX, respectively. FFTW [6] provides an adaptive
FFT library that supports SSE, 3DNow!, and AltiVec. Vec-
torizing Compilers like Intel’s C++ compiler and the Gnu C
compiler provide automatic vectorization [3], which typically
fails on FFT code.

SIMD Vectorization in Spiral
In this section we give an overview of how we extended the
Spiral library generator to support AVX and LRBni, and how
we optimized for these instruction sets at the pre-silicon stage.

Spiral. Spiral automates the generation of high-perfor-
mance software libraries for the domain of linear transforms
including the DFT. It generates software that takes advan-
tage of different forms of parallelism, while at the same time
matching the performance of hand-written code. Spiral relies
on two fundamental building blocks 1) A domain-specific,
declarative, mathematical language to describe algorithms;
and 2) the use of rewriting to parallelize and optimize algo-
rithms at a high level of abstraction.

Symbolic vectorization. Spiral applies rewriting to auto-
matically vectorize FFT algorithms symbolically. This en-
ables algorithm transformations that are beyond the reach of
compilers, and are challenging for human programmers. A
overview on Spiral’s SIMD vectorization can be found in [4].

The basic idea is that Spiral performs algorithm-level op-
timizations to extract maximally vectorizable blocks while
only using a small number of vector shuffle blocks. An ex-
ample result is the short vector Cooley-Tukey FFT [4] that
is parameterized by the vector length ν. It shows that for all
sizes N with ν2/4 | N , the DFT can be implemented us-
ing only vector additions, subtractions, and, multiplications,
and a small set of data reorderings described by the following
permutations:
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Figure 1: Performance results on a 2.66 GHz Core2 Duo (single core).
Higher is better.

each of which is done using in-register permutations. Above,
Lmn

m can be viewed as a transposition of an m× n matrix.
Extending Spiral to AVX and LRBni. The major effort

in extending Spiral to support AVX and LRBni was to find
efficient implementations of these permutations. We had to
extend the approach we used for SSE [5], since AVX and
Larrabee instructions have a much larger parameter space and
are much more complex. To find the required short instruc-
tion sequences we were running extensive searches.

In addition to finding good permutation implementations,
we needed to build an AVX emulator from the instruction
specification since no emulation library was available at the
time of this work. We targeted the Larrabee Prototype Prim-
itives [7] with Spiral to emulate LRBni instructions. We also
extended the vector FMA support in Spiral that was devel-
oped for the Cell BE [2].

Experimental Results
We now evaluate the performance improvement achievable
with AVX and LRBni. We used Spiral to generate highly opti-
mized SSE implementations for DFTs of size 64, . . . , 32, 768.
We compare these implementations to Intel’s IPP and FFTW
to establish the quality of our base line. Then we evaluate the
operations count reduction by using the 8-way AVX instruc-
tions and the 16-way LRBni instructions instead of the 4-way
SSE instructions. Since actual hardware is not yet available
we instruct Spiral to minimize the instruction count, and use
the instruction count reduction as performance metric.

Fig. 1 compares the performance of Spiral-generated SSE
implementations to Intel’s IPP 6.0.2 and FFTW 3.2.1 on a
2.66 GHz Core2 (65nm), using the Intel C++ compiler 10.1
on Windows XP 64-bit. Spiral-generated FFT functions are
within 10% of the respective IPP functions and somewhat
faster than FFTW 3.2.1.

Fig. 2 shows the reduction in operations by using various
vector instruction sets. We only count arithmetic vector oper-
ations and vector shuffle operations, but no memory and in-
dexing operations to not require a target compiler. The reduc-
tion gets larger for larger transform sizes since the overhead
from shuffle operations is linear in the transform size, and
the arithmetic operations count is roughly cut linearly by the
vector length. 4-way SSE provides between 2.5x and 3.3x re-

Figure 2: Instruction count reduction of Spiral-generated FFT functions for
SSE, AVX, and LRBni over x87. Higher is better.

duction over x87. 8-way AVX provides between 6x and 7.75x
reduction. 16-way LRBni provides between 10x and 15.75x
reduction. This shows that substantial operations count re-
duction for FFT implementations is possible by using AVX
and LRBni.

Conclusion
In this paper we extended the program generator Spiral to
generate optimized vector code for the Larrabee and AVX in-
struction set. We verify the generated code using software
emulation of the new instructions. Spiral’s feedback loop
optimizing the generated code minimizes instruction counts
since actual runtime is not yet available. We show that a sub-
stantial reduction in operations count is achievable for FFT
functions by using the new instruction sets.
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