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Abstract 

Truss optimisation in the field of Structural Engineering is an ever growing subject. The field 

can be divided into two main disciplines – continuum and discrete topology optimisation. 

Continuum topology optimisation methods represent the current state of the art in engineering 

design optimisation. However, in large scale civil and structural engineering projects it is 

currently prohibitively expensive and difficult to manufacture solid structures fully optimised 

using these techniques due to the current limits of both computational power and manufacturing 

capabilities. At present, discrete beam structure optimisation methods remain more appropriate 

for larger scale designs, as they allow regular elements and construction methods to be used. 

This leads to savings in cost and weight over traditional construction methods.  

Existing discrete truss optimisation methods focus primarily on optimising global topology 

using a ground structure approach, with all possible node and beam locations being specified 

a priori and the algorithm selecting the most appropriate configuration from the given options. 

The standard method is to explore this search space, while seeking minimum cross-sectional 

areas for all elements in order to reduce the self-weight of the structure. In doing so, critical 

knowledge of section geometry and orientation is omitted. This leads to inaccurate stress 

calculations and structures failing to meet codes of practice. These issues can be addressed by 

constraining the optimisation method to only use standard construction elements. It is shown 

in this thesis that solutions close to the theoretical optimum can be achieved using 

commercially available elements.  

The classical ground structure discrete optimisation method has furthermore been shown to be 

inherently restrictive, as it severely limits the representation space to what is explicitly defined; 

a larger representation space can more effectively navigate through the search space. However, 

a larger representation space can potentially lead to difficulties in evolving any fit solution. 

Unfit individuals must be handled carefully in order to successfully evolve any fit solution in 

early generations. It is therefore imperative to design the fitness function in such a way as to 

minimise the risk of the algorithm becoming stuck in a local optimum, before a single fit 

solution has been evolved. 

The application of Grammatical Evolution (GE), a grammar-based form of Genetic 

Programming (GP), has shown that it is not only capable of generating innovative engineering 

designs, but that the recursive properties of formal grammars allows GE to define its own node 

locations for any number of nodes within a pre-specified design envelope, thereby vastly 
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increasing its representation capabilities. Nodes are then connected via a Delaunay 

triangulation algorithm, leading to fully triangulated, kinematically stable structures. The net 

result is that discrete beam-truss structures can be optimised in a continuum manner – in a 

“black-box” fashion, without the need to know any information about the problem other than 

the design envelope. Existing discrete optimisation techniques are compared and contrasted, 

and notable savings in structure self-weight are demonstrated over traditional methods.  
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Chapter 1. Introduction 

 

Automated problem solving is one of the most important aspects of modern computing. 

Human-competitive solutions to given problems with specific constraints and boundaries can 

be generated by computers [1]. Two prominent avenues of problem solving in computing are 

gradient-based (deterministic) and non-gradient based (heuristic) methods [2]. Deterministic 

methods are based on the principle that the correct solution can be directly calculated using 

specific formulae and equations. This method works for mathematically well-defined 

problems, whereby the globally optimal solution can be definitively computed in a finite short 

time. Each time the problem is calculated, the exact same solution will be generated. Heuristic 

methods on the other hand, do not directly compute the absolute correct solution, but balance 

the outright accuracy of deterministic methods with computational speed, by determining an 

acceptably accurate solution (though not necessarily the true optimum), in a comparatively 

short period of time [2]. Heuristic methods are applied either where the size or difficulty of 

the problem is such that deterministic methods are non-viable or where there is no known 

deterministic way of directly calculating the correct solution (i.e. ill-defined problems). 

Population-based evolutionary search algorithms are among the most popular heuristic 

techniques [3]. As their name suggests, they employ populations of potential solutions to solve 

a particular problem. These populations are varied over time in such a way that the best 

solution in each population generation will tend towards an acceptable level of optimality. Due 

to the probabilistic nature of heuristic methods, it is generally difficult for them to find the true 

global optimum. As such, a different (but similarly acceptably well performing) solution may 

be provided each time the algorithm is run. While most mathematical optimisation problems 

can be solved in a deterministic manner, design is an open-ended problem, leading to the 
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popularity of heuristic algorithms in design applications. At the very least, general engineering 

design can be seen as a difficult deterministic problem with many global optimums. 

Heuristic algorithms may not be able to completely describe all possible solutions for a 

problem; if one were capable of doing so it would become a deterministic algorithm [2]. 

Therefore, the heuristic algorithm will only be capable of generating (and consequently 

searching through) a small subset of the total number of possible solutions to a problem. This 

subset of those potential solutions capable of being generated or represented by the algorithm 

is known as the representation space [4]. This is so called as it encapsulates all potential 

problem solutions that are capable of being represented by the heuristic algorithm, regardless 

of their actual merit as viable solutions. A larger representation space will cover a greater the 

percentage of the possible solutions, potentially increasing the search capabilities and 

effectiveness of the algorithm. Although it is desirable to have an efficient a method as 

possible (i.e. covering as large an area of the search space as possible), the very nature of 

heuristic algorithms means that a balance must be found between the size of the representation 

space and the complexity of the problem. 

1.1. Truss Optimisation, a Brief Background 

In 1904 Anthony G. M. Michell published a pioneering paper [5] in which he described the 

optimality criteria for the minimum weight of trusses. However, it was not until over half a 

century later that any further work was done in the field, with resurgence in the late 1950’s 

rekindling interest in the area of structural optimisation [6]. Nowadays, structural optimisation 

is an ever expanding discipline. Topology optimisation, a subset of structural optimisation, is 

known as the science of optimal layout theory [7], whereby a structural material is arranged 

in such a way as to minimise some objective function, subject to a number of design 

constraints. The field of topology optimisation can be separated into two distinct strands: 

1) discrete optimisation, in which the entire structure is optimised with whole beam 

elements, and 

2) continuum optimisation, in which solid structures are assumed to be continuous and 

are decomposed into finite elements [8].  

Continuum topology optimisation methods currently comprise of some of the most advanced 

structural optimisation approaches. By discretizing the entire structure into small sections, the 

overall structure can be assumed to be continuous, and as such, optimisation of a segment can 
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be extrapolated to consider the whole (similar to the finite element method of structural 

analysis [9]). Continuum methods traditionally work by beginning with a solid block of 

material and then finding the most optimal arrangement of a specified percentage of that solid 

such that the displacement of the overall structure is minimised [8]. In continuum optimisation, 

the representation space is directly related to the size of the mesh used to discretize the overall 

solid [7]. 

Discrete optimisation methods on the other hand look at the entire structure as a whole, 

addressing individual elements (such as beams and nodal connections) rather than an 

optimised solid. They generally follow what is termed a “ground structure” approach, with all 

possible node and edge locations being specified a priori [8, 10]. While this allows for highly 

optimal beam structures to be created, the method is implicitly highly restrictive as all possible 

potential solutions must be known beforehand. Consequently, the representation space is 

extremely limited. This means that discrete optimisation methods are less effective at finding 

the optimal solution [7]. 

1.2. Research Aims & Motivation 

While continuum topology optimisation is the most effective optimisation method, the 

technique has inherent flaws [11, 7], primarily in that computational complexity increases as 

the physical dimensions of the structure increase. As such, large scale structures cannot yet be 

easily optimised using this method. In contrast, this is an area in which ground structure 

optimisation excels [12], yet there are still limitations in the techniques employed. Rozvany 

[13] explicitly stated that globally optimal solutions cannot be found with the enforced layouts 

and low member count inherent in traditional ground structures (i.e. the representation 

associated with a ground structure approach is too constrained to effectively find the global 

optimum of the search space, regardless of the size of the representation space). Deb and Gulati 

[14] confirmed this by proving that even a limited increase in the variation of node placing in 

a ground structure approach (i.e. an increase in the representation space) led to better fitness 

results. As such, a maximally unconstrained discrete optimisation method, which can improve 

any given fitness value, would be the most effective tool. 

Rozvany [7] provided analytical, theoretically correct solutions to a series of benchmark 

problems for continuum sections based on Michell’s work. Therein, as the volume fraction of 

a solid approached zero, the structure of optimised shell plates tended towards that of a truss. 

Using this correlation, there is the possibility to derive optimal two dimensional (2D) truss 
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topologies from stressed plate structures (i.e. a globally optimal structure can be found purely 

from a given design envelope [15]). The primary aim of this thesis is to investigate whether 

the same correlation holds true for discrete optimisation methods as for continuum methods 

(i.e. given only boundary conditions, can a viable discrete solution be generated?) In order for 

this to be successful, the unconstrained discrete optimisation method must at the very least 

match the best achieved results from a generic ground structure approach. This aim can be 

further decomposed into a number of research objectives. 

1.2.1. Research Objectives 

 Both sizing and topology optimisation conducted in tandem. 

Existing truss optimisation methods in GP focus either on optimisation on a global 

topology scale, i.e. optimisation of the structural layout over the entire structure, or 

optimisation of the sizing of individual members in a fixed structure. In order to emulate 

the continuum method, the member sizing and the overall topology of a structure must be 

optimised in tandem. Since sizing can be seen as a deterministic problem, the requisite 

sizing of members can be calculated for every individual in the evolutionary process. This 

method must then be compared with the simultaneous method to determine the more 

effective method. 

 A comparison of commercially available materials and code compliant constraints 

against their idealised counterparts. 

Traditional sizing optimisation methods have some fundamental weaknesses. The standard 

approach employed is to explore the search space, while seeking the absolute minimum 

cross-sectional area for all structural elements. In doing so, critical knowledge of section 

geometry and orientation is omitted. It is therefore not possible to calculate fully accurate 

material stress limits as a constraint for structural design. Consequently structures cannot 

be designed to codes of practice. Another issue is that current sizing optimisation methods 

exceed the manufacturing precision of structural components. It is hypothesized that these 

issues can be addressed by constraining the optimisation method to only use readily 

available common construction elements. In conjunction with these construction elements, 

solutions must be evolved using design constraints given from codes of practice in order 

to observe any differences between idealised methods and code-compliant techniques. 
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 An efficient penalty function for violated constraints in Grammatical Evolution 

Structural engineering optimisation will often require the designer to satisfy multiple 

parallel objectives, and there may be overlaps between both constraints and objectives. 

Understanding the interaction between these constraints and the overall individual fitness 

will, therefore, have a significant impact on the quality of the designs produced. As such, 

a key challenge for designers when using evolutionary approaches is to find an accurate 

metric that will allow the designer to judge individual constraints and to transform the 

performance of the individual (relative to those constraints) into a single coherent value 

for use by the fitness function. The number of these constraints may have a positive or 

negative effect on the evolutionary process. Constraints can either be seen as a necessary 

design component or an instrument to improve search. The most efficient way to relate 

constraint violations to the overall fitness of the individual in the context of Grammatical 

Evolution (GE) must be ascertained. 

 Creation of an unconstrained grammar representation. 

Traditional ground structure optimisation methods use fixed node locations and vary the 

connectivity between nodes to generate different structures. Even a slight variation in node 

locations can improve fitness results in ground structure optimisation [14]. As such, more 

variation (i.e. more design freedom leading to greater representation) allows a heuristic 

search process to get closer to the true global optimum. The degree of variation allowed 

before the representation space becomes too large and the search breaks down must be 

examined. Various methods of creating sufficient design variation using a formal grammar 

representation must be identified, along with the amount of genetic information required 

in order to generate this variation. 

 Evolution of a viable solution given only boundary conditions and constraints. 

Continuum optimisation methods only require a design envelope and boundary conditions 

to generate a solution. Discrete ground structure approaches, however, require all node 

locations and connections to be specified a priori to generate a solution. The recursive 

properties of formal grammars can be used to allow the algorithm to define its own 

solutions within a pre-specified design envelope. In such a way it is hypothesized that a 

discrete method could operate in a continuum fashion. Viable solutions must be evolved 

if no information is given other than the bare minimum. 
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1.3. Thesis Summary 

Chapter 2 contains a summary of related research in the areas of evolutionary computation, 

evolutionary optimisation, and engineering optimisation. Based on a review of the literature, 

a number of key research areas have been identified. These aspects incorporate both structural 

engineering problems and evolutionary computation problems. Identified areas are as follows: 

 The majority of reviewed discrete optimisation literature uses unrealistic assumptions 

about material properties and physical structural layout. There is a tendency in the 

literature to focus on minute improvements to optimisation methodologies, while 

fundamental engineering principles are overlooked; 

 Traditional ground structure discrete optimisation approaches are limited in their 

representation capabilities and, thus, cannot cover the search space as effectively as 

possible; 

 Simultaneous optimisation of member sizing, structural shape, and structure topology 

produces the best theoretical optimisation results but is difficult to represent with a 

constrained ground structure representation and even more difficult to achieve 

effectively; 

 A larger the representation space theoretically has a better chance of success, with a 

better overall quality of solutions. However, a larger representation space results in 

less fit individuals; the management of unfit individuals via the handling of constraints 

then becomes crucial to improve evolutionary performance. 

Chapter 3 details design generation and the evolutionary process as used in this study. An in-

depth description of the Grammatical Evolution method is provided, and explanations of every 

step in the process are given.  

Chapter 4 demonstrates that the majority of reviewed discrete optimisation techniques found 

in the literature use unrealistic assumptions about material properties and physical structural 

layout. Experiments show that realistic construction materials, in conjunction with code-

compliant design constraints, cannot produce the same results when applied to the same 

problem. These experiments conclude that the heavily optimised results of the literature give 

a false impression of the efficiency of the algorithms in question. A number of experiments 

demonstrate the ability of GE to evolve and optimise two datasets simultaneously, namely the 

structural topology and member sizing of a structure. In order to achieve this, a new 
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evolutionary method was developed, which utilized two separate chromosomes. The method 

is shown to be both powerful and reliable in evolving fit solutions, thereby addressing another 

of the key research objectives. 

Chapter 5 aims to ascertain the most appropriate method of handling individuals with violated 

constraints. It begins with a description of fitness landscapes and the terms search space, 

representation space, and fitness space. Variation in the fitness landscape can occur even if the 

representation space remains constant. This variation is consistent with increasing problem 

difficulty. In order to ascertain the most appropriate method of handling constraint violations, 

different constraint handling methods are applied to problems of increasing difficulty. 

Variation in these fitness landscapes is observed through a number of experiments, which 

demonstrate the effectiveness of varying methods of penalty function applications. 

Appropriate methods for handling both single and multiple failed constraints are discussed, 

and finally, recommendations are made that as much information as possible on the 

performance of all constraints for any infeasible individual be included in the fitness function. 

Chapter 6 aims to produce an unconstrained grammatical representation for discrete truss 

structures. Previous methods from the literature are based on the ground structure method 

whereby node locations are pre-specified. This chapter hypothesizes that the evolution of node 

locations, rather than of node connections, could lead to improved fitness results. The 

hypothesis of generating discrete structures through placement and variation of nodes rather 

than the variation in connections of pre-existing nodes is introduced. A Delaunay triangulation 

algorithm is used to connect evolved nodes, allowing for the generation of repeatable, fully 

triangulated, kinematically stable structures. The use of two chromosomes allows for the 

simultaneous optimisation of structural shape, structural topology, and individual member 

sizing. These structures are then evolved to find minimum weight arrangements for benchmark 

problems. 

Chapter 7 contains an overview of the work done in this thesis and the overall contributions. 

Conclusions and suggestions for future work are detailed. 

Appendix A contains grammars and phenotypes created for this body of work. 
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Chapter 2. Literature Review 

 

2.1. Introduction 

Alan Turing [16] first proposed the idea of machine learning, whereby computers could 

modify their behavior over time to suit their environment or environments. His theory was that 

a “child machine” would be produced with little knowledge of its environment, but that over 

time and through interaction with its environment could gain sufficient knowledge to interact 

in a meaningful manner. The end result of this would be a machine, which could solve a 

problem without explicitly being told how to solve it. The term “Turing Test” was coined to 

demonstrate a simple concept defined by Turing: consider two unknown entities, one human 

and one machine, in communication with a blind observer whose sole objective is to determine 

which is which. By Turing’s reasoning, the machine would be deemed to be intelligent, if it 

passed as human more than 50% of the time. Arthur Samuel [17] extended the description of 

artificial (machine) intelligence: 

 
“to exhibit behaviour, which if done by humans, 

would be assumed to involve the use of intelligence.” 
 

Combining these two concepts would produce a machine which could, over time, interact with 

its environment to change its behavior and produce results, which would (from a black box 

perspective) be deemed to have been produced by an intelligent entity. This is the driving force 

behind the concept of the evolutionary computation method. 

2.2. Evolutionary Computation 

Evolutionary Computation (EC) is a field of computing techniques based on the evolutionary 

principle of natural selection [18], wherein populations of individuals are continually 

improved within their environment based on the theory of survival of the fittest, taking strong 
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cues from biological terminology [19]. A problem is addressed using populations of 

individuals, each representing a potential solution to the problem. These populations are then 

slowly evolved over a number of generations by interbreeding and varying individual solutions 

to produce new child solutions that form the basis of each subsequent generation. At each 

generation, an objective function (usually known as the fitness function) determines the 

suitability of each individual for its designed environment (i.e. its ability to solve the problem 

at hand) and assigns it a value by which it can be judged against its peers (usually known as a 

fitness) to determine the best solutions in the generation. The most suitable solutions in a 

generation (known as the fittest solutions) then have a higher probability of passing on 

information to subsequent generations. After a certain number of generations, or after some 

stopping criterion is met, the evolutionary process is terminated and the best overall individual 

is presented as the evolved solution [20, 3]. 

Numerous EC techniques have been used in a wide variety of applications. In the field of the 

arts, Kaliakatsos-Papakostas et al. [21] used an interactive genetic algorithm to evolve 

rhythmic patterns in the form of a self-programming drum machine. McDermott and O’Reilly 

[22] used a graph-based representation to map Musical Instrument Digital Interface (MIDI) 

paths for evolutionary generative music in both interactive and non-interactive scenarios, 

while Nicolau and Costelloe [23] generated award-winning three-dimensional (3D) fractal 

images (Figure 2.1). 

EC techniques have been used in computer game generation [24, 25], and numerous 

engineering applications from circuit design [26] to space antenna design successfully 

deployed by NASA [27]. Financial trading algorithms have been evolved [28], as well as 

architectural and structural engineering designs [29, 12]. 
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Figure 2.1: Fractal image generated using evolutionary techniques [23] 

2.2.1. Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are a sub-field of EC techniques; whereas EC is seen as the 

overall field of evolutionary population-based computing, EAs represent a broad range of 

actual applications of EC techniques. The four most popular avenues of EA are Evolutionary 

Programming [30], Evolutionary Strategies [31, 32], Genetic Algorithms [19], and more 

recently Genetic Programming [33]. 

Since the evolutionary method used in this study, Grammatical Evolution, is essentially a 

derivative of the latter two methods (as shown in Figure 2.2), a short review of both of these 

methods is presented. 
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Figure 2.2: Evolutionary Computation hierarchy 

2.2.2. Genetic Algorithms 

Genetic Algorithms (GAs) are a form of EA that use a binary integer string as a genetic 

representation for an individual solution. The idea of representing an individual with the use 

of a genotype (or chromosome) was first proposed by Holland [19] and implemented by 

Goldberg [34]. A chromosome typically consists of an array or string of genetic information, 

which is then mapped to an observable set of characteristics of the solution, known as the 

phenotype. GAs traditionally represent their chromosomes as a fixed-length string of bits 

(consisting of either 0 or 1), and map directly from genotype to phenotype without the use of 

an intermediate interpreter. As such a GA representation is very effective at parameter tuning 

and in situations where direct variance of values is required [34]. A single codon (gene) on the 

chromosome can either be represented as a single bit or as a fixed number of bits from the 

chromosome. 

GAs use evolutionary selection and replacement parameters to augment or replace populations 

(depending on the replacement strategy used) in a generational manner in order to improve the 

overall fittest solution, as shown in Figure 2.3. 
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Figure 2.3: The creation of each new generation is accomplished through selection, 

variation, and replacement of the population of the previous generation 

At each generational step, a pool of parents is chosen from the parent population based on the 

fitness values of each individual using a selection mechanism, such that the fittest individuals 

will have a greater probability of passing on genetic material to subsequent generations. A 

number of selection mechanisms are available in EAs [35], including tournament selection, 

linear ranked selection, and fitness proportional selection: 

 Tournament Selection 

A small subset of the overall population is selected at random from the initial 

population, and the fittest individual within the subset is added to the parent pool. Once 

the parent pool reaches the same size as the initial population, selection terminates. 

 Linear Ranked Selection 

The population is ranked in order of fitness, and selection of an individual is random 

with a weighted probability based on the individual’s rank [36]. 

 Fitness Proportional Selection (also known as Roulette Wheel Selection) 

Each individual in a population is given a probability of selection equal to their 

normalised fitness value. The better the fitness, the better the probability of selection 

[19]. 
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Since the probability of selection of each individual with these methods is based on its fitness 

value, it is possible for the same individual to be selected multiple times for inclusion in the 

parent population, while other individuals may never be selected regardless of their fitness. 

So-called “fair” selection mechanisms also exist such as Fair Tournament Selection, where 

each individual is guaranteed a chance to participate in at least one tournament [34]. Once the 

interim population is fully populated via the selection mechanism, a child population is created 

which will form the basis of the next generation. This child population is generated by 

variation operators, which are performed on individuals from the interim population. The most 

prominent such methods are mutation and crossover: 

 Mutation 

Information from a single individual is randomly mutated with a probability 𝑃𝑚𝑢𝑡 to 

create a new individual. 

 Crossover (also known as recombination) 

A combination of two parents produces a pair of children with qualities of both parents, 

with a probability 𝑃𝑐𝑟𝑜𝑠𝑠.  

Crossover of two parent chromosomes is usually done in a single-point manner, where a single 

crossover point on both chromosomes is randomly selected and then all subsequent genetic 

information is swapped between individuals, as shown in Figure 2.4: 

Parent 1 1, 1, 1, 1, 1, 0, 0,  0, 1, 0 

Parent 2 0, 0, 1, 1, 1, 1, 1,  1, 1, 0 

 

 

Child 1 1, 1, 1, 1, 1, 0, 0,  1, 1, 0  

Child 2 0, 0, 1, 1, 1, 1, 1,  0, 1, 0 

Figure 2.4: Single-point crossover of two parent GA chromosomes 

Mutation then occurs on those children in a “bit-flip” fashion by randomly changing codons 

on the chromosome between 0 and 1 (as shown in Figure 2.5).  

 

 

Crossover point   

PPointPoint 
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Original 1, 1, 1, 1, 1, 0, 0, 0, 1, 0 

Mutated 1, 1, 0, 1, 1, 0, 0, 1, 1, 0 

Figure 2.5: Bit-flip mutation of GA chromosome 

Canonical crossover is generally applied first on randomly selected pairs of parents, and then 

mutation is applied to the newly formed child population of resulting individuals [34]. It is 

advisable for 𝑃𝑐𝑟𝑜𝑠𝑠 to be set at a high value, generally between 70% and 90% (i.e. a chosen 

pair of individuals will have between a 70% to 90% chance that crossover will be performed 

on them, otherwise they remain unchanged), while 𝑃𝑚𝑢𝑡 is more usually given a very low 

probability of around 1% (i.e. each gene on the chromosome has a 1% chance of mutating to 

a new value, otherwise it remains unchanged) [37]. In each case, if a randomly selected 

probability value falls within the set operator probability (𝑃𝑐𝑟𝑜𝑠𝑠 or 𝑃𝑚𝑢𝑡) then that operation 

is performed, otherwise the individual is conveyed to the child population unchanged from the 

parent population. 

The final step in the creation of a new generation is replacement. There are two main options 

[3]: 

 Generational Replacement: The entire previous generation is replaced with the newly 

generated child population. 

 Steady State Replacement: Only a portion of the previous generation is replaced with 

the child population. 

GAs typically feature random initialisation of the first generation, tournament selection for 

generation of each parent population, and mutation and crossover as described above. EA 

search operators such as mutation and crossover act directly onor the chromosome itself, 

which has a direct impact on the phenotype of the individual [38].  

Gupta and Ghafir [39] emphasised the need to maintain diversity in the population in order to 

avoid getting stuck in a local optimum (whereby the search process converges on a solution 

which is not the global optimum). This is done by carefully controlling selection and 

replacement mechanisms to maintain a diverse genetic pool. Variations on traditional GA 

methods exist. For example, Li et al. [40] used Diploid (two chromosomes) and Triploid (three 

chromosomes) GA representations to reach a balance between convergence and diversity in 

the population. In contrast, Cavill et al. [41] used a GA with both multiple chromosomes and 
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variable length chromosomes to tackle the Onemax problem – a simple problem designed to 

test whether an algorithm can handle multiple variables in parallel. 

2.2.3. Genetic Programming 

Genetic Programming (GP) uses a tree-based genetic representation to modify and combine 

modular programs and functions to solve a combinatorial task [20]. It differs from a traditional 

string-based GA by using a tree-based mapping system. This tree-based system contains 

terminals (leaves) and sub-trees (branches) [42]. Terminals are final values that represent a 

fixed part of the overall solution, whereas branches represent some operator or condition to be 

applied to those connecting terminals and sub-trees. 

An example of tree-based derivation for the function max((x+(y*x)), (y/x)) is shown 

in Figure 2.6. The problem consists of an overall function max(), sub-trees in the form of 

various mathematical operators [+ - / *], and terminals in the form of x and y. By 

combining different amounts and types of terminals and branches, this tree-based system 

allows for highly complex programs to be evolved [33]. 

 

Figure 2.6: GP tree-based derivation for the function max((x+(y*x)), (y/x))  

GP also differs from traditional EAs and GAs in its use of recombination (crossover) and 

mutation operators [42]. In a crossover with a GA, two parent chromosomes are split at a 

single crossover point, and the heads and tails are swapped between parents to produce two 

child chromosomes. GP on the other hand utilizes “sub-tree” crossover (i.e. a crossover branch 

point is selected on the trees of two parents and all information below that branch (including 

the branch itself) on one parent is combined with all information above that branch (including 
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the branch itself) on the other parent). Mutation in GP is also most commonly done in a sub-

tree manner, with a random point on the tree being replaced by a new randomly generated tree 

(which may have a greater or lesser depth than the portion of tree it is replacing) [33]. 

Banzhaf [20] asserted that any problem that can be solved using a Neural Network can be 

solved using GP. Cavill et al. [43] took inspiration from biological representations in nature 

(where multiple chromosomes are common) and used multiple chromosomes for evolving a 

single objective, taking cues from both GP and Grammatical Evolution. However, the 

traditional implementation of multi-ploid systems uses separate chromosomes to encode for 

the same information (with only one chromosome being expressed at a time), rather than 

multiple concurrent chromosomes representing different parts of the solution [43]. 

2.2.4. Grammatical Evolution 

Grammatical Evolution (GE) was first introduced in 1998 by Ryan et al. [44] as a hybrid of a 

GA and GP, in which a variable-length integer array genotype generates an executable 

phenotype via a GP-style tree-based mapping. The mapping is performed with the use of a 

formal grammar, written in the Backus-Naur Form (BNF) [45]. This intermediate mapping 

step is akin to the role of amino acids in biological terminology [46], and means that the 

genotype does not necessarily have to map directly to the phenotype (as is the case with 

traditional GAs). The grammar generates an executable program from a genotype in the same 

sense that amino acids create proteins from DNA/RNA. Execution of the program then creates 

a phenotype (the individual), similar to how a protein generates an observable phenotypic 

effect in biological organisms. This relationship is demonstrated in Figure 2.7. 
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Figure 2.7: Comparison between the GE system and that of genetic biology [47, 46] 

A sample grammar, capable of producing the same output as the GP example from Figure 2.6, 

is shown in Figure 2.8. This grammar begins with an initial production rule <init>, which 

has production choices of max(<exp>, <exp>) and min(<exp>, <exp>). Within 

these production choices are non-terminals <exp>. These non-terminals then map to further 

production rules, which can become either more non-terminals (encased in angle brackets < 

>) or terminals (finite values or operations with no angle brackets). A more thorough 

explanation of GE’s use of grammars is detailed in Section 3.5. 

 

<init> ::= max(<exp>, <exp>) | min(<exp>, 

<exp>) 

<exp> ::= <exp><op><exp> | <var> 

<var> ::= x | y 

<op> ::= + | - | / | * 

 

Figure 2.8: Basic BNF grammar example, capable of producing the same output as the GP 

example from Figure 2.6 
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This grammar-based mapping system has numerous advantages over a regular GA [48, 46]: 

 The use of a formal BNF grammar in the genotype to phenotype mapping process 

means that the structure of the solution can be encoded in any language; 

 Large amounts of phenotypic information can be generated from the grammar based 

on a very small amount of genotypic input; 

 Bias can be added to the grammar such that it is more predisposed towards generating 

particular solutions; 

 A variable amount of the genome is used, leading to a more diverse range of potential 

solutions; 

 Multiple genotypes can potentially map to the same phenotype, which permits neutral 

mutation (a mutation that has no immediate effect on the fitness, also known as Genetic 

Drift). Kimura [49] argued that neutral mutation increases the effect of mutation. This 

is especially evident once crossover occurs on a previously neutrally mutated 

individual; the individual will still have the same probability of selection based on the 

selection process, but after crossover occurs a portion of the newly formed 

chromosome may now be mapped in a different manner to a non-neutrally mutated 

chromosome, thereby creating an extra effect one generation down the line.  

GE has been used for a variety of applications, from evolutionary art [23], to video game 

design [24], predicting bankruptcy in financial trading environments [28] and architecture & 

engineering applications such as shelter design [29] and electricity pylon design [50]. A 

thorough explanation of the Grammatical Evolution process used in this thesis is presented in 

Chapter 3. 

2.3. Structural Optimisation 

The field of structural optimisation was established at the start of the 20th century when 

Anthony G. M. Michell published his first theory on the optimisation of minimum weight 

trusses [5]. The basic premise for structural optimisation is the minimisation of an objective 

function (usually either the self-weight of the structure or its compliance/strain 

energy/deflection) over a design space subject to some design constraints. Michell’s classical 

solution held that a fully optimised beam structure would have: 

 Stresses in all members equal to the allowable stress limits of either tension or 

compression for that member 
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 Strains and deflections for all members and nodes that do not exceed their limits for 

all members and nodes 

 A total structural weight less than or equal to that of any other valid structure for the 

same design conditions 

A (purely theoretical) Michell structure has an infinite number of members, each with an 

infinitely small cross-sectional area and each intersecting another at right angles, as shown in 

Figure 2.9. 

 

Figure 2.9: Michell truss solution for a simple cantilever [51]  

It was not until over 50 years later with the advent of computer technology that Michell’s work 

began to gain recognition. In the late 1950’s, the aviation industry began research into the area 

of structural design, beginning with the British Aeronautics Research Council [52] and the 

College of Aeronautics in Cranfield [6, 53]. With the subsequent rapid advance of 

computational power, structural optimisation techniques have become ever more accessible in 

everyday engineering design. The introduction of new computational techniques has heralded 

engineering applications ranging from analog circuit design [54] to the design of structures 

such as space antennae [27], shelters [55], and bridges [56]. 

Kicinger et al. [12] conducted a survey on the applications of evolutionary computation in 

structural engineering design which found that (as of 2005) the vast majority of published 

structural optimisation research focussed purely on optimality of the structures. Apart from 

providing a generalised overview of the field, they noted that the most important aspects of 

the evolutionary engineering design process are: 

i. appropriate representation of the engineering system itself; 

ii. finding a suitable evaluation function. 

The first of these is trivial; appropriate representation of the engineering system is possible by 

using the relevant design codes of practice [57, 58, 59, 60]. In the case of structural design this 

entails creating boundary conditions (supports and loading), material limits (usually expressed 
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as stress/strain, buckling, etc.) and design limits (deflection). The use of the Finite Element 

method of structural analysis [9] as a fitness function has been proven accurate [56, 61], and 

it enables the EC method to assess and evaluate individuals based on the results of a finite 

element analysis. Furthermore, long-standing concerns about the computational efficiency of 

such analysis methods [12] are continually being abated by technological improvements, and 

the inherent parallelism of population-based optimisation techniques naturally lends itself to 

large computing arrays. 

Evolutionary algorithms, in particular, are particularly well suited to solving structural 

optimisation problems as, aside from their relative ease of implementation, their heuristic 

nature provides an efficient method of iterating over a wide search space with many local 

optima in search of the global optimum [62, 63]. As such, they are prime methods for finding 

solutions to problems where either there are no mathematical assumptions (i.e. the structure 

of the solution is not known) [64], or more frequently where classical methods such as 

deterministic calculation have failed [65]. In the structural optimisation literature, common 

design challenges (known as benchmarks) are attempted by researchers proposing new 

optimisation methods. Perhaps a legacy of Michell’s pioneering work is that these design 

challenges are most prevalent in the area of truss optimisation [12]. There are two distinct 

areas in structural design and optimisation: Continuum and Discrete design (Figure 2.10). 

Definitions and reviews of the literature from both areas are presented hereafter. 

 

Figure 2.10: Structural optimisation flowchart 
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2.3.1. Discrete optimisation in Evolutionary Computation  

The discrete design approach is similar to traditional beam-truss design in that it looks at the 

design of the complete structure, with particular focus on element connectivity. This method 

lends itself especially well to truss design, where appropriate connectivity of the members is 

paramount. Discrete optimisation looks at optimisation of the entire structure as a whole, with 

a general goal of minimising the self-weight of the structure. Optimal design of discrete truss 

structures can be generally divided into three sections [12]: 

1. Topology optimisation, which deals with the connectivity of nodes (Figure 2.11). 

 

Figure 2.11: Topology connection of nodes – optimising the connections between nodes 

(node location independent) 

2. Shape optimisation, which deals with the locations of nodes (Figure 2.12). 

 

Figure 2.12: Shape optimisation of nodes – optimising the locations of individual nodes 
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3. Sizing optimisation, which concerns the sizing of individual members (i.e. the required 

area of connections between nodes, Figure 2.13). 

 

Figure 2.13: Sizing optimisation of node connections 

Optimisation of two objectives (i.e. sizing and topology in tandem) represents a doubling of 

the complexity and, therefore, the difficulty of the problem. Optimisation of all three – sizing, 

shape, and topology – represents an exponential increase in the inherent difficulty of the 

problem. 

Discrete optimisation of truss structures is most popularly achieved using the ground-structure 

optimisation method proposed by Dorn et al. [10]. In this method all selectable node and edge 

locations are pre-determined (thus, precluding shape optimisation), with the algorithm 

searching through different permutations and combinations of beam layouts (topology 

optimisation) and sizes (sizing optimisation) to find an optimal design. The archetypal ground 

structure will consist of a fixed layout of nodes (defining the overall shape of the structure), 

with all possible connections between those nodes being outlined. An example of a typical 

ground structure formulation is shown in Figure 2.14 a, along with sample potential derivable 

structures (Figure 2.14 b and c).  

Discrete truss optimisation can generally be divided into two areas: minimisation of structural 

self-weight given a specified compliance limit, and minimisation of compliance given a 

specified volume/weight (Figure 2.10). 

2.3.1.1. Weight Minimisation in Discrete Optimisation 

The vast majority of discrete truss optimisation methods deal with minimisation of structural 

self-weight [12, 7]. The problems addressed will typically feature limits on displacement and 

material stresses. 
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Genetic Algorithms in particular have enjoyed popularity in the area of ground structure 

weight optimisation due to the potential easy mapping relationship between the chromosome 

and the design space. This is usually achieved with the use of a “topological bit” in the 

chromosome; a simple binary value which indicates the presence or absence of a particular 

member. 

 

Figure 2.14: a) Typical ground structure formulation (9 nodes, 28 edges), with example 

derivative ground structures shown in b) and c) 
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Genetic Algorithms in Discrete Truss Optimisation 

GAs have been used extensively in discrete topology optimisation in design (TOD) to evolve 

trusses, and numerous approaches have been identified.  

Murawski et al. [66] produced a GA-based system for evolving steel structures in tall buildings 

(between 16 and 36 stories), named “Inventor 2000”. Their system minimised the total weight 

of the structure subjected to varying amounts of wind loading and analysed the structures using 

a modified version of Structural Optimisation Design and Analysis (SODA) [67]. 

Kicinger et al. [68] conducted evolutionary computation parameter sweeps in the search for 

optimal settings in the design of tall buildings subjected to wind loading, using an update of 

their proprietary software Inventor 2000 named “Inventor 2001” which employed a fixed 

length GA with integer genes. They were able to design complex and diverse morphologies 

using a variety of interchangeable genetically encoded “building blocks”. Their findings 

corroborated the original recommendations of Michell [5] and those of traditional design 

practice [58, 57], in that symmetrical designs prove the most efficient. They recommended 

larger population sizes and a high number of generations (“up to a few thousand”), however 

their proposed crossover and mutation rates (of up to 50% and 10% respectively) differ 

considerably from those of classical evolutionary algorithms, as discussed in Section 2.2.1 

[37]. 

Hajela and Lee [69] implemented a two-stage approach to evolving discrete ground structures, 

with overall structure topologies and individual edge sizings being evolved separately with the 

aim of minimising weight. They first ensured that the population was seeded with 

kinematically stable structures, employing a bit-string Boolean indicator for the presence or 

absence of structural members. These stable individuals were then used as the seed for the 

second stage, wherein the cross-sectional areas of these members were subsequently evolved 

in accordance with stress, deflection, and buckling limits. 

Ohsaki [63] optimised ground structures, but with the objective function of minimising the 

overall cost of the structure based on the number of members and nodes. This was achieved 

by removal of both members and nodes – the former either by a topological bit on the 

chromosome or once the cross-sectional area reached 0, and the latter only if the cross 

sectional areas of all attached members are 0. In such a manner it can be said that the author 
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optimised both sizing and topology of truss structures, though the lack of movement of the 

node locations (or better yet the possibility of adding new nodes) constrained the method. 

Deb and Gulati [14] used a simple binary topological bit to select between elements, but added 

genetic information on member sizes and node locations to the chromosome. They employed 

the ground structure approach with set nodes and node connections, but an important finding 

of their work was that an allowance for slight variations in the locations of nodes led to 

improved fitness results. They divided nodes within truss design into two categories: 

1. Basic Nodes: Nodes with actions, such as loads, reactions, or fixings, which are 

essential to the structure 

2. Optional Nodes: All other nodes, such as nodes connecting basic nodes 

In their opinion, optimisation of truss structures involves finding the locations of non-essential 

nodes, the subsequent connectivity of the overall structure, and the sizes of all members such 

that constraints are satisfied and objectives are minimised. 

Ruiyi et al. [70] used a GA-based technique, and attempted to improve the efficiency of the 

algorithm with a tracker for each individual based on their genetic chromosome. A list of all 

chromosomes was kept, and each newly generated chromosome is not evaluated if it already 

exists in the list. They reasoned that computational complexity could be reduced by stopping 

the process from evaluating individuals which had already been evaluated previously in that 

same run. This is similar in concept to Glover and Laguna’s Tabu Search method [71], though 

different in its implementation (a true Tabu search prevents duplicate solutions through 

semantic comparison rather than genetic comparison). 

While the ground structure approach is the most widely used, it is not the only available 

discrete optimisation option. Bohnenberger et al. [72] used a hybrid of GAs, deterministic 

calculation, and evolutionary strategies to evolve minimum weight for pylon tower legs. Their 

approach was to maximise stress levels in each member such that the structure was operating 

at, or near to, its limit.  

Kawamura et al. [73] used a modified GA to evolve stable structures by assembling 

combinations of triangles and demonstrated the use of their technique in both two and three 

dimensions. Their approach built structures in an additive fashion by extending combinations 

of triangles from the support conditions until all support and loading criteria were met. This 
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triangulation method is of great interest as not only are all structures guaranteed to be both co-

planar and kinematically stable, but it was also demonstrated to be extremely material 

efficient, with no unnecessary members being generated. This is in marked contrast to the 

majority of ground structure methods, where overlapping members can be used to indicate 

thicker member sizes [12]. 

Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) is a form of Natural Computing algorithm in which 

individuals in a population are represented by a particle consisting of a location co-ordinate 

and a vector inside the search space. Each particle moves through the search space by updating 

its location at each step in accordance with its vector (as shown in Table 2.1). The particle is 

attracted to both the positions of the local best particle (i.e. the neighbouring particle with the 

best fitness value) and the historical global optimum (the position of the particle with the 

overall best fitness) [74]. 

Table 2.1: Sample PSO particles, showing both original and updated locations 

Particle Original Location  Vector Updated Location  

a 

b 

[1, 5, 4] 

[3, 3, 7] 

[0, 1, -1] 

[2, 0, 2] 

[1, 6, 3] 

[5, 3, 9] 

This swarm mentality mimics behaviour of large groups of animals, which appear to co-

operate with one another towards a common goal (i.e. evasion of predators), despite their lack 

of apparent communication [65]. PSO algorithms are generally favoured, as they have fewer 

tuneable parameters over traditional GA methods and are deemed easier to implement [64]. 

PSO algorithms have proven particularly efficient in solving dynamic and noisy problems. For 

example, Li et al. [64] showed that a combination of a PSO and the so-called “harmony search” 

scheme [75, 76] improved the overall fitness and decreased the convergence rates over 

traditional PSOs in the optimisation of discrete truss structures. Kaveh and Talatahari [65] 

improved this by combining the method proposed by Li et al. with an ant colony strategy for 

an even more efficient hybridised approach. Their method used a PSO for global optimisation 

and then further modified the position of individual particles using an ant colony optimisation 

approach. Kaveh and Talatahari [65] noted that a hybrid approach of two methods produced 

better results with both notably fewer iterations and evaluations and a higher rate of 

convergence.  
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Luh and Lin [77] used PSOs for full topological optimisation of discrete ground structures. 

Their work described a two-stage approach, firstly optimising the topology of the structure (in 

terms of node locations and connectivity) and then optimising the sizing of the elements, along 

with further node location adjustments once the topology was selected. They reasoned that a 

single-stage optimisation process is too complex, with the search space too large to effectively 

optimise a solution. They employed PSO as a “quick fix”; it is freely admitted among the PSO 

literature that its performance may not be competitive with other evolutionary algorithms, as 

the number of iterations and generations increases [64, 77]. One interesting observation that 

Luh and Lin made is that the larger the physical size of the design, the greater the number of 

potentially acceptable solutions that exist (i.e. highly optimal solutions, though not necessarily 

the global optimum solutions). 

Multiple Objective Optimisation 

Optimisation of multiple objectives using evolutionary algorithms is entirely possible but is 

done in a different manner to optimisation of a single objective (where simple minimization 

or maximization of a single objective function is all that is required). When multiple objectives 

are present in engineering optimisation, they are often in competition with one another 

(depending on how said objectives are defined). As a result, an increase in the fitness of one 

objective may have a corresponding decrease in the fitness of another [62]. This correlation 

produces a series of non-dominated (Pareto) fronts, where all individuals on the same front 

are treated as equally fit to one another. The optimisation of these fronts is the concern of 

multiple objective optimisation [56].  

Marler and Arora [78] conducted a survey of multi-objective methods for engineering 

optimisation and concluded that no single approach is necessarily superior to any other, but 

that the appropriate method to use must be determined from the problem definition. They echo 

both Jones’s terminology in defining different parts of the search process as individual spaces 

[79] and Michalewicz’s distinction between fit and unfit individuals within these spaces [80]. 

They note that even with an unconstrained problem only certain fit individuals within the 

representation space will actually be attainable in multiobjective problems as the number of 

objectives increases. This is due to increasing dimensionality of the Pareto fronts, which 

subsequently leads to difficulties in selecting optimal solutions. 
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Recent methods [62] have successfully used combinations of evolutionary algorithms and 

approximate gradients in truss topology optimisation in minimising both the self-weight and 

the compliance/strain energy of trusses. Pholdee & Bureerat [62] noted that while pure 

evolutionary algorithms have excellent search skills for multiple objective optimisation, they 

tend to have difficulty in very large search cases. In a similar manner to the findings of Kaveh 

and Talatahari, [65], Pholdee & Bureerat found that improvements over original multi-

objective evolutionary algorithms [81, 82, 83] can be achieved by combining an EA method 

with other methods such as local search or the approximate gradient method. Byrne et al. 

successfully used multiple objective optimisation in both the optimisation of bridge and truss 

structures [56] and electricity pylons [50] by combining Grammatical Evolution with the Non-

dominated Sorting Genetic Algorithm (NSGA) II algorithm [84]. 

Simultaneous Discrete Optimisation of Sizing, Shape, and Topology 

Simultaneous optimisation of member sizing, structure shape, and topology represents the 

most efficient method of designing optimal truss structures. However, the number of 

researchers who have attempted discrete optimisation in this field are few. Some of the notable 

contributors are discussed in the following section. 

Bohnenberger et al. [72] performed simultaneous optimisation of the sizing, shape, and 

topology of electricity pylon legs, but their approach cannot be considered a true simultaneous 

optimisation method, as they used a different method for each section. First they used a GA 

for optimisation for the structure topology. Each individual in the GA then had an Evolutionary 

Strategy applied to optimise the geometry of the structure, before sizing of the optimised 

individual was directly calculated. Once the sizing was optimised, the fitness of the GA 

individual was then set as the overall weight of the structure. A fault can be found with this 

method, however, in that no unfit individuals (individuals whose components violate design 

constraints) are capable of being generated. As any optimum solution (be it global or local) 

lies directly on the feasible/infeasible boundary [64], if a representation is incapable of 

generating an unfit solution then it cannot locate the feasible/infeasible boundary and as such 

will have difficulty locating a true optimum solution [62]. 

Shea and Smith [85] optimised the topology, envelope, connectivity, and member sizing of 

large-scale electricity pylon structures to great effect using a combined simulated annealing 

and structural grammar representation. They aimed to minimise both the self-weight and the 
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overall material cost of the designs subject to multiple constraints including tensile and 

compressive stress, critical buckling, compressive and tensile slenderness ratios, angles 

between members, number of members and connections, and the weight of members. An 

important aspect of their approach was that they did not create designs from scratch. Instead 

they started with existing structures and improved them. This seeding method is similar in 

principle (though different in execution) to that used by Kaliakatsos-Papakostas et al. [21] in 

their evoDrummer work, where the authors created an initial population of multiple different 

rhythmic patterns by hand and then performed interactive evolution on that population. Shea 

and Smith compared the simultaneous optimisation of structural shape, topology, and member 

sizing against various combinations of sizing, node positioning, and overall envelope 

topology. Notably, their best solution (in terms of minimum weight) was not achieved with 

simultaneous optimisation but rather when the algorithm was constrained to use only 

optimisation of member sizing, node positioning, and overall envelope topology. The reason 

behind this can be explained by the fact that their fitness function considered far more than 

just the structure self-weight, taking into account other objectives such as the number of 

elements or joints. When compared with the full topology optimisation method, simultaneous 

optimisation was the best performing method, achieving convergence for all design 

constraints. 

Kawamura et al. [73] appear to have implemented a layered GA to evolve all three, but 

unfortunately only devote four lines of their paper to this fact. Li and Chen [51], although 

optimising for minimum compliance rather than minimum weight (in accordance with the rest 

of the discrete optimisation literature), also derived a full topology optimisation method for 

discrete trusses.  

Stromberg et.al. [86] recently implemented a highly innovative technique by combining both 

continuum and discrete analysis methods in the optimisation of laterally braced frames for 

wind loading on high-rise buildings. Their system used a continuum topology optimisation to 

approximate the required discrete layout, before performing a sizing optimisation on those 

discrete elements. Similar to Kicinger et al. [68] and Murawski et al. [66], they employed 

symmetry by only optimising half of the required solution and then mirroring it along the 

central axis as they found that symmetrical structures give the best performance. They also 

presented methodologies for connecting both continuum and discrete elements. 
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A Brief Note on Diversity of Optimisation Methods 

As the number of different optimisation techniques is ever growing, it is impractical to conduct 

a comprehensive review of the literature detailing each different approach. Popular heuristic 

techniques such as PSOs and the ant colony search method have all achieved acclaim in their 

own right, but the sheer diversity of heuristic approaches is staggering [2]. Thus, this thesis 

will focus only on the areas of the literature that have addressed engineering design 

optimisation. 

2.3.1.2. Compliance Minimisation in Discrete Optimisation 

Gilbert and Tyas [87] optimised large-scale pin-jointed ground structures (>100,000,000 

members). Their approach iteratively added members as required to an initial ground structure 

in order to optimise the structure for the lowest possible structural volume. They demonstrated 

that their solutions were demonstrably optimal for the given representation, and were very 

close to the true optimum solutions. They also noted that their method had a number of 

drawbacks in that i) it was slightly restricted as it could only add members, but not remove 

them and, ii) it could not optimise structures to minimise self-weight. 

Li and Chen [51] provided a highly effective approach to generating beam structures based on 

principle stress lines, as proposed by Mitchell [5]. Building on the work of Rozvany [13], Li 

and Chen provided a mathematical model that allowed for simultaneous optimisation of shape, 

topology, and beam size in any given design domain subject to compliance minimisation. 

However, this method is only applicable in two dimensions, and due to its basis in stiffness 

optimisation, it can only be used in the optimisation of minimum compliance or maximum 

stiffness of a structure, rather than minimum weight, as with all other discrete approaches.  

More recently, Zegard and Paulino [88] combined discrete and continuum methods to 

demonstrate how discrete elements could be optimised within a continuum. Their method 

looks at the changing stiffness properties of the overall continuum structure as the discrete 

elements are varied. The continuum structure itself is discretized into finite elements. The 

movement of nodal points within the continuum mesh then infers the shape of the discrete 

structure. This method is particularly useful in reinforced concrete design, where optimal 

placing of reinforcing steel bars can have a large effect on the overall performance of the 

material. 
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Wei et al. [89] demonstrated a similar technique to Zegard and Paulino to optimise discrete 

truss structures for minimum strain energy, as shown in Figure 2.15. Their method does not 

require the bar elements in their initial iterations to be fully connected. Full element 

connectivity occurs after a number of iterations. High density elements are embedded in a 

background mesh of a very low density, with the Young’s Modulus of the background mesh 

being 1/1000th of that of the main elements. Changes in location, length, and size of the main 

bars then induces a change in the overall stiffness matrix of the structure, with increases in 

stiffness driving the optimisation towards its goal of minimal strain energy. Multiple bars can 

exist in the same location, indicating an increased member area. 

 

Figure 2.15: Stiffness spreading method for minimization of strain energy [89] 

Furthermore, Wei et al. [89] do not provide units to the measurements of their design 

envelopes or their loading conditions, nor their exact material properties. This renders direct 

comparison to other methods difficult. Additionally, as with Li and Chen’s approach [51], 

their method does not allow for optimisation in three dimensions. 
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Sokol [90] provided a compact and precise method for calculating exact Michell solutions [5] 

for discrete truss structures, written in Mathematica. Similarly to Gilbert and Tyas [87], Li and 

Chen [51], Zegard and Paulino [88], and Wei et al. [89] this method aims to minimise 

compliance rather than structural self-weight in the optimisation of the structure. This means 

comparisons can only be made with similar methods; discrete methods which minimise self-

weight cannot be benchmarked against these approaches. 

2.3.2. Continuum Optimisation 

Continuum TOD is similar in principle to the finite element method of structural analysis [9] 

in that the system is assumed to be continuous and as such can be discretized into smaller 

elements which, when optimised, can be extrapolated to account for the overall design [91, 

92]. The advantage of this approach over a ground-structure style approach is that it negates 

the need to know any information about the design space other than the boundary conditions 

(i.e. loads and reactions). These methods have proven to be highly efficient at finding 

minimum compliance material layouts for given load and boundary conditions [7]. A 

generalized description of the continuum approach can be seen as a material distribution 

problem over a design space upon which loading and reactionary conditions are imposed. 

Material is then added, removed, or rearranged from within the design space as needed (subject 

to a specified volume fraction of the original space). The structure is, thus, optimised such that 

structure compliance is minimised [93], as shown in Figure 2.16. The design space consists of 

a mesh of small elements with variable properties. The properties of these individual elements 

are changed to optimise the overall structure. 
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Figure 2.16: Continuum topology optimisation of a simple cantilever (created using the Solid 

Isotropic Material Penalisation (SIMP) method [94]) 

Comprehensive reviews of the field of continuum topology optimisation have been completed 

by Eschenauer and Olhoff [95] and Rozvany [7]. Topology optimisation of continuum 

structures began in 1988 when Bendsøe and Kikuchi published their homogenization method 

for the optimum material layout of structures [96]. Their iterative deterministic method was 

based on a series of equations for optimisation of shape and topology of structures for a given 

set of boundary conditions. The approach represented a key departure from previous 

optimisation methods as it only required a boundary in the form of a simple geometric shape, 

usually a square or rectangle, in order to generate an optimum solution.  

Rozvany [7] provided a creditable overview of the field of structural optimisation. Continuum 

optimisation can be divided into deterministic and heuristic approaches. There are also further 

variations in the representational forms of the continuum material; the most prominent 

methods treat materials as either solids or voids (regularly called the Isotropic Solid or Empty 

(ISE) method [7]). 
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Deterministic Continuum Approaches 

Bendsøe’s homogenization method [93] and the subsequent SIMP (Solid Isotropic Material 

and Penalization) method proposed by Bendsøe and implemented by Rozvany et al. [97] are 

both considered the foundations of the entire continuum field and are the most popular 

methods [7]. The approach approximates the binary-style ISE representation for individual 

elements by varying the density/thickness of individual elements between 0 (white) and 1 

(black). However, since a “grey” density of between 0 and 1 (i.e. neither 0 nor 1 but 

somewhere in between) cannot be truly represented nor manufactured, these intermediate 

elements incur a penalty. The overall compliance of the structure is computed through the use 

of finite element analysis. The deterministic method has been used in this manner to minimise 

the cost of the structure as a function of the thickness/density of elements for given 

compliances [97] and to minimise compliances for given volume fractions/weights [94]. 

The formulation for the classic compliance minimization deterministic continuum 

optimisation approach (as given by Sigmund [94]) is given in Eq. 2.1: 

 

 

 

subject to: 

𝑐(𝑥) = 𝑈𝑇𝐾𝑈 

          = ∑(𝑥𝑒)𝑝𝑢𝑒
𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1

 

𝑉(𝑥)

𝑉0
= 𝑓 (volume fraction) 

𝐾𝑈 = 𝐹 

0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 1 

Eq. 2.1 

 

 

 

 

 

 

where:  

𝐾   global stiffness matrix 

𝑈   global displacement matrix 

𝐹   force vector 

𝑢𝑒   element displacement vector 

𝑘𝑒   element stiffness matrix 

𝑥   vector of design variables 

𝑥𝑚𝑖𝑛   vector of minimum relative densities 
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𝑁   total number of elements in discretized design domain (𝑛𝑜. 𝑥 × 𝑛𝑜. 𝑦) 

𝑝   penalization factor (typically set to 3 [94]) 

𝑉(𝑥)  material volume 

𝑉0   design domain volume 

At each step the volume/density of each element is computed based on their current stress 

state. If the volume falls below a certain level (𝑥𝑚𝑖𝑛), then the element is set to 0 (empty). 

Once each element has been evaluated, the global stiffness and displacement matrices are then 

computed to obtain the overall structure’s compliance for that iteration step. Once the change 

in objective function between iterations falls below 1%, convergence is considered to have 

been achieved and the structure is deemed optimised [94]. 

More recently Bruggi and Duysinx [98] published a deterministic approach that aimed to 

minimise both compliance and the self-weight of the structure by implementing the Drucker-

Prager failure criterion [99] for elastic materials that behave differently in tension and 

compression. They found that it was possible to simulate multiple objective optimisation with 

a continuum material by including local constraints on the material properties so that the 

strength of the material (and therefore the weight) was optimised in conjunction with the 

overall compliance of the structure. Zhou [100] optimised continuum truss structures. 

However, instead of minimising the compliance of the structure as with the most popular 

approaches, the fundamental frequency of the structure (given a certain volume fraction) was 

maximised in order to minimise vibrations.  

Heuristic Continuum Approaches 

While there have been many deterministic approaches towards continuum optimisation, 

evolutionary approaches towards continuum optimisation have also been used. Xie and Steven 

[101] first proposed an evolutionary structural optimisation method (ESO) in which redundant 

material is gradually removed in a binary fashion (the so-called “hard-kill” method) using 

populations of individuals with different arrangements of material. Low-stress elements are 

gradually removed from the solutions, until a final solution is achieved where all elements are 

highly stressed, in accordance with Michell’s assertion [5] that the optimal solution will have 

all elements at a highly stressed state equal to their respective stress limits. A drawback of this, 

as noted by Zhou and Rozvany [92], is that ESO (along with other “hard kill” methods) can 

produce a non-optimal design (such as a kinetic mechanism) under specific conditions, due to 
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the fact that removed material cannot be reinstated to the design, thereby limiting the 

effectiveness of the approach. Querin et al. rectified this with bi-directional evolutionary 

structural optimisation (BESO) [102], in which design elements could either be removed or 

added, thereby leading to a vast improvement in performance. 

An alternative version of the ESO approach was proposed by Querin et al. [103], who reversed 

the ESO method of beginning with a solid block of material and slowly removed it by 

gradually adding structural material to an empty design space until the given constraints and 

structural properties were met.  

Huang and Xie [91] provided an excellent introduction to the current field of structural 

optimisation via ESO and BESO. They concurred with Zhou and Rozvany’s findings that the 

entire ESO method can break down and develop a highly non-optimal solution to a seemingly 

trivial problem. They suggested that this problem could be solved by either increasing the 

density of the mesh or by introducing “soft-kill” methods (i.e. where redundant material is 

replaced with low density elements). The soft-kill idea was expanded in Huang and Xie’s 

subsequent paper [104], which introduced multiple materials to the BESO method thereby 

allowing for materials of different densities and characteristics to be incorporated into a single 

evolutionary design. Huang and Xie also used the BESO technique with a repetitive feature to 

design periodic structures [105], which proved both efficient and cost-effective, in terms of 

the computational effort required to design large structures using continuum methods. Finally, 

Huang and Xie [11] published an ESO method based on Sigmund’s deterministic method [94]. 

In it, they also addressed some of the more critical comments on the ESO method [7] and 

admitted that ESO can fail to achieve convergence for an optimal solution. This can occur if 

the mesh is either too coarse or too fine but ESO is ultimately able to achieve more optimal 

solutions than the deterministic SIMP method [94]. 

However, Rozvany [7] noted that an increase in the mesh resolution will have a detrimental 

effect on the computational complexity of the problem. In fact, Rozvany is highly critical of 

any form of ESO-based method for their heuristic methodology: 

 

“ESO is fully heuristic, that is, there exists no rigorous proof that element 

eliminations or admissions on the above basis do give an optimal solution... 

It is not particularly efficient if we have to select the best solution by 

comparison out of a very large number of intuitively generated solutions... 
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Although ESO usually requires a much greater number of iterations than 

gradient-type methods, it may yield an entirely non-optimal solution even with 

respect to ESO’s objective function” 

Genetic algorithms have also been extensively used in continuum optimisation. Numerous 

approaches have used a basic “bit-flip” approach, where individual pixels in a design space 

are assigned material in a binary fashion. This approach is popular due to the ease of mapping 

directly from the binary chromosome to the design space (in a similar fashion to discrete GA 

methods described above). Jakiela et al. [106] used a simple version of the technique to solve 

highly discretized two-dimensional cantilevered plates, with a particular focus on the use of 

the fitness function to effectively evaluate individual designs. However, this basic GA 

mapping approach has limited applicability, as any increase in the size of the design space 

requires a significant expansion of the chromosome length. 

More complex tasks were completed by Zuo et al. [107] who combined Genetic Algorithms 

with BESO. In their approach the individual pixels (described as elements) within the design 

space were evolved from set length GA binary strings, rather than each pixel being mapped 

directly to a gene on the chromosome (which in itself would represent the entire individual). 

They also extended the BESO method to optimise structures in three dimensions, as shown in 

Figure 2.17: 

 

Figure 2.17: Three-dimensional continuum bridge [107] 

In Figure 2.17 Michell’s recommendation [5] of maximising symmetry in optimisation of 

structures is being used to its full effect, as only one quarter of the solution has been optimised. 

Huang et al. [108] also extended ESO methods to three dimensions and combined this with 
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Huang and Xie’s [105] use of periodic structures and multiple material usage [104] to 

efficiently evolve three-dimensional bridge structures thereby requiring less computational 

effort than previously achieved. 

2.4. Constraint Handling  

Before an evolutionary algorithm can evolve an optimal solution to a problem, it must first 

learn to handle the constraints surrounding the problem [20]. Constraints are important for 

design optimisation as they represent high-level information about the performance of an 

individual in its design environment. Design constraints can be either “hard”, i.e. non-

adjustable conditions such as the physical size of the design space, or “soft”, i.e. values which 

can vary between individuals in a population, such as the stress in each member or the overall 

maximum deflection. Only once these constraints have been minimised or overcome (i.e. truly 

fit individuals have been evolved, regardless of their optimality) can the evolutionary process 

be considered to be successful. Constraint handling techniques therefore become important 

when designing a strategy for addressing constraint violations [80, 109]. Two main such 

methods exist, with further sub-methods within each area [110]: 

1. Penalty Functions 

2. Repair Mechanisms 

2.4.1. Penalty Functions 

Penalty functions encompass all methods of constraint handling where an individual’s fitness 

is penalised in some fashion for its performance with regards to the imposed constraints. If an 

individual breaks no constraints (i.e. they are fit), its fitness is unchanged. If, however, it fails 

a constraint (or a number of constraints), then its fitness is altered such that it becomes less 

likely to succeed in successive generations. Penalty functions generally have two distinct areas 

[111]: 

1. Non-scaling Techniques – techniques that deal with constraint violations for each 

individual in the same manner regardless of the number or severity of said violations 

for each individual in a population 

a. The “death penalty” - outright rejection of unfit individuals from the 

population. Rejected individuals are replaced with new individuals who remain 

in the population, if they are fit [68]. This approach is recognised as being the 



 Literature Review 

 

39 

  

most common strategy of constraint handling [80]. However, Coello Coello 

[109] notes that it is only really applicable when the feasible search space 

constitutes a reasonable proportion of the entire representation space (i.e. when 

the ratio of fit to unfit solutions is large). If this is not the case, then the 

algorithm might have difficulty finding suitable individuals to replace unfit 

solutions, especially when there are a large number of unfit solutions in the 

population. 

b. Static penalties - immediate stoppage of inspection of that individual and 

assignment of a single pre-determined “bad” fitness, uniform regardless of the 

severity of the constraint violation [12].  

2. Scaling Techniques – techniques that impose variable constraint violations for a 

particular individual to modify the fitness function so that that individual receives a 

proportionally bad fitness, thereby hindering its chances of reproduction in subsequent 

generations. 

a. Count the total number of constraint violations per individual and modify the 

fitness of that individual based on some function of this number 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 
Eq. 2.2 

Penalties which are purely functions of the number of violated constraints are 

unlikely to evolve an optimal solution, due to an insufficient description of the 

fitness space [111, 12]. 

b. Ascertain the maximum value by which any single constraint across all 

elements in an individual fails, and modify the fitness of that individual based 

on some function of this violation 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓(max(𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠)) 
Eq. 2.3 

c. Combine information on all violated constraints across every element in an 

individual to modify the fitness based on some function of that combination 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑓 (∑ 𝑎𝑙𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 
Eq. 2.4 
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Penalty Functions in Discrete Evolutionary Structural Optimisation 

An overview of the methods used in a selection of the literature reveals a wide variety of 

approaches in constraint handling (comprehensive reviews have been completed by 

Michalewicz [80] and more recently Coello Coello [110]). 

Kicinger et al. [68] used a version of the Death Penalty method in the form of a “feasibility 

filter”, which simply eliminates unfit individuals from the population, and replaces them with 

newly created individuals. 

Both Luh and Lin [77] and Deb and Gulati [14] used a scaling/non-scaling hybrid on the static 

penalty method, which has three levels of violation and produces three levels of penalty (109, 

108, and 107 respectively), after which full scaling techniques (which are a function of the 

amount of constraint violation) are applied. They used five objective design constraints: 

1. Truss is kinematically stable 

2. Deflection is within limits 

3. Stress is within limits 

4. Member cross-sectional area is within limits 

5. Member strength is within limits 

In addition to these objective constraints they also had a subjective constraint of “Truss is 

acceptable to the user”, which would imply a level of interactivity with the fitness function 

(this is not the convention with evolutionary structural optimisation in either continuum or 

discrete forms). This was accomplished by visually inspecting each individual to ensure that 

it complies with the design constraints (i.e. all basic nodes are present). This constraint 

notation is arguably flawed, however, in that both the cross-sectional area and the member 

strength should be seen as a non-negotiable quantity (i.e. the algorithm should not have the 

option of creating a member with an unacceptable area or strength in the first place). 

Pholdee and Bureerat [62] used scaling limits, thus modifying the fitness by adding a penalty 

factor to the original fitness in the form of the summation of maximum failed constraints. This 

summation was then multiplied by a constant to further penalise the fitness value. 

Kaveh and Talatahari [65] took an interesting approach to constraint violation with their hybrid 

PSO method. Since movement of particles is based in part on the fitness of their neighbours, 

a neighbour with a bad fitness will repel other particles. In their approach, if a 
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particle/individual breaks any of the constraints as specified in the problem, the particle is 

automatically reset to its original position. This would seem to imply that particles at a local 

optimum (i.e. a position in the fitness space around which all other positions have a worse 

fitness) would essentially be immobile and would be unable to escape from the confines of 

their location. 

Kawamura et al. [73] used a cumulative multiplier, which multiplies the summation of all 

violated constraints against each other. This in effect is a scaling penalty, but the authors failed 

to elaborate whether this violation multiplier was applied for each constraint per element in an 

individual or simply for a single member. 

Ohsaki [63] used scaling penalties comprising the summation of all amounts by which 

constraints are violated, but only considered the analysis of stress and deflection; no buckling 

calculations were done. 

Hajela and Lee [69] added a scaled penalty value of the sum of the failed constraint values, 

and compared the fitnesses of all individuals against the worst performing individual (usually 

limited to twice the average fitness of the population). 

The most comprehensive of constraint handling techniques comes from Shea and Smith [85], 

who applied seven separate constraints to their evolutionary strategy. These constraints were 

handled as a mixture of hard and soft limits, with factors such as member slenderness ratios 

and angles between members as hard limits, and stress and buckling limits classified as soft 

limits (no displacement constraints were used, as no such information in the design 

documentation was found). The soft limits summed the violations of all constraints across all 

members and nodes in an individual, which was then multiplied further by a weighting/scaling 

factor.  

2.4.2. Repair Operators for Unfit Individuals 

With repair of unfit individuals, solutions which fail constraints are altered/repaired in some 

way such that they will then pass the constraints. These repair operators are especially suitable 

for discrete structural optimisation problems, as given a specific topological layout, there is 

the possibility to directly calculate the required cross-sectional areas for all members and, thus, 

improve the fitness of the structure [12]. 
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Deb [112] noted that the most difficult aspect of penalty assignation is finding the most 

appropriate method of guiding the search towards the optimum (i.e. how to assign penalties to 

unfit individuals in such a way that the search process does not deteriorate). Deb proposed a 

method for use with GAs that used information of previously known fit individuals combined 

with a modified version of tournament selection to increase the proportion of fit individuals in 

each generation, thereby skirting the issue of constraint handling in unfit individuals by 

minimising their numbers. Deb argues that this forces the search towards the more feasible 

region of the search space. 

However, Michalewicz [80]  has a contrasting view on this matter noting that there can be 

multiple feasible regions within a search space - each surrounded by unfeasible regions. Given 

a random pair of individuals from the search space (one fit and one unfit) there is a possibility 

that the unfit individual could be “closer” in its semantic representation to the global optimum 

than the fit individual. Figure 2.18 shows a theoretical idealised fitness landscape, with the 

global optimum being represented by “x”. In this instance, the unfit individual “f” is closer to 

the true global optimum than the fit individual “d”, which is a local optimum. However, if fit 

individuals are always treated as superior to unfit individuals, then this makes it more difficult 

for the algorithm to find the true global optimum as it may become stuck in a local optimum. 

By this logic, using Deb’s suggestion of forcing search towards feasible regions of the search 

space would potentially prevent isolated feasible regions from being included in the search 

process. 

To put this concept into context, Li et al. [64] noted that Kaveh and Talatahari’s method of 

resetting PSO particles to their previous best known location in the instance of violated 

constraints [65] can degrade the efficiency of the PSO method and ultimately prevent it from 

finding the global optimum. Li et al. allowed violations to occur, but then forced the particles 

to return to the feasible region in the design space. While Pholdee and Bureerat [62] stated 

that the optimised values of all constraints will be at or near to their respective constraint limits 

for a true optimum (though not necessarily the global optimum), Li et al. took this concept a 

step further by stating that any optimum solution will be found on the very boundary of the 

feasible/infeasible region within the search space (i.e. every constraint is at its very limit). This 

holds with Michell’s description (as given in Section 2.3 [5]) that the global optimum exists 

where all constraints are at their maximum limits. Since any single increase in any constraint 
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value would violate that constraint limit and, thus, render the solution unfit, arguably the true 

global optimum will be found on this boundary region [64]. 

 

Figure 2.18: Multiple feasible regions (shaded in grey) within a search space [80] 

In forcing particles to return to the feasible region of the design space, Li et al. [64] ensured 

that these particles crossed this feasible/infeasible boundary and, thus, had a much higher 

chance of finding a local (and the global) optimum. Since this crossing of the 

feasible/unfeasible boundary region leads to a better search, it is preferred to “repair” unfit 

individuals which lie just outside of the feasible boundary, such that they cross over (and lie 

close to) the barrier. 

Shea and Smith [85] allow for small constraint violations on each individual; any individual 

with a constraint violation within some pre-defined limit is deemed to be repairable. In this 

instance, manual reassignment of member section sizes is done, until all constraint violations 

fall below a level of 3% (implying a level of interactivity, similar to that demonstrated by Luh 

and Lin [77] and Deb and Gulati [14]). Since in their work the authors must address 18 test 

load cases, optimisation of member sizings must be compatible for all load cases. However, 

they were unable to use deflection constraints in conjunction with this repair operator due to 

a lack of corresponding design documentation information.  



 Literature Review 

 

44 

  

Such a repair operator for minimally unfit individuals was also used by Kicinger et al. [68]. A 

key finding of their work was that symmetry produces better individuals; based on this, the 

authors modified specific genotypes of asymmetrical individuals such that they would become 

symmetrical, potentially increasing their fitness values. 

2.5. Discussion 

From the reviewed literature presented above, a number of observations can be gleaned with 

respect to the efficiency of various methods of evolutionary structural optimisation. While 

continuum topology optimisation approaches have been repeatedly proven to be 

computationally and structurally more efficient than heuristic forms of discrete truss design 

[7, 11], they are implicitly cost-ineffective to manufacture, as non-standard elements, forms, 

and construction methods are required [12]. Discrete optimisation methods currently have the 

potential to be applied to a far wider array of applications in a real world environment, as 

existing fabrication technologies and construction practices can still be used, thus requiring no 

bespoke industries. 

All of the reviewed discrete optimisation literature related to discrete pin-jointed ground 

structure trusses optimised their member sizings by minimising the required cross-sectional 

area of each member. However, a number of questions can be raised about the validity of these 

results. A typical benchmark, discrete optimisation problem attempted by many within the 

reviewed literature is the 10-member, 6-node ground structure cantilever truss shown in Figure 

2.19. 

A selection of optimised member sizings from various approaches in the literature is presented 

in Table 2.2. The overall differences between three varying approaches is just 4.36 lb. To 

obtain these highly optimised overall structure weights, some very fine control of member 

sizings is needed; element cross-sectional areas with a precision of up to 0.0001 square inches 

(in the case of Kaveh and Talatahari) are required for construction of these solutions. Common 

sense would tell the reader that such fine control is impossible to achieve in current mass 

material production in the civil engineering domain, and even if it were this would render the 

manufacturing of such elements prohibitively expensive. 
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Figure 2.19: 10-member, 6-node ground structure problem [14] 

A far more realistic approach would be to use readily available common construction 

elements. Yet, this review could find no benchmark optimisation problems, which were 

tackled in this manner. The only literature using real construction elements is that literature 

which deals with real-world optimisation problems, such as Bohnenberger et al. and Shea & 

Smith’s electricity pylon optimisation approaches [72, 85]. The difference between idealised 

materials and real world construction elements on these same benchmark problems is therefore 

of interest to gauge the efficiency of the proposed evolutionary optimisation method and to 

observe any disparities between the use of different materials. 
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Table 2.2: Optimised element cross-sectional areas (in2) for 10-bar, 6-node truss. F1 = 

444,800 N, F2 = 0 N 

Element 

Cross Sectional Area (in2) 

Lee & Geem (2004) 
Li et al. 

(2007) 

Kaveh & Talatahari 

(2009) 

1 30.15 30.70 30.31 

2 0.10 0.10 0.10 

3 22.71 23.17 23.43 

4 15.27 15.18 15.51 

5 0.10 0.1 0.10 

6 0.54 0.55 0.52 

7 7.54 7.46 7.44 

8 21.56 20.98 21.08 

9 21.45 21.51 21.23 

10 0.10 0.10 0.10 

Structure Weight (lb) 5057.88 5060.92 5056.56 

Deb & Gulati [14], Ruiyi et al. [70], Hajela & Lee [69], and Luh & Lin [77] also proposed 

similar topology optimised solutions to a 10-member, 6-node ground structure (as shown in 

Figure 2.19) for a cantilevered truss. Their solutions allowed for the subtraction of members, 

but not the addition or location variation of nodes. In all cases the weight of the truss was 

minimised by varying the cross-sectional area of members. Their proposed optimised topology 

is shown in Figure 2.20. 

 

Figure 2.20: Proposed solution to 10-member, 6-node ground structure [14] 
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In this solution, it can be seen that there are five of the six original nodes remaining (shown in 

red), while there are six of the original ten elements. What is interesting to note here, however, 

is that while Deb and Gulati acknowledge that co-axially overlapping members (i.e. if member 

2 extended through member 6 to connect the outermost loaded node to the support) are 

physically impractical, their solution, and indeed every proposed solution to this particular 

ground structure problem (including those solutions lacking a topological bit operator, as 

shown in Table 2.2) involves overlapping members.  

In Figure 2.20 members 1 and 3 overlap at their midpoint, thereby creating a new node (noted 

at point (a)). Ohsaki [63] defines a node as a point where at least one extra member with a 

positive cross-sectional area meets another. Hajela and Lee [69] impose a specific design 

constraint that no solution can add new nodes, yet by any definition of the term, new nodes 

are necessarily being created by their designs where members intersect. All ground structure 

optimisation methods reviewed in the literature ignore such overlaps with the exception of the 

work presented by Gilbert and Tyas [87]. In reality, however, these planar member overlaps 

have significant implications for the structure. In the given example, member 1 (one of the 

three longer members) is in compression. As the longest compression member in the structure, 

it would be at risk of buckling under high loading conditions. However, the intersection of 

member 3 at its midpoint creates a new nodal point, effectively laterally bracing the member. 

This means that the analysis and optimisation results of this structure are unrealistic as they 

are based on a fundamentally unsound assumption, and, thus, they do not represent the true 

performance of the structure. 

Arguably, the most interesting discrete optimisation methods found in the literature are those 

presented by Li and Chen [51] and Wei et al. [89]. Li and Chen developed an approach for 

calculating the principle stress field for any given design domain and were subsequently able 

to optimise a beam structure to satisfy all of the design criteria within that domain, with respect 

to minimization of the strain energy of the structure, as shown in Figure 2.21. 

Both this approach and that of Wei et al. [89] (shown in Figure 2.15) are notable for one main 

reason: just as with continuum optimisation methods, they do not require any information 

about the design domain other than the boundary conditions (i.e. loading, fixing locations, 

etc.). However, their approach is quite limited, in that it only allows for minimization of strain 

energy (yet again the same as continuum optimisation methods). As such, no direct 
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comparisons with discrete optimisation techniques addressing weight minimization could be 

made. 

 

Figure 2.21: Discrete optimisation of the strain energy of a cantilever structure [51] 

2.6. Summary 

This chapter presented an overview of the literature surrounding the areas discussed in this 

thesis. Evolutionary Computation and its derivatives were reviewed, including Evolutionary 
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Algorithms, Genetic Algorithms, and Grammatical Evolution. An overview of the state of 

evolutionary structural optimisation was given, and the various methods therein – including 

both discrete and continuous optimisation methods - were examined. Differing optimisation 

methods from the literature were compared and contrasted, and a number of recommendations 

and interesting potential research areas were identified: 

 The majority of reviewed discrete optimisation literature use unrealistic assumptions 

about material properties and physical structure layout, while fundamental engineering 

principles are overlooked. This is not typically an inherent defect of the methods used, 

but rather a poor definition of the problem; 

 There is a tendency in the literature to focus on minute improvements to optimisation 

methodologies, leading to results that require manufacturing precisions that are 

currently unrealistic in the field of civil and structural engineering. This issue can be 

readily addressed by constraining the methods to use common construction elements. 

 Traditional ground structure discrete optimisation approaches are severely limited in 

their representation capabilities by the necessity to specify all potential solutions a 

priori, and thus cannot cover the search space as effectively as possible; 

 Simultaneous optimisation of member sizing, structure shape, and structure topology 

produces the best theoretical optimisation results but is difficult to represent with a 

constrained ground structure representation and even more difficult to achieve 

effectively due to the size of the required representation space; 

 The larger the representation space, the better the chance of success is and the better is 

the overall quality of the individual solutions. However, a larger representation space 

results in less fit individuals; the management of unfit individuals via the handling of 

constraints then becomes crucial to improve evolutionary performance. 

The following chapter provides an in-depth discussion of the Grammatical Evolution method, 

and the approach to design generation and the evolutionary process as used within this thesis. 
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Chapter 3. Design Generation & the Evolutionary 

Process  

 

3.1. Introduction 

This chapter will outline the approach to design generation and the evolutionary process as 

used in this study. The chapter describes the methodology used in this thesis and provides a 

full description of the Grammatical Evolution (GE) method employed [48, 46].  

GE is a grammar-based form of GP where the grammar provides a representation in which 

one can easily encode the structure of the possible solutions [46, 113, 114]. In its most basic 

form, GE begins with a population of individuals, with each represented by a genotype - a 

single chromosome (an array of integers). Each chromosome is passed through a grammar, 

which acts as a form of translator to convert the integer array into an executable program. 

Execution of the program produces a solution, known as the phenotype, which is evaluated by 

passing it through the fitness function in order to determine its suitability for purpose. The 

fully evaluated population is then ranked in order of fitness. The next generation is created by 

varying the population to produce new individuals with genetic qualities of those from the 

previous population, in such a way that the fittest individuals have the greatest chance of 

passing on genetic material to subsequent generations. After a number of iterations, the single 

best individual is returned as the best evolved solution. A basic graphical overview of the GE 

process is presented in Figure 3.1: 
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Figure 3.1: Basic overview of the GE process 

GE’s advantages over a regular GA lie primarily in the power of the genotype to phenotype 

mapping process. A formal grammar is used to define a set of production rules, which generate 

production choices using a GP-style tree-based mapping method as described in Section 2.2.3. 

Each gene on the chromosome of an individual dictates which specific production choice is to 

be chosen from a particular production rule (this process is referred to as the “mapping”). 

Production rules and choices are expanded to create an executable program, which generates 

a solution when executed. This intermediate step means that direct mapping from the genotype 

to the phenotype (the standard method for GAs [34]) is not necessary. While similar results 

may be technically possible using other methods, GE’s use of the formal grammar makes the 

process far easier and faster, while also allowing for greater flexibility in the representation of 

the solution [46]. The combination of multiple production rules and choices allows for 

complex programs to be derived with ease, and one can efficiently embed all manner of useful 

domain knowledge in the grammar constraining the form of the generated solution [46, 115].  

When comparing the use of grammars in structural optimisation to pre-existing methods such 

as Artificial Neural Networks or Particle Swarm Optimisation, grammars have the advantage 

that the output from the search process is human-readable. The grammar can be readily altered 

to suit any application, which allows for easy and quick analysis of results across a variety of 

platforms. The method also enables the addition of numerous constraints and bias about the 
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structure of the solution into the grammar itself [48, 113, 56, 55], all of which can reduce the 

representation space to a more manageable size. 

From the literature discussed in Chapter 2, it has been identified that the most efficient method 

of evolving optimal discrete truss structures is to optimise the structural shape, structural 

topology, and the member sizings in parallel. In order to achieve this, a new technique must 

be utilized that will allow for the generation and evaluation of a highly diverse range of 

structural forms. GE has been previously proven with regards to generating architectural [29] 

and sculptural forms [55], and can be readily employed for structural engineering applications 

by adding analytical capabilities that allow for the evaluation of the physical stress states and 

resultant properties of the designs [61]. 

Evolution of multiple data sets using genetic-based evolutionary algorithms requires 

information regarding those data sets to be encoded in the chromosome. In order to evolve 

different data sets (i.e. multiple aspects of a single design concurrently), a large chromosome 

would be required, along with the ability to not only identify separate sections on the 

chromosome relating to the different data sets but also to keep those sections distinct during 

variation and replacement between generations. Whereas traditional GE uses a single 

chromosome to evolve solutions, this thesis theorises here that simultaneous optimisation of 

structural shape, structural topology, and member sizing could be done in parallel with the 

addition of a second chromosome. By restricting the first chromosome to defining the topology 

and shape of the overall structure and leaving the governance of member sizing to the second 

chromosome, there would theoretically be complete isolation between data sets. With careful 

management, this would allow for synchronous evolution of the structural shape, structural 

topology, and member sizing. This concept is discussed in more detail in Chapter 4. 

3.2. Methodology Overview 

What is presented in this chapter is a tool for design and optimisation of physical truss 

structures using Grammatical Evolution. The Python programming language is used due to its 

relative usability, its capabilities in interacting with other programs, and its excellent 

documentation. The truss structures described here are composed of simple beam elements, 

each with specific material properties. Each structure must obey design constraints such as the 

maximum size of the structure and the physical limits of the materials, along with structural 

limits imposed by design codes of practice [60]. Using a method that has previously been 

found to be fast, reliable, and accurate [61], structures are analyzed using a separate open 
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source analysis program [116], and are evaluated based on comparisons between the results 

of the analysis and the provided design constraints. 

In a departure from traditional GE [44], the implementation described here uses two separate 

chromosomes to simultaneously evolve two aspects of the solution [117]. Chromosome A 

(hereafter referred to as Ch.A) governs the topology and member layout of the structure by 

defining node locations and connections (edges/beam members), while Chromosome B 

(hereafter referred to as Ch.B) governs the sizing of the individual structural members within 

the structure. In this manner the simultaneous optimisation of structural shape, topology, and 

member sizing was attempted. 

A graphical overview of the entire evolutionary process used here is shown in Figure 3.2. Each 

of the main steps in the leftmost column of Figure 3.2 represents a major process acting on 

populations of individuals. Each main process is composed of many smaller steps, which are 

performed on each of the individuals (or groups of individuals) in the population at that step. 

Details of each of these main processes, steps, and individual functions are elaborated in 

subsequent sections in this chapter: 

 Section 3.3 details material specification; 

 Section 3.4 details population initialization; 

 Sections 3.5 to 3.8 detail population evaluation; 

 Section 3.9 details selection, variation, and replacement. 
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Figure 3.2: Flowchart of the Grammatical Evolution process as used in this thesis. Blue 

represents actions performed on populations of individuals, whereas red indicates actions 

performed on individuals themselves. 
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3.3. Material Specification 

Much of the GE implementation presented in this thesis depends on the available construction 

materials and section sizes from which the structures are composed. The process begins by 

generating a list of the available materials and material section sizes selected for that specific 

run based on a pre-determined material input file. While any type of material can be used, for 

this study available construction materials are taken from the Tata Steel Blue Book [118]. 

Unless otherwise specified, the materials used are S355 steel “Celsius®” hot finished Circular 

Hollow Sections (CHS), which are in accordance with BS 5950-1: 2000 [60] and BS EN 

10210-2: 2006 [119]. Circular hollow sections were chosen due to their uniformity and 

consequently the fact that orientation of the members is not a consideration. The material has 

a density of 7,850 kg/m3 and a Young’s Modulus of 210,000N/mm2. 

Once the program is initialized, a list of available section sizes is compiled based on the 

specified materials. Each section has the following properties: 

i. Section id. This is the reference tag by which each particular section size is 

known. Ch.B is essentially comprised of section id tags, each of which will 

reference a particular steel section. 

ii. External diameter 

iii. Thickness 

iv. Unit weight 

v. Cross-sectional area 

vi. Second Moment of area 

vii. Young’s Modulus 

viii. Density 

In addition to these basic material section properties, each section carries a knowledge of its 

compressive resistance (Pc) when in axial compression, as detailed in the Tata Steel Blue Book 

[118]. These compressive force limits are given for specific effective lengths of members. For 

section sizes with an outer diameter of less than 273mm, compressive resistances are given 

for effective lengths of 1m, 1.5m, 2m, 2.5m, 3m, 3.5m, 4m, 5m, 6m, 7m, 8m, 9m, and 10m. 

For sections with an outer diameter of 273mm or greater, compressive resistances are given 

for effective lengths of 2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 11m, 12m, 13m, and 14m. 

Since truss members are considered to have pinned connections and the effective length factor 
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of a pinned-pinned member is 1.0, the given compressive resistances can be applied to 

members in compression without modification. 

These sections not only define the strength of each element in the structure but also are used 

to constrain the values for Ch.B of each individual – the maximum permissible value of any 

part of Ch.B is set equal to the number of available section sizes. Using this correlation, it is 

then possible to directly map from Ch.B to the phenotype of the individual (in a similar manner 

to a traditional GA mapping) to define the section size of each member in a structure. 

3.4. Population Initialization 

Initialization of the population in the first generation is achieved using a GA-specific 

initialization method known as random initialization. As its name would suggest, the 

population is initialized by randomly generating chromosomes of a pre-specified maximum 

length (rather than specifying different tree layouts, as would be the case in canonical GP 

[33]). GAs usage of a binary genotypic string lends itself well to random initialization; a GA 

population is most usually initialized by generating a population of random binary strings [34]. 

However, using this method, it is possible for the initializer (or the evolutionary process) to 

create a chromosome that does not map fully.  

As detailed in Section 3.5, a production choice may either designate a terminal or may lead to 

a new production rule (itself with further production choices). Since each gene on the 

chromosome dictates which production choice is to be selected from a production rule, the 

potential then exists so that by the time the end of the chromosome is reached, all production 

rules have not finished being expanded (i.e. the mapping has not terminated and there are still 

open branches). In this instance, GE has the inherent ability to “wrap” chromosomes. If an 

individual is not fully mapped by the time the last codon on the chromosome is reached, the 

mapping process will continue to expand the remaining production rules by restarting from 

the beginning of the chromosome [48]. However, in recent work [120] wrapping has been 

shown to be damaging, if the grammar is poorly designed. If an individual is not fully mapped 

after the mapping has wrapped twice around the chromosome, it can be considered that the 

mapping process will never terminate. The chromosome length, thus, must be sufficiently 

large that this does not occur. For problems where no recursion exists (i.e. all individuals will 

have the same chromosome length) a randomized initialization process is the most efficient 

method [20]. 
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In this thesis (unless otherwise specified), each individual instance will have either one 

(Chromosome A, or Ch.A) or two (Ch.A and Ch.B) chromosomes. When using one 

chromosome in this study, GE is operating in a similar fashion to a traditional GA. This study 

exclusively uses random population initialization of individuals in the first generation. For 

each chromosome, an integer string is generated up to a specified length. Longer chromosomes 

have the effect of lengthening the run time of the evolutionary algorithm, while shorter 

chromosomes may not be able to allow the grammar to adequately expand to its maximum 

tree depth. In most cases in this work, only a very short portion of the chromosome is actually 

used by the most successful individuals. The maximum chromosome length must still be 

carefully chosen such that it is long enough to ensure every individual will be completely 

expanded but not so long as to adversely affect the run time of the evolutionary process. A 

number of initial experiments were performed with varying chromosome lengths, and 

maximum chromosome length of 500 codons was selected for all experiments performed in 

this thesis. 

3.4.1. Population Size 

The population size has a significant impact on the effectiveness of the evolutionary process. 

Too small a population will see the algorithm getting stuck in a local optimum (whereby any 

single change on the chromosome of an individual would result in a worse fitness), while too 

large a population size will increase the run time of the program to infeasible levels. The 

majority of computational efforts required in each evolutionary run revolves around the 

evaluation of individuals; this phase can therefore be viewed as a “bottleneck” – a larger 

population will mean more individuals to evaluate. Multi-core threading is used to great effect 

in this study in order to minimize the computational time required to evaluate a population of 

individuals, as the evaluation and analysis of one individual has no bearing on that of another 

individual. Thus, multiple individuals can be evaluated simultaneously across multiple cores, 

thereby leading to greatly reduced overall computational time. This multi-core processing 

allows for larger populations to be evolved. All other steps outside of these evaluations must 

be run on a single process thread and as such cannot be parallelized. 

However, a question still remains as to the most appropriate ratio of population size to 

generation size for an evolutionary run. The only way to truly tell the most suitable settings 

for an evolutionary run is to perform a parameter sweep set of experiments, whereby a number 

of variables are kept constant and a select few are varied. A simple such experiment was run 
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in order to ascertain the most effective ratio between the population size and generation size. 

To this end, a basic grammar was created to evolve a simple cantilevered truss, as shown in 

Figure 3.3.  

 

Figure 3.3: Design envelope for parameter sweep experiment 

The total span of the structure was set at 18,288 mm (60 feet) and a height of 9,144 mm (30 

feet). Two vertical loads of 444,800 N were placed on the structure. Mutation rates and 

crossover probability were held constant at 1% and 75%, respectively. The population size 

was then varied from 100 to 1000, while generation size correspondingly decreased from 1000 

to 100. The total number of evaluations for every run remained constant at 100,000.  

The objective of this experiment was to see which combinations of population size and 

generation size produced not only the lowest average fitness values but also the fastest 

convergence and lowest standard deviation. For each evolutionary setting, 30 runs were 

completed. At each generation in each run, the fitness value of the fittest individual in the 

population was recorded. Once a full set of runs were completed for particular parameter 

settings, the average and standard deviations of the best fitness values across all runs were 

calculated for that run. These average fitness values were then graphed to easily visualize 

differences between evolutionary parameter settings. 
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Figure 3.4: Parameter sweep experiment to demonstrate the difference between population 

and generation sizes 

Figure 3.4 shows the combination of a high population size and a small number of generations 

leads to both a higher convergence rate and a far lower average fitness than a low population 

size with a higher number of generations. A lower overall standard deviation can also be seen 

in the results presented in Table 3.1: 

Table 3.1: Final results from evolutionary parameter sweep 

Population Generations 

Standard 

Deviation 

(final, in kg) 

Average 

Fitness 

(final, in kg) 

Average Run 

Time 

(hh:mm:ss) 

100 1000 167.17 2177.97 00:10:48 

200 500 108.33 2116.38 00:10:57 

250 400 111.33 2106.92 00:10:58 

400 250 148.92 2096.91 00:11:19 

500 200 83.49 2086.96 00:11:37 

1000 100 62.96 2054.65 00:13:15 
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Figure 3.4 and Table 3.1 both show that the combination of a larger population size and a 

comparatively small number of generations leads to better evolutionary performance in the 

problems addressed in this thesis. A marginal increase in computational run time can be 

observed with increasing population sizes. These findings corroborate those of both Koza [33] 

and Goldberg [121], who recommended as much as possible to keep the population size high 

in relation to the number of generations. 

3.5. Grammar 

As with spoken language, a formal grammar defines a language via a series of rules. These 

rules (called production rules) each have a number of choices (called production choices) that 

they can create. Production choices can be terminals (i.e. no further choices can be made, 

similar to a leaf at the end of a branch), non-terminals (leading to more production choices, 

similar to a fork in a branch which leads to more branches), or combinations of both. Figure 

3.5 shows a basic non-recursive Bacus Naur Form (BNF, [45]) grammar, starting with the 

production rule <Rule_1>. The non-terminal production choices for this rule are <a> or 

<b>, each of which have their own terminal production choices. 

 

<Rule_1> ::= <a> | <b> 

<a> ::= x | y 

<b> ::= x + y | x – y 

 

Figure 3.5: Example of a non-recursive grammar rule 

The grammar example shown above uses a fixed-length chromosome, with a depth of 2 (i.e. 

each time the grammar is used, it will only require the use of two codons). However, there is 

the possibility for grammars to be recursive by setting a production choice as a part of its own 

non-terminal, as shown in Figure 3.6. 

 

<Rule_2> ::= <a> | <b> + <Rule_2> 

<a> ::= x | y | z 

<b> ::= x + y | x – y | (x + y)/z 

 

Figure 3.6: Example of a recursive grammar rule 

In this example, there is a 50% chance that the production rule <Rule_2> will be mapped 

again, meaning a variable length chromosome is needed. The lowest number of required 
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codons is 2 (as in the fixed-length example shown in Figure 3.5), but theoretically there is no 

upper bound to the length of the chromosome required for this grammar. While this may seem 

like a potential issue, probability theory ensures that recursion does not become 

unmanageable. From the outset, there is a 50% chance that the production rule <Rule_2> 

will be called again. If it is called again, it again has a 50% chance of being re-called for the 

next iteration. The probability of <Rule_2> being called over n iterations is 1/2n; as the 

recursion depth increases, so too does the probability of termination. In this thesis, only Ch.A 

is passed through the grammar itself to generate the derived program in the above manner. 

Ch.B comes into effect once the mapping process is completed and the derived program is 

executed. 

3.5.1. Truss Generation 

Traditional ground structure approaches to design generation use individual genes in the 

chromosome to indicate the presence or absence of elements in the design representation in a 

binary fashion [69]. More elaborate approaches expand on this to allow multiple genes to 

encode information for each design element, thereby increasing the design representation 

capabilities and, thus, the representation space [63]. The grammatical approach described here 

differs in that physical designs are created by generating node locations and edge properties. 

The chromosome can indicate the presence, absence, or location of any number of nodes or 

edges via the grammar. The derived program will then create a list of those nodes and edges 

for later manipulation by the evaluation function. This intermediate step allows the grammar 

more freedom in its expression of physical designs, thereby negating the need for restrictive 

direct mapping from chromosome to phenotype. 

3.6. Genotype to Phenotype Mapping 

The mapping process in GE is a major departure from traditional GP [46]. Whereas GP 

generates individuals using a tree-based system [33], GE is based on the biological notion of 

genotype to phenotype mapping. Production rules/non-terminals are expanded from left to 

right [46]. The expansion of a non-terminal is determined by the value of the current gene 

modulo the number of production choices in the current rule.  

This GE mapping process can be readily explained using the corresponding biological 

terminology. The phenotype of a solution generated by GE is defined by that solution’s 

chromosome, in the same way that the phenotype of an organism is defined by that organism’s 

DNA. Any changes to the DNA of that organism, such as mutation of individual genes, or 
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crossover of entire portions of the DNA with that of another organism, will have corresponding 

observable effects on the phenotype of the organism. The phenotype of the organism is 

translated from DNA via RNA, whose sequence establishes the combination of amino acids, 

which in turn creates a protein which has a phenotypic effect. Similarly, the binary genotype 

(traditionally favoured by GA methods [34]) is converted to an integer string, whose sequence 

selects a combination of productions from the grammar, which in turn generates a phenotype 

(in the form of an executable program), which finally creates a solution when executed. 

The production choice for a codon is the current chromosome codon modulo the number of 

available production choices: 

 𝐶ℎ𝑜𝑖𝑐𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑑𝑜𝑛 % 𝑁𝑜.  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 
Eq. 3.1 

GE can also be modified to map directly from the chromosome to the phenotype. This is 

achieved with a special production rule known as <GECodonValue>. Whenever the 

grammar parser reads this string, it substitutes the next available codon value from the 

chromosome as an integer. The mapping terminates once no non-terminals remain in the 

derivation string.  

To give an example, let the chromosome shown in Figure 3.7 be applied to the variable-length 

grammar presented in Figure 3.6. 

 [13,4,5,8,16,1,14,19,3,16,15,15,0,7,3]  

Figure 3.7: Sample chromosome of length 15 and maximum codon depth 20 

There are two production choices for <Rule_2>, three for <a>, and three for <b>. Using 

this information, each codon on the chromosome creates a part of the derived solution. This 

mapping process is shown in Table 3.2. 

For this sample chromosome, once the mapping reaches the sixth codon, all non-terminals 

have been mapped, and the mapping itself terminates. The remaining portion of the 

chromosome (known as the tail) remains unused, although subsequent crossover or mutation 

on the individual could bring it in to play. The final phenotype for the sample chromosome is 

shown in Figure 3.8. 
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 (x – y) + ((x – y)/z) + y  

Figure 3.8: Derived phenotype from sample chromosome 

Table 3.2: Mapping of a sample chromosome through a sample grammar 

Codon % No. Choices Choice Grammar Production 

13 % 2 1 <b> + <Rule_2> 

4 % 3 1 x - y 

5 % 2 1 <b> + <Rule_2> 

8 % 3 2 (x + y)/z 

16 % 2 0 <a> 

1 % 3 1 <y> 

GE codons are intrinsically polymorphic, with the exact meaning of any single codon being 

affected by the preceding codons. This means that the mapping for the second codon on the 

chromosome is wholly dependent on the value of the first codon. Similarly, the mapping for 

the third codon will be dependent on both the first and second, and so on. If the value of the 

first codon in the example chromosome from Figure 3.7 were to change from an odd to an 

even number, it would have a drastic effect on the derived phenotype. This is known as the 

GE Ripple Effect [122], and is discussed in greater detail in Section 6.3.7. 

3.6.1. Maximum Codon Size 

Ch.A is seeded with random integers throughout (random number generation in Python is 

accomplished using the Mersene Twister random number generator (RNG) [123]). Each codon 

in the chromosome is selected from within a pre-specified range of numbers – between 0 and 

the maximum permissible value, known as “CODON_A_SIZE”. CODON_A_SIZE must be 

carefully selected such that it allows for selection of the full range of grammatical possibilities 

(i.e. the maximum number of non-terminals for any production rule must be less than or equal 

to CODON_A_SIZE), in order for the representation space to be properly explored. In general, 

CODON_A_SIZE does not influence the time taken to complete an evolutionary run. The 

recommendation is, thus, to set the CODON_A_SIZE as high as possible to introduce as little 

bias as possible from the codon value itself [124]. 

For example, consider a grammar written that would select a number from 1 to 100 in equal 

increments of 1. If the maximum codon size were to be set to 9, then the only available 
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solutions from this grammar would be 1, 2, 3, 4, 5, 6, 7, 8, 9, and 101. In this instance, 

CODON_A_SIZE would need to be set at a minimum of 99 in order to cover the entire set of 

numbers. However, if it were set at 100 this would essentially mean that the probability of the 

grammar selecting 0 would be twice as great as any other number as 100 % 100 = 0. This 

introduces a bias into the grammar towards selecting the outcome 0. Due to this, 

CODON_A_SIZE should be set either at the maximum number of non-terminals across all 

production rules in the grammar, a multiple thereof, or else some extremely high number so 

as to minimize bias.  

For the first generation, Ch.B is seeded with a uniform random number throughout (i.e. each 

codon in the chromosome will be identical for each individual in the first generation). The pre-

specified maximum permissible range for Ch.B (CODON_B_SIZE) is equal to the number of 

potential section sizes available. If there are 127 different section sizes available, then 

CODON_B_SIZE will vary between 0 and 126. Values for Ch.B are taken directly from the 

chromosome (i.e. there is direct mapping between the genotype and phenotype for Ch.B). 

3.6.2. Parsing of Phenotype Information 

For each individual, Ch.A and Ch.B are passed through the grammar to create a phenotype in 

the form of an executable Python program (a sample phenotype is shown in Appendix A.2). 

Once this program is executed, a list of information is then constructed for each individual in 

the form of a Python dictionary. An instance (individual object) of the “Individual” class is 

created for each individual in the population. Each individual will have the following unique 

characteristics: 

i. A phenotype, in the form of an executable python program  

ii. Ch.A, in the form of an integer array 

iii. Ch.B, in the form of an integer array 

iv. Number of used codons from Ch.A, i.e. the amount of the chromosome that is 

required to generate the individual 

v. Number of used codons from Ch.B, i.e. the amount of the chromosome that is 

required to generate the individual 

                                                 
1 Since python indexes from 0, a codon value of 0 would return the number 1; a codon value of 1 would return 

the number 2, etc. 



 Design Generation & the Evolutionary Process 

 

65 

  

Once both chromosomes have been passed through the grammar to generate a phenotype, this 

phenotype is executed in order to generate a graph object. A graph object is a dictionary of 

information about both the locations and characteristics of nodes and edges (connections 

between nodes). Any amount of information about nodes or edges dictated in the grammar can 

be stored in this dictionary and can be then returned for later use in the analysis section of the 

program. The information contained in the graph object is extracted to form separate 

dictionary lists of nodes and edges for each individual, which are then added to the previously 

listed knowledge of the individual’s phenotype and chromosomal data. The list of information 

on each individual will now additionally contain: 

vi. A list of all graph nodes known as the node list, with each node comprising of: 

 Node id (an integer used to identify that particular node) 

 X- coordinate  

 Y- coordinate 

 Z- coordinate 

 Node label (i.e. “loaded”, “fixed”, etc.) 

 Node loading vector 

Loads are applied to nodes in the grammar as a three-dimensional vector of 

forces in the x, y, and z directions. For example, a load vector of  

 [0, -100, 0]  

would indicate a load of 100N acting vertically downwards in the y 

direction. If a node has no load applied to it, the loading vector is set to 

None. Loading conditions are indicated in the grammar itself. Using this 

implementation, it is possible to specify different loading conditions for any 

number of nodes in a structure. 

 Node fixing conditions 

In a similar manner to the loading vector, node fixing conditions are applied 

as a three-dimensional array of Boolean operators, each indicating the 

presence or absence of a fixing in a particular dimension. For example, the 

fixing array of  

 [False, True, True]  
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would indicate support in the y and z directions, but no support in the x-

direction. This would be consistent with a rolling bearing for a simply 

supported beam. Similarly to the loading conditions described above, fixing 

conditions are also indicated in the grammar itself. Using this 

implementation, it is possible to specify different fixing conditions for any 

number of nodes in a structure. Since the focus of this thesis is on truss 

structures, no fully fixed supports are used; only pinned supports are 

available. 

vii. A list of all graph edges known as the edge list, with each edge comprising of: 

 Edge id (an integer used to identify that particular edge) 

 Node id for point A of edge 

 Node id for point B of edge 

 Section id (an integer corresponding to a specific codon from Ch.B, used to 

identify the section size of that particular edge) 

 Edge length 

 Section diameter 

 Section thickness 

 Cross-sectional area  

 Material density 

 Material unit weight (mass per meter) 

 Element mass 

 I (second moment of area) 

 Young’s modulus 

 Maximum compressive stress 

 Genome id (the index of the corresponding gene in Ch.B responsible for that 

particular edge) 

Once the full lists of nodes and edges have been generated, the structure is analyzed. 

3.7. Structural Analysis 

Analysis of generated designs is completed using the free open-source finite element analysis 

program SLFFEA [116]. Previous studies by the author [61] have found this analysis method 

to be fast, reliable, and accurate in its calculations. Each individual in the population is 



 Design Generation & the Evolutionary Process 

 

67 

  

analysed in the same manner using a simple static truss analysis method. The analysis program 

does not pass judgement on the structure. There is no knowledge of the limitations of the 

materials at this stage, only the observed state of the structure after loading has been applied 

is described. 

SLFFEA has a number of drawbacks, however. It cannot correctly model cables, and the 

orientation of members must be specified (i.e. if I beams were to be used each member would 

need to be given a specific orientation with regards to the global origin). Consequently, any 

loading on beam members themselves (rather than on nodes) is conducted according to the 

local orientation of the member rather than the global orientation, meaning that if the beam 

members were not oriented correctly, vertical loads would need to be amended to account for 

the change in global coordinates. These limitations are not an issue in this study, as: 

1. Cables are not used in this thesis; 

2. Loading is only applied to node locations by default; 

3. Local orientation of members is bypassed by the use of symmetrical, circular, hollow 

sections. 

3.7.1. SLFFEA Input File Format 

The input file required for this program allows for a number of options with regard to the 

analysis of the structure. Information (as described in Section 3.6.2) on specific physical 

attributes of each individual is written out to a specialised input file for use by SLFFEA. An 

abridged sample input file for the structure shown in Figure 3.9 can be seen in Appendix B.1 

(in practice all 157 available sections are listed but for the purposes of brevity only the six that 

are used are shown here). 
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Figure 3.9: Example truss result from SLFFEA analysis. Compression members shown in 

blue, tensile members in red 

The input file is executed using SLFFEA’s specialised truss analysis method “ts”. A full 

analysis of the SLFFEA input file includes the following: 

 The number of elements and nodes in the structure 

 The total number of available materials and sections 

 A full list of all available materials and sections, with specific details on each: 

o Section id number (which will correspond to the section id of each particular 

member as dictated by Ch.B) 

o Young’s Modulus 

o Density 

o Area 

 A full list of all structure elements, with each edge containing details of: 

o Element id number 

o Element connectivity in the form of which node id’s are connected, e.g. [1, 4] 

would connect nodes 1 and 4. 

o Section id number 

 A full list of all nodes, with specific details for each node: 

o Node id number 

o Node z, y, and x coordinates 

 Prescribed node displacement in the x, y, and z directions. Setting this option to 0 for 

any node will fix that node in that direction by providing a reaction and restraining 
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movement. Using this option alone will provide a pinned support in any of the three 

available dimensions. 

 Point loading for specific nodes including: 

o Node id 

o Point load options in the x, y, and z directions 

3.7.2. Parsing of SLFFEA Analysis Results 

Execution of the analysis program will instantly generate a separate results file (as shown in 

Appendix B.2), which is then parsed to extract the relevant information. The resulting files 

begin with a full list of identical information to the input file but with the following differences: 

 Node coordinates are now the displaced coordinates after loading analysis. 

 Prescribed node displacements in the x-, y-, and z-directions now detail the amount of 

displacement in each direction for each node after loading. 

 Point loading for specific nodes now includes both applied loading and reactions to 

said loading. Reactions act on whichever nodes were fixed and are applied similarly to 

the loading description from Section 3.6.2. 

 Stress results for all elements in the structure are shown. These are the primary values, 

along with the displacements of each node, which are used by the fitness function to 

determine the overall fitness of each design. Since truss joints are effectively pinned, 

there are only axial forces present in the members and as such there are no moments 

present in the analysis of the results. 

 Strain results for all elements in the structure are enclosed, but these results are not 

currently used. 

These analysis results are now added to the dictionary lists of information for the nodes and 

edges of the individual. The aforementioned node list is now updated to add information about 

the displaced co-ordinates of each node, while each edge in the edge list is updated to include 

the stress conditions of that edge. Once all information about the structure has been gathered, 

the structure is passed through the fitness function.  

3.8. Fitness Function 

The fitness function is one of the most important aspects of the evolutionary process. It 

translates a physical design into a single (or multiple in the case of multi-objective 

optimisation) metric by which each design can be judged and ranked relative to its generational 
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peers. Objective design metrics such as structure self-weight or cost are included in the fitness 

function, as are analytical values of material stress and strain, nodal deflection, and design 

constraints. The results are then analysed, and judgement is passed on every aspect of a design.  

The fitness function combines a number of specific design constraints, which are taken directly 

from the relevant design codes of practice [59, 60, 119, 57, 58]. These constraints are viewed 

as hard limits; if any aspect of a structure fails a single constraint, that individual is deemed to 

have failed and is such unfit for purpose. 

3.8.1. Nodal Deflection 

The maximum deflection of the structure is obtained by calculating the vertical displacement 

of each node in the structure after loading analysis. The maximum displacement of any single 

node is set as the maximum deflection of the structure. If any single node deflects in excess of 

the pre-specified deflection limit, then the design is deemed to have failed. Deflection limits 

are taken from design codes of practice [59, 60, 57, 58] and are as Eq. 3.2 for simply supported 

trusses and Eq. 3.3 for cantilevered trusses unless specified otherwise. 

 𝛿𝑚𝑎𝑥- =
𝑆𝑝𝑎𝑛

250
 

Eq. 3.2 

 𝛿𝑚𝑎𝑥- =
𝑆𝑝𝑎𝑛

180
 

Eq. 3.3 

3.8.2. Member Stress – Tension and Compression 

Member stress is either tensile or compressive. All members are checked against their 

respective stress limits. The maximum tensile stress limit is set at 215 N/mm2 for S355 steel 

[57, 58, 59, 60]. Stress limits for members in compression are governed by the axial 

compression limits as detailed in Section 3.3. The length of the member in question is 

compared against the available effective lengths and is rounded up to the nearest available 

figure. For example, a 3.21 m long member with an outside diameter of 114.3mm and a 

thickness of 5mm would be rounded up to 3.5m and be given a maximum compressive 

resistance Pc of 343 kN. When this figure is combined with a cross-sectional area of 1720 

mm2, a maximum permissible compressive stress of 199.4186 N/mm2 is obtained. 
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3.8.3. Local Buckling of Compression Members 

Members in compression have the additional constraint of local Euler buckling imposed on 

them. The compressive force in the member is compared against the Euler buckling limit, as 

given by the following equation: 

 𝜋2𝐸𝐼

(𝐾𝐿)2
 Eq. 3.4 

where: 

E = Young’s Modulus 

I = Second Moment of Area 

L = Length 

K = Effective length factor (for pinned-pinned structures this is 1). 

To take the same example as given in Section 3.8.2, the Euler buckling limit would be given 

as: 

 
𝜋2𝐸𝐼

(𝐾𝐿)2
=

𝜋2 ∗ 210,000 ∗ 2570000

(1 ∗ 3210)2
= 516,942.33𝑁 

Eq. 3.5 

Given a maximum permissible compressive stress of 199.4186 N/mm2, the maximum 

permissible compressive force in this member would be 343,000 N, well below the limit for 

buckling. In this particular instance, buckling would not be a consideration over pure 

compressive resistance, and the element would fail in compression, before buckling became 

an issue. 

3.8.1. Load Path/Michell Number 

Along with the imposed constraints, the load path (also known as Michell’s number [5]) of 

each individual structure is calculated. This is given by Zegard et al. [125] as: 

 𝑍 = ∑|𝐹𝑖|

𝑖

𝐿𝑖 

Eq. 3.6 

where 𝐹𝑖 is the axial force in member i. Since the load path does not require any information 

on the member section sizes, it is independent of section geometry and, thus, gives an accurate 
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assessment of the efficiency of the topological layout of the structure [5, 125]. Minimization 

of the load path indicates an improvement in structural topological efficiency. 

Implementation of Fitness 

The fitness of a solution is a numerical representation of the suitability of the solution for the 

defined task. Differing fitness values for separate individuals will indicate differing levels of 

performance. There are a number of options by which the fitnesses of all individuals in a 

population can be compared. The most popular fitness value to use is that of the self-weight 

of the structure [7]. This is calculated by simply summing the individual masses of each 

element in the design. Other options include the maximum nodal deflection of the structure, 

or the overall strain energy/compliance of the structure (as given in Eq. 2.1). Unless otherwise 

specified, the evolutionary objective is the minimisation of the chosen fitness value. 

If a structure passes all constraints imposed upon it, then it is deemed to be fit for purpose, and 

a normal fitness value (or values) is returned. If, however, any single constraint (or multiple 

constraints) fails, then the fitness of the individual is appropriately altered such that it becomes 

less likely to pass on genetic material, and the entire design is deemed unfit. Design constraints 

and treatment of unfit individuals is covered in greater detail in Chapter 5. Once the fitness 

has been calculated, the final verdict is returned, and the individual is updated with the 

following fitness information: 

 A numeric value for the total fitness of the individual  

 A Boolean value indicating whether or not the individual is fit (this allows for 

easy classification of fit/unfit individuals) 

3.9. Selection, Variation, and Replacement 

Once a full population has been evaluated, the individuals are ranked by fitness. Single 

objective optimisation sorts the population in order of decreasing fitness, with the individual 

with the lowest fitness value being designated as the best individual of that generation. If 

multiple objective optimisation is being used, a fast non-dominated sorting of all individuals 

in the population is done using the NSGA-II algorithm [84, 56]. Generational replacement 

with elites is used throughout this study (as described in Section 2.2.2), whereby the entire 

generation is replaced with a new version at each step, with only a select few elites being 

carried over unchanged [34]. Elites comprise a small subset of the best of the population and 

are copied (so that the originals still remain in the overall population) and stored separately to 
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the entire population, out of reach of variation operators, thereby ensuring that the fittest 

individuals survive unaltered between generations. In this study, the elite size (i.e. the number 

of elites) is set at 1% of the population size. The entire population (with the original copies of 

the elites still included) is then crossed over and mutated to form the next generation. 

3.9.1. Selection 

Traditional randomised tournament selection, the most popular selection mechanism used with 

Genetic Algorithms [126], is used in this study. Groups of individuals are randomly selected 

from the original population, with a tournament size of either 3 individuals or 1% of the 

population (whichever is greater), and the best individual is then returned. A new population 

of parents is then generated, of equal size to the original population, which is populated with 

winners from the tournaments. Since random selection is used to select individuals for the 

tournaments, the same individual could be selected multiple times, while other individuals 

may never be included in a tournament. One way to counteract this would be to use a Fair 

Tournament [34]. In a fair tournament, each individual in the population is guaranteed a 

chance to enter at least one tournament. Once a number of individuals are selected for a 

tournament, they are not permitted to re-enter another tournament (regardless of who won) 

until all remaining individuals have been entered into tournaments. Once every individual has 

partaken in one tournament, the remainder of the parent population is generated by randomly 

selecting individuals from the original population for the remaining tournaments. 

The advantage of using a fair tournament over traditional randomised tournament selection is 

that it gives every individual in the population a chance to enter a tournament. This gives a 

better spread of parents for crossover, but since EAs are heuristic search processes a 

randomised tournament selection is sufficient. 

3.9.2. Crossover 

Once the parent population is fully generated via the selection process, single-point crossover 

is performed on random pairs of parents. Crossover probability is fixed at a rate of 75% for all 

experiments performed in this study (i.e. if two parents are selected, there is a 75% chance that 

they will be crossed over (otherwise they are added to the child population un-altered)). If one 

chromosome is used, crossover occurs as in traditional GE [122]. If two chromosomes are 

used, then either the Ch.As or Ch.Bs of both parents are chosen at random and crossover 

continues as usual. Crossover of information between Ch.A of one individual and Ch.B of 

another individual is not permitted. A crossover point is then randomly selected from within 
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the range of used codons of whichever parent has the shorter used chromosome (as shown in 

Eq. 3.). 

 0 < 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 < min(𝑃1. 𝑢𝑠𝑒𝑑, 𝑃2. 𝑢𝑠𝑒𝑑) 
Eq. 3.7 

If crossover were to occur based on the range of used codons from the parent with the longer 

chromosome then there is a possibility that the crossover point would be beyond the range of 

the used codons of the parent with the smaller chromosome. Therefore, the chromosome of 

the smaller parent would be carried over unchanged to the mutation phase. 

Once a crossover point has been uniformly generated, the selected chromosomes of both 

parents are split in two: the head of the chromosome (from the first codon up to and including 

the crossover point), and the tail (from the codon immediately following the crossover point 

to the end of the genome). The head of parent 1 is then spliced with the tail of parent 2, and 

vice versa, creating two new individuals (as shown in Table 3.3). The unmodified chromosome 

is linked to the crossover chromosome whose head was spliced with the tail of the other 

chromosome, i.e. if the head of P1.A is spliced with the tail of P2.A, then P1.B will remain 

linked to the original P1.A head. 

Table 3.3: Single-point crossover of two chromosomes is performed on one chromosome 

only across both individuals 

If crossover is on Ch.A If crossover is on Ch.B 

P3.A = P1.A.head + P2.A.tail 

P3B = P1B 

P4.A = P2.A.head + P1.A.tail 

P4.B = P2.B 

P3A = P1A 

P3.B = P1.B.head + P2.B.tail 

P4.A = P2.A 

P4.B = P2.B.head + P1.B.tail 

An example of this process is presented below. Consider a problem with two chromosomes 

per individual. Maximum chromosome length is 20 codons, and the range of all codons is 

between 0 and 100. The amount of used codons per chromosome is variable. Two randomly 

sampled parents, P1 and P2, each have two chromosomes, giving us four chromosomes in 

total: P1.A, P1.B, P2.A, and P2.B (Figure 3.10).  
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Parent Chromosome Type Chromosome 

P1 
P1.A 89, 93, 97, 88, 89, 9, 33, 36, 84, 24, 58, 15, 88, 61, 33, 40, 90, 9, 89, 11 

P1.B 45, 23, 69, 16, 81, 84, 67, 15, 1, 49, 74, 96, 46, 9, 50, 60, 18, 37, 54, 96 

P2 
P2.A 71, 49, 85, 43, 67, 91, 78, 44, 7, 48, 31, 41, 25, 30, 5, 78, 78, 29, 29, 66 

P2.B 55, 100, 91, 4, 69, 89, 33, 21, 8, 80, 44, 7, 52, 39, 68, 31, 15, 69, 20, 56 

Figure 3.10: Two sample parents, each with two chromosomes. Used codons are green, 

unused codons are red. 

A random selection decides that crossover shall be done on the Ch.A of both parents, and the 

crossover point is then selected from the shorter of P1A and P2A. In Figure 3.10, P1.A has 17 

used codons, whereas P2.A only has 13 used codons. If a crossover point greater than 13 were 

to be selected, that would leave P2.A unchanged. The crossover point in this instance is 

randomly selected as 7 (i.e. crossover will be performed after the 7th codon on the 

chromosome). Once the crossover point is established, P1A splits into P1A.head and P1A.tail, 

and likewise for P2A. 

Parent Chromosome Head Chromosome Tail 

P1.A 89, 93, 97, 88, 89, 9, 33 36, 84, 24, 58, 15, 88, 61, 33, 40, 90, 9, 89, 11 

P2.A 71, 49, 85, 43, 67, 91, 78 44, 7, 48, 31, 41, 25, 30, 5, 78, 78, 29, 29, 66 

Figure 3.11: Crossover point splits chromosomes into heads and tails 

To conclude the example, the Ch.A of both children now become: 

Child Chromosome Head Chromosome Tail 

P3.A 89, 93, 97, 88, 89, 9, 33 44, 7, 48, 31, 41, 25, 30, 5, 78, 78, 29, 29, 66 

P4.A 71, 49, 85, 43, 67, 91, 78 36, 84, 24, 58, 15, 88, 61, 33, 40, 90, 9, 89, 11 

Figure 3.12: Child A chromosomes after crossover is completed 

Once crossover has been completed on the parent individuals, the remaining chromosome of 

each parent is linked with the original head of that parent. The final children that are produced 

are: 
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Child 
Chromosome 

Type 
Chromosome 

P3 
P3.A 89, 93, 97, 88, 89, 9, 33, 44, 7, 48, 31, 41, 25, 30, 5, 78, 78, 29, 29, 66 

P3.B 45, 23, 69, 16, 81, 84, 67, 15, 1, 49, 74, 96, 46, 9, 50, 60, 18, 37, 54, 96 

P4 
P4.A 71, 49, 85, 43, 67, 91, 78, 36, 84, 24, 58, 15, 88, 61, 33, 40, 90, 9, 89, 11 

P4.B 55, 100, 91, 4, 69, 89, 33, 21, 8, 80, 44, 7, 52, 39, 68, 31, 15, 69, 20, 56 

Figure 3.13: Fully complete child individuals after crossover 

Once the interim population is fully comprised of new children produced from crossover, 

mutation is performed on all children. 

3.9.3. Mutation 

Mutation is performed on all individuals in the interim population before the child population 

is complete. Again, if a single chromosome is used then mutation continues as usual [34]. 

However, if dual chromosomes are being used, then either chromosome is selected at random, 

upon which mutation is then performed. Mutation in GE is performed on a per-codon basis 

[122], so there is no need to look at the length of used chromosome. All experiments in this 

study use a mutation probability of 1%. Iteration is performed over all codons in the 

chromosome, with each codon being given a probability p = 1% of mutating. Mutation of a 

codon simply replaces the codon in question with a randomly generated integer from within 

the range of CODON_A_SIZE, as detailed in section 3.6.1.  

3.9.4. Replacement 

Once mutation of all individuals in the interim population is completed to form the child 

population, the unchanged elites (which were copied from the original population, as described 

in Section 3.9) are re-introduced to the child population. This generates a new population, 

which is 1% larger than required (due to the addition of the elites from the previous 

generation). This new population is then re-evaluated, and the top 100% of the total population 

is transferred to the next generation, while the remaining 1% is discarded. 

3.10. Iteration and Termination 

Populations of individuals are iteratively replaced and augmented in the manner described 

between sections 3.5 and 3.9, either for a pre-specified number of generations or until a 

stopping criterion (such as convergence of the population towards a single solution, preventing 

further evolution) is reached. At the very end, the best overall individual (the single best 
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remaining individual in the final generation) is presented as the best evolved solution for that 

particular run. Due to the use of elites, this individual is guaranteed to be the best (or equal 

best) solution generated during the entire run. 

3.11. Summary 

This chapter described the process by which all experiments in this thesis were performed. A 

detailed breakdown of the evolutionary method was given, with information on all aspects of 

the Grammatical Evolution algorithm used. A description of the mapping process was 

presented, along with examples of grammar derivation using this mapping process. The fitness 

function was explained, including the method of analysis of structures. A definition of the 

initialisation was given, and the chapter concluded with details on the selection and 

replacement operators used, including mutation and crossover. The remaining chapters run a 

series of experiments based on this methodology, in order to answer the research questions 

presented in Section 1.2.1.  
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Chapter 4. DO-GE – Dual Optimisation in 

Grammatical Evolution 

 

As noted in Chapter 2, theoretically optimal structures can only be generated when 

optimisation of the structural shape, topology, and member sizing are done simultaneously. A 

fundamental question, which forms the basis of one of the main research questions of this 

thesis must, therefore, be asked as to whether or not this is truly possible. Previous research in 

this area has attempted simultaneous optimisation [72, 85], but different methods were used 

for optimisation of structural topology and member sizing. Both Darwin [18] and Turing [16] 

noted (albeit through different applications) that the development of an individual (or indeed 

of a species) is highly dependent on the environment it inhabits. The interaction between the 

individual and its environment is what forms the individual itself. Thus, truly simultaneous 

optimisation should undertake all optimisation tasks using the same method at the same time, 

as each has an effect on the development of the other as they evolve in the same environment. 

A single-stage optimisation approach also has a number of theoretical advantages over a two-

stage approach of optimising topology and element sizes separately. With a single stage 

approach, a large number of designs can be assessed in a relatively short space of time, whereas 

a two-stage approach would be slower and would fail to allow for interactions between 

structural topology and element sizes parameters. 

GE operates by evolving chromosomes, as described in Chapter 3. Traditional GAs have been 

used for both element sizing optimisers and structural topology optimisation [127, 69, 63, 14]. 

In each case, a distinct chromosome is used to evolve either the element sizings or the overall 

structural shape/topology. It was theorized in Chapter 2 that simultaneous evolution of 

structural topology and member sizing is possible by assigning a unique chromosome to each 
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task and evolving both simultaneously. This hypothesis is compared against benchmark 

problems from the literature. Since sizing optimisation can be seen as a deterministic problem 

when given an initial configuration, this heuristic simultaneous optimisation method is also 

compared against a deterministic sizing optimiser which directly calculates the requisite 

section sizes for each individual in a population. 

In addition to this, a review of the literature has found that unrealistic element sizes and 

material properties are commonly used for discrete optimisation. As noted in the research 

questions in Section 1.2.1, optimisation results ignore critical knowledge of section geometry 

and orientation, along with optimised results which exceed the current manufacturing 

precision of structural components. To this extent, the use of commercially available 

construction materials as design elements and design codes of practice as evolutionary 

constraints are also examined. A number of basic structural grammars are created to test these 

questions, and the evolved solutions are compared against benchmark problems from the 

literature. Since the benchmark problems all use Imperial units, all units shown in this chapter 

are Imperial, unless stated otherwise. This allows for better comparison between the literature 

and the work presented herein. 

This chapter introduces a new method of discrete topology optimisation: Dual Optimisation 

in Grammatical Evolution (DO-GE). While existing structural optimisation methods in GE 

[56, 73, 61] primarily focus on a structural topology scale (optimisation of the structural 

layout), optimisation of individual element sizes is also possible [7, 13, 107]. The combination 

of both topology and sizing optimisation is established [7, 73, 12, 13, 62], but the use of both 

standard construction elements and compliance to design codes of practice in the process is 

novel. Standard practice is to optimise element sizings by specifying the required cross-

sectional area. While this gives theoretically optimised results, the output is of little use to 

structural engineers, since in practice trusses are constructed using structural elements with 

pre-set cross-sections and geometries. This highlights a fundamental weakness in traditional 

sizing optimisation methods: by omitting knowledge of section geometry and orientation, it is 

not possible to include accurate buckling calculations as a constraint for structural design and, 

thus, structures cannot be designed according to standard codes of practice. Furthermore, 

current sizing optimisation methods exceed the manufacturing precision of structural 

components. The approach presented in this chapter addresses this deficiency by allowing for 

any number of standard commercially available construction elements [118] to be specified 
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for any elements within a design, leading to code-compliant construction-ready designs, which 

truly represent the evolved form. 

The remainder of this chapter is structured as follows. Section 4.1provides an introduction to 

the topics discussed in the chapter. Section 4.1 describes the DO-GE method, including the 

implementation of a second chromosome for member sizing in Section 4.1.1. The use of design 

constraints and codes of practice is covered in Section 4.1.2. A number of benchmark 

numerical examples from the literature are detailed in Section 4.2, and comparisons between 

deterministic methods are made in Section 4.4. The implications of these experiments are 

discussed in Section 4.5, and conclusions are drawn in Section 4.6. 

4.1. The DO-GE Method 

DO-GE differs from regular GE by utilising two separate chromosomes simultaneously. As 

described in Chapter 3, the DO-GE method creates two separate integer array chromosomes: 

Chromosome A (Ch.A), which governs the topological form of the structure, and 

Chromosome B (Ch.B), which assigns material section sizes to each individual edge in the 

individual. Ch.A operates in the normal GE fashion, controlling the derivation of the grammar 

which details the layout of the trusses. Ch.B is passed in as an argument to the derived program 

(as shown in Appendix A.2), which itself creates a graph object through its execution. Each 

graph edge is then assigned a section id from a corresponding gene in Ch.B. The list of edges 

is arranged in the order in which the edges are generated, meaning that if the edge order 

changes, the solution will correspondingly change, as the mapping from Ch.B to the phenotype 

will have changed. This is not a concern, however, as the creation of edges is explicitly 

controlled. While Ch.A is fixed in length in the experiments described in this chapter (variable-

length Ch.As are discussed in Chapter 6), a variable-length chromosome is required for Ch.B 

due to the variable nature of the number of edges in each individual as the truss type changes. 

Structural analysis of individuals is then carried out using the free, open-source finite element 

modelling program SLFFEA [116]. Previous work [61, 56] has shown this method to be both 

reliable and fast in analysing truss structures produced by a grammar. The processing steps of 

each individual in a population are shown in Figure 4.1. 
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Figure 4.1: Flowchart of the evolutionary process for an individual 

The regular genetic search operators used by GE (mutation and crossover) are modified to 

accommodate the use of two separate chromosomes. First, randomised pairs of parents are 

selected from the parent population using tournament selection. For each pair, either Ch.A or 

Ch.B is chosen, and then crossover is performed on the chosen chromosome of both parents, 

creating a pair of children (the other chromosome is carried over unchanged from each parent). 

Once the child population is fully created, mutation is applied to either Ch.A or Ch.B for each 

individual child (choice-independent of the crossover stage), thereby creating the next parent 

population (as detailed in Section 3.9). 

An extra design check for detection of redundant members in truss designs is an important 

feature of the DO-GE method. If a particular solution is found to contain a member (or any 

number of members) with zero axial stresses, that solution is then re-analysed without the 

presence of that particular edge (or edges). If the fitness is improved (i.e. if all constraints such 

as stress and deflection are still within their limits and the overall structure self-weight has 

been lowered), then that member is omitted from the solution. Notably, for the experiments 

described in this chapter, this is not an evolutionary feature. It does not create a change in the 

chromosome, but instead is a measure that is performed within the fitness function. This is an 

Genome is created

• Phenotype is created from genotype

Phenotype is executed

• Structure is created

Structure is analysed

Analysis results are examined

• Constraints are applied

Fitness is assigned
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example of a post-processing measure, any number of which can be run as part of the fitness 

function after the DO-GE mapping has completed. 

DO-GE encourages population diversity by removing individuals from the child population 

which match other children. A number of checks are performed to ensure that only exact 

duplicates are removed from the child population: 

i. The fitnesses of individuals are compared  

If any two individuals have the same fitness values, this could indicate the presence of 

duplicate individuals, and further checks are done. 

ii. Both Chromosomes are checked 

If two individuals have the same fitness values, then their chromosomes (both Ch.A 

and Ch.B) are compared to see if they match. If so, then duplicate individuals exist in 

the population. 

iii. The phenotype is checked (locations of all nodes and edges). 

Since GE permits many-to-one mapping, it is possible for two separate chromosomes 

to produce the same phenotypical individual (i.e. an individual which not only is 

visually identical to another, but performs identically too, despite being genetically 

diverse). In order to prevent this, individuals with identical fitness values also have 

their node and edge lists compared (regardless of whether or not their chromosomes 

match). If both nodes and edges match, then duplicates exist in the population. 

This multi-level checking process catches all possible duplicates including any repeated 

individuals that may occur due to many-to-one mapping.  

4.1.1. Material Selection and Evolution 

For all individuals in the randomly initialised first generation, Ch.B is seeded with uniform 

genes throughout. This means that each individual in the first generation has a single section 

size applied across all edges, resulting in a greater probability of initial “fit” individuals upon 

which further evolution will be based. This is a method employed to artificially reduce the 

initial size of the representation space, thereby forcing the search process to focus on more 

promising areas. Areas of the representation space that have a lower probability of containing 

fit solutions (e.g. solutions with very thin members throughout) are quickly removed from the 

population, thus improving the efficiency of the search process. Once crossover and mutation 
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occur in the creation of the second generation (and all subsequent generations), the Ch.Bs of 

the population are blended. 

Depending on the number of sections supplied for possible selection (n), DO-GE assigns each 

gene in the chromosome an integer value ranging between 0 and (n-1). Unless stated 

otherwise, element sizes are taken from Tata Steel charts for S355 Hot-Finished Circular 

Hollow Sections (CHS) [118]. There are 157 variations of steel members on the list with 

diameters ranging from 21.3 mm (0.838 in) to 508 mm (20 in). In addition the wall thickness 

can also vary and any of the 157 possible steel sections can be applied to any element in the 

truss. The chromosome assigns an integer value from 0 to 156 (representing section ids 1 to 

157) to each individual element in the structure, which corresponds to the index of the section 

on the list. Requisite properties include the cross-sectional area, mass per meter, second 

moments of area Ix and Iy, and section thickness. Any number of material sections could be 

included in the materials list, so long as these five necessary variables are provided. The 

program automatically increases or decreases the range of the chromosome variables based on 

the length of materials list provided. 

4.1.2. Fitness Function Constraints 

A number of constraints within the fitness function are placed on the individuals to ensure 

only appropriate designs are included in the population. These constraints include limits on 

maximum vertical nodal displacement, member axial stress (tensile & compressive) and Euler 

buckling loads for compression members. While these constraints are applied in the fitness 

function, they can be used to modify the selection pressure for each individual. Only a single 

objective (the self-weight of the structure in the case of single objective optimisation) is passed 

through as the final fitness value (this method is used by the vast majority of texts cited in this 

paper and is generally accepted as the standard optimisation goal in structural design). The use 

of a multi-objective optimiser in this particular instance is unnecessary, as any parameters 

other than weight that may require optimisation are merely constraints that must be imposed 

on the design (unlike [68] where minimising horizontal structural displacement is a design 

priority). For example, there is no quantifiable engineering benefit from imposing a vertical 

deflection limit of 10mm when building design codes might allow a deflection of 50mm. In 

the search for minimum structure weight, it is desirable for all constraints to be at their limits 

in order to find the lightest possible structure. If a constraint is not at its limit, an improvement 

can be made. 
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Multiple objective optimisation capability is possible with DO-GE, and indeed previous 

research [56] has successfully implemented the Non-dominated Sorting Genetic Algorithm 

(NSGA) II algorithm [84] in handling up to three conflicting objectives with GE. However, in 

this instance only a single optimisation objective is deemed necessary, as once all constraints 

have been satisfied, there is little or no performance improvement in trying to further minimise 

them. 

In the case of vertical nodal displacement, a limit of (span/250) is imposed for simply 

supported truss structures. The positions of each node before and after loading are recorded, 

and whether the total vertical deflection of any node after loading is greater than the limit of 

(span/250) then that structure is considered to have failed in deflection [57, 58, 9]. 

Tensile stress limits are based on the relevant design codes for the use of structural steelwork 

[57, 59, 60]. A maximum tensile limit of 355 MPa (51.488 ksi) is applied to all members. If 

any element fails in tension, the structure is considered to have failed overall. 

Compressive limits on the materials are based on the material manufacturer’s specifications 

[60, 118]. Compressive resistance limits are given for effective lengths of individual members, 

and are a function of element size, geometry and end fixing conditions (i.e. fixed-fixed, fixed-

pinned, pinned-pinned). These limits are applied to the appropriate elements in the structure 

and as with the two previous constraints, if any element fails in compression, the structure 

itself fails. Likewise, the use of Euler buckling limits for elements in compression ensure that 

designs featuring elements prone to buckling will be penalised. The application of these 

constraints results in high-displacement, over-stressed designs having a lower chance of 

passing on genetic material to subsequent generations. 

4.2. Design by Code of Standards 

All solutions in this thesis are compliant with BS 5950-1:2000 [60]. The design of an 

individual solution can be described by the following steps. 

1. The topology of the structure and the loading/fixing conditions are defined 

2. The reaction forces are calculated 

3. The internal forces are calculated for all members  

Since all member connections are assumed to be pinned, no moments are 

present in the structure in accordance with Section 4.10 of BS 5950-1:2000 

[60]. As such, the effective lengths of all members are equal to their full length. 
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4. The material strength 𝑝𝑦 is chosen 

All experiments performed in this thesis use S355 cold rolled steel [118]. 𝑝𝑦 

varies with section wall thickness, in accordance with Table 9 of BS 5950-

1:2000 [60]. Alternatively, manufacturer specified-limits can be used [118]. 

5. Requisite cross-sectional area 𝐴𝑟𝑒𝑞
𝑖  for each member i calculated such that: 

 
𝐴𝑟𝑒𝑞

𝑖 =
𝑝𝑦

𝐹𝑖
 

Eq. 4.1 

where 𝐹𝑖 is the axial force in member i. 

6. Member sections are selected such that 𝐴𝑟𝑒𝑞
𝑖 ≤ 𝐴𝑎𝑐𝑡𝑢𝑎𝑙 

7. The internal member forces 𝐹𝑖 and stresses 𝑆𝑖 are re-calculated with the new section 

properties 

8. Members in tension are subject to stress limits such that: 

 𝑃𝑡 = 𝐴𝑖𝑝𝑦 Eq. 4.2 

where 𝑃𝑡 is the tensile resistance of the member. 

9. Members in compression are classified for risk of local buckling subject to Section 3.5 

of BS 5950-1:2000 [60] 

a. Sections classified 1-3 are subject to stress limits such that: 

 𝑃𝑐 = 𝐴𝑔𝑝𝑐 Eq. 4.3 

where 𝑃𝑐 is the compressive resistance in the member, 𝐴𝑔 is the gross cross-

sectional area, and 𝑝𝑐 is the compressive strength of the material. 

i. The compressive strength 𝑝𝑐 is either obtained from the manufacturer 

specifications or through Figure 14 and Tables 23 and 24 of BS 5950-

1:2000 [60] 

b. Sections classified as Class 4  

 𝑃𝑐 = 𝐴𝑒𝑓𝑓𝑝𝑐𝑠 Eq. 4.4 

where 𝐴𝑒𝑓𝑓 is the effective cross-sectional area and 𝑝𝑐𝑠 is the value of 𝑝𝑐 taking 

into account the slenderness ratio and radius of gyration 

10. Members in compression are subject to Euler buckling limits, as described in Eq. 3.4. 

11. Limits on overall structural deflection are as described in Eq. 3.2 for simply supported 

trusses and Eq. 3.3 for cantilevered trusses. 
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If a structure passes all of the above tests, it can be considered to be designed appropriately to 

code and, thus, is fit for purpose. 

4.3. Numerical Examples 

The aim of this chapter is not to find fully optimised solutions for absolute minimum required 

cross-sectional areas in standard structures; the literature contains numerous examples of 

efficient processes for achieving this. Instead, the focus of this chapter is to show that viable 

solutions very close to the theoretical optimum can be achieved using standard construction 

elements. For each benchmark example attempted in this chapter, three sets of experiments 

are performed: 

1. Topology/shape optimisation 

2. Sizing optimisation 

3. Simultaneous (dual) topology and shape optimisation 

For sizing optimisation, a simple GA is used to evolve optimal member sizes for a fixed truss 

topology. Similarly, a simple GA is used to evolve optimal truss topology/shape for constant 

member sizes. For dual optimisation, these problems are then once again attempted in order 

to ascertain the effectiveness of optimising structural topology and member sizings 

simultaneously. The possibility of removing redundant members is also explored.  

Two commonly used problems are analysed from selected papers: a 10-bar cantilever truss 

(shown in Figure 4.2) and a 17-bar cantilever truss (shown in Figure 4.3) [77, 64, 65, 76].  
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Figure 4.2: Benchmark 10-bar truss problem 

 

Figure 4.3: Benchmark 17-bar truss problem 

Maximum vertical nodal deflection is universally limited to 50.8mm (2 in) in all cases. The 

examples from these papers differ significantly from the method described in this chapter in 

that non-standard materials are used in all benchmark examples. All 10-bar truss experiments 

used aluminium solid sections, while those of the 17 bar truss used steel solid sections. For 

this reason, all experiments conducted in this chapter were run with two different sets of 
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materials and sections, the properties of which are described in Table 4.1. This provides a level 

metric across which results can be compared. 

Table 4.1: Material Properties 

 

10 Bar Truss 17 Bar Truss 

Tata steel sections 
Aluminium solid 

sections 
Tata steel sections Steel solid sections 

Section type 
Circular Hollow 

Section 

Circular Solid 

Section 

Circular Hollow 

Section 

Circular Solid 

Section 

Section sizes 

157 standard sizes; 

diam. from 0.838 to 

20in. 

350 sections; CSA 

from 0.1 to 35in2, 

increments 0.1in2 

157 standard sizes; 

diam. from 0.838 to 

20in. 

350 sections; CSA 

from 0.1 to 35in2, 

increments 0.1in2 

Young’s modulus 

(ksi) 
30458 10000 30458 30000 

Density (lb/in3) 0.285 0.100 0.285 0.268 

Max tensile stress 

(ksi) 
51.488 25 51.488 50 

Max comp stress 

(ksi) 
Manufacturers limits 25 Manufacturers limits 50 

Topology Optimisation 

Small truss topology optimisation problems such as the 10 and 17-bar trusses can be easily 

expressed using traditional ground structure topology optimisation methods, and are most 

notably suited to a canonical GA approach. Using this approach, the presence or absence of 

each member in the structure is indicated by a gene from the chromosome in binary fashion 

(as described in Section 2.2.2). Since every gene in the chromosome only has two possible 

choices (true or false), the maximum codon is set to 1 (i.e. each codon on the chromosome can 

be either 0, indicating the absence of that member, or 1, indicating the presence of that 

member). For a ground structure comprising n bars, there are 2n possible unique topologies in 

the representation space. However, this figure does not take structural integrity into account, 

and a large proportion of these solutions will be non-viable (e.g. only one member, no direct 

load path from loads to supports, all members not connected, etc.). In all truss topology 

optimisation problems presented here the member sizing is kept constant across all members 

in the structure. Member sizes can take any value from the indicated section sizes (as described 

in Table 4.1). The addition of material information means that the total number of potential 

solutions for a fixed-material topology optimisation problem is: 

 𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝑚 × 2𝑛 
Eq. 4.5 

Material information is added in this case purely so that the viability of solutions can be 

calculated (structures cannot be analysed by the analysis program described in Section 3.7 
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without a structural material). For topology optimisation problems such as these, the individual 

member stresses and overall structural self-weights are of no concern. Only the optimal 

topological configuration is of interest. 

For each load case of the 10-bar truss, there are 210 unique topologies. With the use of CHS 

materials, 157 different materials gives rise to 160,768 unique solutions. For the 17-bar truss 

there are 217 unique topologies. With 157 different materials this gives 20,578,304 unique 

solutions. For traditional ground structure topology optimisation problems such as these, the 

relatively small number of total unique solutions means that a deterministic full enumeration 

of the representation space is possible. This is accomplished by evaluating every solution 

generated by every possible chromosome. For a 10-bar truss the first chromosome would be: 

[0,0,0,0,0,0,0,0,0,0] 

indicating complete absence of all members in the structure, while the last chromosome would 

be: 

[1,1,1,1,1,1,1,1,1,1] 

indicating the presence of all members in the structure. The best obtained solution is, therefore, 

the best possible topology for that problem as all possible solutions will have been evaluated. 

All GA-style experiments performed in this chapter use a version of GE which has been 

modified to run as a basic GA. This method is hereafter called GA-GE. 

Sizing Optimisation 

Member sizing optimisation for fixed-topology ground structures can be completed similarly 

to the topology optimisation problem described above. In this instance, however, the topology 

of the structure is held constant (as shown in Figure 4.2 and Figure 4.3) and the member sizes 

themselves are described directly by the chromosome rather than the presence or absence of 

each member. Each codon on the chromosome can then take any value from 0 to the total 

number of available materials, as described in Section 3.3. In essence, this GA-GE sizing 

optimisation method is identical to the GA-GE topology optimisation method described above, 

except in the topology optimisation example there are only 2 materials (0 or 1), whereas for 

sizing optimisation there are far more materials. 
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With a fixed topology of n bars and m possible materials, the total number of unique solutions 

is described as: 

 𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 𝑚𝑛 
Eq. 4.6 

In fact, Eq. 4.5 is a special case of Eq. 4.6 where m = 2. For each load case of the 10-bar truss, 

there are 9.0990599×1021 solutions using the CHS materials set, while the 17-bar truss has 

2.1394103×1037 solutions using the CHS materials set. Since these figures are orders of 

magnitude greater than those of the topology optimisation problems, full enumeration of these 

representation spaces is not possible. As discussed in Chapter 1, heuristic techniques can be 

applied in cases where the problem is too large for deterministic processes to solve. A GA is 

employed, therefore, to explore the large representation spaces and to evolve suitable 

solutions. 

Dual Topology and Sizing Optimisation 

The combination of the two techniques described above is made possible through the use of 

two separate chromosomes, as described in Chapter 3. Ch.A describes the presence or absence 

of structural members, while Ch.B specifies the section sizes of those members. Combining 

these two separate GA-GE methods in such a way gives rise to a vastly increased 

representation space: 

 𝑇𝑜𝑡𝑎𝑙 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = 2𝑛 × 𝑚𝑛 
Eq. 4.7 

For the 10-bar cantilevered truss described in Figure 4.2, the use of the CHS materials set 

would, therefore, give rise to 9.3174373×1024 unique solutions. Similarly, the 17-bar truss 

problem has 2.8041679×1042 unique solutions. Full enumeration of these spaces is clearly 

impossible and, as such, a heuristic technique such as an evolutionary algorithm needs to be 

employed. 

Experimental Settings 

Experimental evolutionary variables for both the sizing optimisation experiments and the dual 

optimisation experiments were set at: 
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 Population Size: 1000 

 Generations: 100 

 Mutation: 1% 

 Crossover: 75% 

 Tournament selection, with a tournament size of 1% of the overall population size  

 Generational Replacement with elites, elite size of 1% of overall population size 

All evolutionary runs were completed 100 times for each different experiment, and the best 

solution after 100 runs was presented as the best overall solution for that particular experiment. 

Since the topology optimisation is achieved by full enumeration over the entire representation 

space, evolution does not occur and no variables act on the system.  

4.3.1. 10-Bar Cantilevered Truss: Load Case 1 

Load Case 1 of the 10-bar truss problem is as follows: 

F1 = 444,800 N (100 kips) 

F2 = 0 

Topology Optimisation 

The least-weight topology for this problem is shown in Figure 4.4:  

 

Figure 4.4: Least-weight topology of 10-bar truss, load case 1 

This solution matches the optimum topology from the literature [65], and can be considered 

as the global optimum for this particular topology optimisation problem when uniform 

materials are applied. 
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Sizing Optimisation  

Lee and Geem [76], Luh and Lin [77], Li et al. [64], and Kaveh and Talatahari [65] proposed 

solutions for a 10-bar planar truss sizing optimisation problem shown in Figure 4.2. The 

objective is to minimise the cross-sectional areas of all members (subject to given material 

constraints), such that the self-weight of the structure is minimised. 

The results of the material sizing experiments are presented in Table 4.2, where they are 

compared with the results of recent research solutions, including overall structure weight and 

individual member cross-sectional areas. 

Notably, the research results presented by Li et al. [64] and Kaveh and Talatahari [65] use 

aluminium as the design material, while the research presented in this chapter utilises standard 

steel sections as the primary material. For this reason, these experiments were run using both 

the TATA steel CHSs and Aluminium Solid Sections (as shown in Table 4.1). When the GE 

algorithm makes use of aluminium solid sections, the minimum achieved self-weight was 

5163.4 lb for load case 1, exceeding the results of Kaveh and Talatahari by 106.84 lb. 

Table 4.2: 10-bar truss, load case 1: Evolved minimum cross-sectional areas (in2) using GE 

as a regular GA for sizing optimisation. 

Element Li et al. [64] Kaveh & Talatahari [65] 
GA-GE 

Aluminium solid sections Using Tata CHS steel 

1 30.704 30.3070 33.0 8.184 

2 0.100 0.1000 0.2 0.237 

3 23.167 23.4340 20.6 7.766 

4 15.183 15.5050 18.9 5.828 

5 0.100 0.1000 0.1 0.237 

6 0.551 0.5241 0.2 0.237 

7 7.460 7.4365 9.0 3.642 

8 20.978 21.0790 20.6 7.766 

9 21.508 21.2290 20.0 7.238 

10 0.100 0.1000 0.2 1.533 

Weight (lb) 5060.92 5056.56 5163.4 5206.9 

With the steel Tata material set, the best evolved self-weight using GA-GE was 5206.9 lb. 

This is quite a bit higher than the best achieved weights from previous works, at 150.34 lb 

heavier than that of Kaveh and Talatahari. The implications of these results are discussed in 

Section 4.4. 
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Dual Optimisation 

For the final part of this experiment, load case 1 of the 10-bar cantilevered truss problem was 

solved using simultaneous optimisation of structural topology and member sizing via 

concurrent evolution of two chromosomes.  

Progressive stages of the evolution of the best solution are shown in Figure 4.5. The self-

weight and load path for each solution is shown for best solutions sampled from the population 

at regular intervals. 

 

Figure 4.5: Progressive evolution of DO-GE solution for load case 1 of the 10-bar truss 

problem 
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What is notable from Figure 4.5 is that the global topological optimum is evolved very quickly, 

while the optimal member sizings take longer to manifest. Also, since topological changes are 

minimal, the load path for each generation correspondingly remains constant (or changes 

minimally). 

The evolved optimal topology shown in Figure 4.6 matches the global optimum topology for 

this problem (as shown in Figure 4.4). 

 

Figure 4.6: 10-bar truss problem, load case 1 - evolved minimum topology 

The results of the evolutionary runs, shown in Table 4.3, were found to be much closer to the 

solutions from the literature. 

Table 4.3: 10-bar truss, load case 1: Evolved minimum cross-sectional areas for DO-GE 

(in2). 

Element Li et al. Kaveh & Talatahari 
DO-GE 

Aluminium solid sections Using Tata CHS steel 

1 30.704 30.3070 31.0 9.200 

2 0.100 0.1000 None None 

3 23.167 23.4340 22.7 7.766 

4 15.183 15.5050 12.7 5.828 

5 0.100 0.1000 None None 

6 0.551 0.5241 None None 

7 7.460 7.4365 6.1 6.600 

8 20.978 21.0790 22.8 7.766 

9 21.508 21.2290 20.9 9.200 

10 0.100 0.1000 None None 

Weight (lb) 5060.92 5056.56 4925.79 4827.35 
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The application of DO-GE resulted in the evolution of the global optimum truss topology, with 

the absence of elements 2, 5, 6 and 10 from the structure. This results in a lightweight, rigid 

truss which improves on the best minimum weight achieved by the literature. Interestingly, 

the use of the steel Tata material set produces even better results. Again, the implications of 

this are discussed in Section 4.5. 

A graph of the evolution of the best solution for each run for load case 1 is shown in Figure 

4.7. For both GE cases, initial convergence is gradual, and further improvements take longer 

to manifest. DO-GE, however, demonstrates rapid convergence within a very small number 

of generations. 

 

Figure 4.7: 10-bar truss, load case 1. Comparison between regular sizing optimisation (GA-

GE) and dual topology and sizing optimisation (DO-GE) shows marked improvement when 

evolving both simultaneously. 

4.3.2. 10-Bar Cantilevered Truss: Load Case 2 

Load Case 2 of the 10-bar truss problem is as follows: 

F1 = 667,200 N (150 kips) 

F2 = 222,400 N (50 kips) 
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Topology Optimisation 

The least-weight topology for this problem is shown in Figure 4.8. As with load case 1, this 

solution can be considered as the global optimum for this particular topology optimisation 

problem when uniform materials are applied. 

 

Figure 4.8: Least-weight topology of 10-bar truss, load case 2 

Sizing Optimisation  

The results of the material sizing experiments are presented in Table 4.4, where they are 

compared with the results of recent research solutions, including overall structure weight and 

individual member cross-sectional areas. 

Using aluminium solid sections, the minimum evolved structural weight for load case 2 of the 

10-bar truss was 4705.8 lb, just 30 lb off the best achieved result from the literature. As with 

load case 1, the use of a different material set (steel CHSs) generated results far heavier than 

those achieved using aluminium sections. 
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Table 4.4: 10-bar truss, load case 2: Evolved minimum cross-sectional areas (in2), using GE 

as a regular GA for sizing optimisation. 

Element Li et al. [64] Kaveh & Talatahari [65] 

GA-GE 

Aluminium solid sections Using Tata CHS steel 

1 23.353 23.194 21.3 6.014 

2 0.100 0.100 0.2 1.530 

3 25.502 24.585 24.2 7.766 

4 14.250 14.221 15.6 5.828 

5 0.100 0.100 0.1 0.340 

6 1.972 1.969 2.0 0.910 

7 12.363 12.489 12.7 4.975 

8 12.894 12.925 14.1 7.285 

9 20.356 20.952 20.7 6.246 

10 0.101 0.101 0.1 0.340 

Weight (lb) 4677.3 4675.8 4705.8 5137.42 

Dual Optimisation 

The evolution of the best solution for load case 2 of the 10-bar truss is shown in Figure 4.9. 

The self-weight and load path for each solution is shown for best solutions sampled from the 

population at regular intervals. 

As with Figure 4.5, Figure 4.9 shows minimal changes to the load path. Since the Michell 

number is distinct from the geometry of the individual members, changes in section size have 

no effect on the load path [125]. As such, the load path remains constant once the optimal 

topology is evolved.  

The optimum evolved topology for this problem when both sizing and topology optimisation 

are performed in tandem is shown in Figure 4.10. 

For load case 2, again based on a fully braced 2-bay truss arrangement, the most optimal 

topology would involve the removal of elements 2, 5 and 10. However, the removal of 

elements 2 and 10 together would create a mechanism (a kinematically unstable structure), 

whereby element 6 would be able to rotate freely around node 2. In order to avoid this, an 

allowance has been made within the program to ensure that only dynamically stable 

configurations (i.e. no mechanisms) can be evolved; each node requires at least two connected 

elements. The resultant stable structure is shown in Figure 4.10. 
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Figure 4.9: Progressive evolution of DO-GE solution for load case 2 of the 10-bar truss 

problem 
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Figure 4.10: 10-bar truss problem, load case 2 - evolved minimum topology - stable structure 

Interestingly, unlike load case 1 this topology does not match the global optimum for uniform 

materials. This suggests that there is an inherent link between the topological optimisation of 

a structure and the sizing optimisation of its structural members. 

The evolved optimal member cross-sectional areas are shown in Table 4.5. The use of 

aluminium solid sections saw the best achieved solution from DO-GE surpassing that achieved 

by Kaveh and Talatahari [65], at 4517.8 lb. What is intriguing is that, contrary to previous 

examples, the use of steel sections in this instance saw an improvement in performance over 

aluminium sections at 4513.3 lb, 162.5 lb lighter than the best single optimisation solution 

from the literature. 

Table 4.5: 10-bar truss, load case 2: Evolved minimum cross-sectional areas for DO-GE (in2). 

Element Li et al. Kaveh & Talatahari 
DO-GE 

Aluminium solid sections Using Tata CHS steel 

1 23.353 23.194 27.0 7.238 

2 0.100 0.100 None None 

3 25.502 24.585 19.4 8.680 

4 14.250 14.221 11.8 5.828 

5 0.100 0.100 None None 

6 1.972 1.969 2.1 0.993 

7 12.363 12.489 10.0 4.138 

8 12.894 12.925 16.4 5.828 

9 20.356 20.952 19.6 4.975 

10 0.101 0.101 0.1 0.237 

Weight (lb) 4677.3 4675.8 4517.8 4513.3 

A graph of the evolutionary runs for load case 2 comparing evolution of materials 1 and 2 

using both GE and DO-GE is presented in Figure 4.11. As with the results from load case 1 
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(shown in Figure 4.7), dual optimisation in this specific application demonstrates both faster 

convergence and a lower standard deviation. 

 

Figure 4.11: 10-bar truss optimisation - load case 2. Comparison between regular sizing 

optimisation (GA-GE) and dual topology and sizing optimisation (DO-GE) shows marked 

improvement when evolving both simultaneously. 

4.3.3. 17-Bar Cantilevered Truss 

Li et al. [64], Lee and Geem [76], Khot and Berke [128] and Adeli and Kumar [129] proposed 

solutions to the 17-bar planar truss problem shown in Figure 4.3. Nodes 1 and 2 were pinned, 

while a single vertical point load of 100 kips (444,800 N) was set at node 9. It should be noted 

that in this case, all of the prior research utilised steel as the design material. However, 

identical tensile and compressive stress limits were used. As with the 10-bar truss examples, 

two different sets of materials (one idealised set and one manufacturer/code compliant set) 

were used in order to benchmark the results against one another. 

Topology Optimisation 

The optimum topology for the 17 bar problem is shown in Figure 4.12.  
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Figure 4.12: Least-weight topology of 17-bar truss 

As with the 10-bar truss examples above, this topology represents the global optimum for this 

particular problem when uniform materials are used across the entire structure. 

Sizing Optimisation 

The best evolved solutions using GA-GE as a member sizing optimiser are shown in Table 

4.6. These are compared with those found by previous works [64, 76, 128, 129], including 

individual member cross-sectional areas and overall structure weight. Using the Tata 

materials, the best achieved solution was 2774.5 lb. With the use of steel solid sections, the 

best achieved solution was 2605.7 lb, only 23.74 lb off the best solution achieved by Li et al. 

[64]. 

Table 4.6: 17-bar truss problem: Evolved minimum cross-sectional areas (in2) using GA-GE 

Element 

Khot & 

Berke 

[128] 

Adeli & 

Kumar 

[129] 

Li et al. 

[64] 

GA-GE 

Steel solid 

sections 

Tata CHS 

steel 

1 15.930 16.029 15.896 16.0 12.276 

2 0.100 0.107 0.103 0.1 2.387 

3 12.070 12.183 12.092 12.2 15.392 

4 0.100 0.110 0.100 0.1 0.394 

5 8.067 8.417 8.063 8.1 8.944 

6 5.562 5.715 5.591 5.7 2.403 

7 11.933 11.331 11.915 12.1 9.486 

8 0.100 0.105 0.100 0.1 0.578 

9 7.945 7.301 7.965 8.0 5.828 

10 0.100 0.115 0.100 0.1 2.527 

11 4.055 4.046 4.076 4.0 7.301 

12 0.100 0.101 0.100 0.1 1.736 

13 5.657 5.611 5.670 5.6 5.208 

14 4.000 4.046 3.998 4.4 4.588 

15 5.558 5.152 5.548 5.7 2.651 

16 0.100 0.107 0.103 0.1 3.317 

17 5.579 5.286 5.537 5.7 3.658 

Weight 

(lb) 
2581.9 2594.4 2581.9 2605.7 2774.5 
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Dual Optimisation 

The evolutionary progression for the 17-bar truss is shown in Figure 4.5. In a marked change 

from the 10-bar truss problem, the first generations of all runs of the 17-bar truss problem 

contained no fit solutions. As shown in Section 4.2, there are 2.8041679×1042 unique solutions 

to the DO-GE 17-bar truss problem. Thus, the probability of randomly finding a single fit 

solution in the first generation is too small in this instance. 

 

Figure 4.13: Progressive evolution of DO-GE solution for the 17-bar truss problem 

The optimum evolved topology using DO-GE is shown in Figure 4.14 below. 



 DO-GE – Dual Optimisation in Grammatical Evolution 

 

103 

  

 

Figure 4.14: 17-bar truss problem - evolved minimum topology 

As with load case 2 of the 10-bar truss problem, it can be seen that the topology evolved 

simultaneously with member sizing differs from the topology evolved with uniform materials 

(as shown in Figure 4.12). Once again this suggest that optimisation of structural topology and 

member sizing is inextricably linked and, thus, should be conducted in tandem. 

Table 4.7 compares the performance of DO-GE against results from the literature. With the 

use of the steel solid sections material set, the best achieved solution was only 10.3 lb off that 

achieved by Li et al. [64], at 2595.4 lb. Using the Tata materials, the best achieved solution 

was 2642.1 lb.  

Table 4.7: 17-bar truss problem: Evolved minimum cross-sectional areas (in2) using DO-GE 

Element 

Khot & 

Berke 

[128] 

Adeli & 

Kumar 

[129] 

Li et al. 

[64] 

DO-GE 

Steel solid sections Tata CHS steel 

1 15.930 16.029 15.896 16.0 13.826 

2 0.100 0.107 0.103 None None 

3 12.070 12.183 12.092 12.2 12.276 

4 0.100 0.110 0.100 None None 

5 8.067 8.417 8.063 8.1 7.766 

6 5.562 5.715 5.591 5.7 5.828 

7 11.933 11.331 11.915 12.1 12.276 

8 0.100 0.105 0.100 None None 

9 7.945 7.301 7.965 8.0 7.766 

10 0.100 0.115 0.100 None None 

11 4.055 4.046 4.076 4.1 4.433 

12 0.100 0.101 0.100 None None 

13 5.657 5.611 5.670 5.7 5.208 

14 4.000 4.046 3.998 4.1 4.464 

15 5.558 5.152 5.548 5.7 5.208 

16 0.100 0.107 0.103 None None 

17 5.579 5.286 5.537 5.7 5.208 

Weight (lb) 2581.9 2594.4 2581.9 2595.4 2642.1 
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A graph of the evolutionary runs comparing evolution of Tata materials and steel solid sections 

using both GE and DO-GE is presented in Figure 4.15. 

 

Figure 4.15: 17-bar truss optimisation. Rapid convergence and lesser standard deviation 

apparent with dual optimisation approach. 

4.4. Deterministic Sizing Optimisation 

Although the work presented in this thesis uses two Chromosomes to optimise sizing and 

topology simultaneously, sizing optimisation can also be seen as a deterministic problem when 

given an initial material configuration [7]. The optimum required member sizings for a 

particular topological layout can be determined by analysing the load paths and stresses in the 

loaded structure, as utilized by Shea and Smith [85]. The current stress in each edge can be 

multiplied by the original cross-sectional area of that edge to calculate the force in each edge 

(Eq. 4.8). The minimum required cross-sectional area of that edge such that it will pass all of 

its stress constraints can then be calculated as the force divided by the observed stress, as 

shown in Eq. 4.9.  

 𝐹𝑜𝑟𝑐𝑒 = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑡𝑟𝑒𝑠𝑠 ∗ 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑟𝑒𝑎 
Eq. 4.8 

 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎

=
𝐹𝑜𝑟𝑐𝑒

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑡𝑟𝑒𝑠𝑠
 

Eq. 4.9 
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This minimum required cross-sectional area can then be compared with the section sizes of all 

available construction elements (i.e. different material sizes), and the most appropriate 

material can then be reassigned to that edge such that the stress in each edge is maximised 

with regards to its allowable limit: 

 

𝑚𝑖
𝑎𝑟𝑒𝑎 ≤ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑟𝑒𝑎 ≤ 𝑚𝑖+1

𝑎𝑟𝑒𝑎 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐴𝑟𝑒𝑎 = 𝑚𝑖+1
𝑎𝑟𝑒𝑎 

∀ 𝑚𝑖 ∈ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝐿𝑖𝑠𝑡 

 

Once all members in an individual have been optimised, the structure must be re-analysed and 

the individual must again have its fitness evaluated, as a change in the member sizings induces 

a change in the stress state of each edge. Due to the highly optimised nature of the problem 

(with all constraints at or just below their limits), these changes, while potentially small, could 

push the structure over its constraint limits. This would mean that the “optimised” structure 

could remain unfit and would need to be re-optimised and once again have its fitness 

evaluated. Since this loop can continue indefinitely if not managed properly, a termination 

criteria needs to be set, either in the form of a maximum number of optimisation iterations (i.e. 

a limit to the optimisation depth), or some stopping criteria (i.e. an improvement over the 

original fitness has been found, or if convergence has occurred and no further improvement in 

the fitness is observed). A trade-off must, therefore, be reached between computational time 

and the efficiency of the deterministic optimisation algorithm. Notably, various experimental 

runs demonstrated that on average optimised fitness results stabilize and achieve convergence 

after the 5th optimisation step. 

An experiment was performed to compare both GA-GE and the dual chromosome DO-GE 

method previously described in this chapter against this deterministic sizing optimisation 

method. The same benchmark problems described in Section 4.2 were attempted, except this 

time only one chromosome was used: Ch.A, which defined the structural topology. All 

member sizings were directly calculated using the deterministic optimisation method 

described above, and the results were compared with those of previous experiments which 

used two chromosomes to solve the same problems. 
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Figure 4.16: 10 Bar Truss, Load Case 1 (CHS materials). Comparison between regular GA-

GE, DO-GE, and GE running a deterministic member size optimiser. 

As shown in Figure 4.16, GA-GE performs identically whether using a deterministic optimiser 

or using an evolutionary process to optimise member sizings. However, while the overall 

optimised results for deterministic optimisation and GA-GE were nearly identical in both 

cases, optimising the member sizings at each step vastly increased the computational effort 

required, leading to a five-fold increase in the run time for a single evolutionary run with 

identical settings. Since deterministic optimisation produces identical results to GA-GE but 

with increased computational time, it offers no performance benefits for truss optimisation 

problems. Conversely, the full dual-chromosome optimisation method shows much faster 

convergence with a lower standard deviation and an overall better average fitness. Although 

only one load case is shown here, these results were seen across all three groups experiments 

performed, regardless of material choice or the loading scenario. This corroborates Luh and 

Lin’s assertions [77] that the most optimal solutions for discrete methods can only be found 

by simultaneously considering optimisation of size, shape, and topology as each has an effect 

on the others. 
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4.5. Discussion 

While the best solution for each load case found using DO-GE was consistently heavier than 

the best solutions from previous works, this is due to both the use of different materials 

(aluminium was used in the case of the 10-bar truss) and a more restricted range of available 

materials. Traditional optimisation methods [7, 73, 12, 13, 64, 65, 76] calculate the minimum 

required cross-sectional area, while the DO-GE method presented here matches the closest 

commercially available element (based on a predefined list) to that minimum. 

When the results are analysed in more detail, some interesting points become apparent. These 

are directly related to the application of the method as a structural design tool and highlight 

some important short-comings of the more traditional optimisation methods. 

For the literature examples presented in Section 4.2, compressive and tensile stress limits were 

identical and were set at 25 ksi in the case of the 10-bar truss and 50 ksi for the 17-bar truss. 

In structural design practice this is far from the case, as many section-dependent factors govern 

the material stress limits, including relevant design codes of practice [57, 58, 59, 60] and 

manufacturer’s specifications [118]. This discrepancy is particularly relevant in the case of 

axial compression. Both standard codes of practice [59, 60] and manufacturer specified 

compression resistance limits [118] are considerably more conservative as they take into 

account various factors of safety. These are not used in traditional optimisers. Also these 

variable stress limits apply regardless of the material used, as compressive stress limits are a 

function of the length of the member, its cross-sectional area, and its thickness. 

In the manufacturer’s specifications [118], along with the current standard for structural steel 

design [60], methodologies are available to calculate the allowable maximum resistance of 

axial compression members. These are based on the gross cross-sectional area, the effective 

length of the member, and the given maximum compressive strength of the material (which 

itself is a function of the section geometry). DO-GE addresses these issues by building 

dictionaries of section data for each structural member, including section geometry and 

properties, compressive and tensile stress limits (based on section geometry, design codes of 

practice, and manufacturer specifications), and permissible Euler buckling limits. A summary 

of the maximum permissible stress for each element in compression is given in Table 4.8. 
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Table 4.8: Summary of compression elements in sample problems 

Element 

Length 

(in) 

Second moment of 

area (in4) 

Max allowable stress 

(ksi) 

10-bar truss (load case 1) 

3 360 153.040 29.810 

4 360 72.075 18.505 

8 509.12 153.040 19.420 

10 509.12 2.883 3.416 

10-bar truss (load case 2) 

2 360 0.235 0.758 

3 360 153.040 29.810 

4 360 101.146 22.552 

8 509.12 72.075 18.505 

17-bar truss 

3 100 749.583 45.112 

4 100 0.074 3.785 

7 100 44.927 45.016 

11 100 101.146 49.362 

12 100 4.132 35.991 

14 100 31.713 47.272 

15 141.42 9.442 32.392 

16 141.42 7.520 22.902 

17 141.42 12.757 32.011 

Inspection of the data shows that there is considerable variation in the maximum permissible 

compressive stresses, with values ranging from 0.75 to 49.4 ksi. When the approach used by 

traditional optimisation methods (to take a fixed constant value for this property) is considered, 

the implications of this approach with respect to compressive resistance and buckling are very 

clear. The results also highlight a very significant shortcoming of traditional optimisation 

methods. 

For illustrative purposes, all experiments were run a second time with a wider array of 

materials representative of those of other works (solid aluminium and steel material sets, as 

described in Table 4.1. Evolved solutions were found to be much closer to the previous best 

solution reported in the literature, using the standard commercially available cross sections. 

Comparisons between element cross-sectional areas evolved using DO-GE and those of 

previous methods (Table 4.2 to Table 4.7) confirm that a dual optimisation approach for 

evolving both structural topology and member sizing simultaneously is fully capable of 

matching other optimisation methods.  
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4.6. Conclusions  

Simultaneous optimisation of structural topology and member sizing was hypothesised to be 

capable of generating highly optimal viable solutions. Through the use of two unique 

chromosomes, it was shown that evolution of two separate datasets for a single objective was 

possible. This dual optimisation method was compared against popular methods from the 

literature and was found to be capable of producing similar or superior solutions. Comparison 

was also made against a deterministic sizing optimisation method, which was found to have a 

five-fold increase in the computation time required for evolution. This corroborates the 

reasoning for using a heuristic approach over a deterministic approach, as stated in Chapter 1; 

heuristic approaches trade the outright accuracy of deterministic approaches for computational 

speed. 

This chapter also demonstrated that the majority of reviewed discrete optimisation literature 

use unrealistic assumptions about material properties and physical structure layout. Although 

numerous notable truss optimisation methods exist, it was found that the most popular methods 

are not fully appropriate for everyday use in the construction industry, as they focus purely on 

optimising minimum element cross-sectional area, neglecting crucial section properties and 

material specifications. Furthermore, the widespread use of identical tensile and compressive 

stress limits on the material, and the absence of design codes and standards of practice in such 

optimisation methods gives a false impression of both the efficiency of the algorithm and the 

importance of the achieved results. Experiments showed that realistic construction materials, 

when applied to the same problem, cannot produce the same results. The conclusion was 

drawn that the heavily optimised results of the literature give a false impression of the 

efficiency of the algorithms in question. There is a tendency in the literature to focus on minute 

improvements to existing techniques rather than introducing new paradigms. While the use of 

commercially available elements and constraints based on building code standards produces 

consistently heavier results than those of idealised optimisation methods, the approach 

described in this chapter only creates designs which conform to standard design codes of 

practice, and hence all fit individuals can be considered viable for construction.  

Although fixed length chromosomes were used in this chapter, Chapter 6 will expand on this 

idea by exploring the recursive capabilities of GE in structure generation, allowing for 

variable-length chromosomes to be used. The addition of recursion to the grammar should 

theoretically vastly increase the representation capabilities of the program, allowing for an 
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extensive increase in the number of potential derivable solutions. A potential problem arises 

however in that a larger representation space increases the importance of constraint handling 

in unfit individuals. Chapter 5 will, therefore, examine the implications of constraint handling 

in unfit individuals, including the impact that a larger representation space will have on 

evolutionary performance.  
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Chapter 5. Constraint Handling and Evolutionary 

Selection Pressure 

 

Selection of appropriate techniques for handling different constraints is a key part of 

evolutionary optimisation and in all disciplines of heuristic optimisation algorithms. This 

particularly applies to the field of population-based evolutionary structural engineering truss 

optimisation where multiple conflicting constraints are often present. These constraints 

include standard engineering parameters such as stress, strain, deflection, buckling, and 

weight. They can, however, also include more complex constraints such as an accurate 

estimate of the cost of the structure or a subjective assessment of the architectural form. Some 

constraints may be hard limits which cannot be exceeded (e.g. stress limits or fire resistance), 

while other constraints may be more flexible (e.g. cost or aesthetic appearance). An individual 

solution can only be considered “fit” for purpose if it passes (i.e. does not violate) all 

constraints imposed upon it. The selection of appropriate functions for measuring these 

constraints, and the subsequent management of these parameters, is a crucial part of the 

evolutionary process.  

Structural engineering optimisation will often require the designer to satisfy multiple parallel 

objectives, such as minimising the self-weight and cost of the structure, while maximising its 

structural rigidity [7]. There may also be overlaps between both constraints and objectives, 

such as minimising deflection, subject to a specified maximum deflection limit. In the initial 

phase of evolution where the population may be dominated by unfit solutions, understanding 

the interaction between these constraints and the overall metric by which the fitness of the 

individual is judged will have a significant impact on the quality of the designs produced. As 
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such, a key challenge for designers when using evolutionary approaches is to find an accurate 

metric that will allow the designer to:  

a) judge individual constraints, and  

b) transform the performance of the individual (with respect to those constraints) into a 

single coherent value for use by the fitness function. 

When an individual fails a constraint, its fitness must be amended such that it reflects the unfit 

nature of the individual, rendering it less likely to pass on genetic material to subsequent 

generations.  

Traditional ground structure methods (such as those described in Chapter 4) consist of well-

defined problems. With all potential solutions having to be specified a priori, a relatively 

small/limited number of potential solutions are capable of being generated. The probability of 

evolving a fit solution in the initial stages of the evolutionary process is high, as there are only 

a small total number of potential available solutions through which to search. In this instance, 

handling of constraint violations within the fitness function, while still important, is not a 

crucial issue, as fit solutions are easily obtained (and often appear in the first generation). 

A possible issue arises, however, when the scope of the problem is increased. An increase in 

the total number of potential derivable solutions of the evolutionary algorithm can 

theoretically improve the quality (i.e. fitness) of the derivable solutions. However, this 

increase means the evolutionary process consequently has a much larger field through which 

to search (Figure 5.1). Whereas the handling of constraint violations within the fitness function 

may not be of particular importance in methods with limited representation capabilities (such 

as discrete “ground structure” topology optimisation methods discussed in Chapter 4 [10, 14, 

69, 73, 77, 117]) due to the relatively high probability of evolving a feasible solution from a 

limited representation set, the increased difficulty inherent with an increased representation 

capabilities elevates the importance of managing violated constraints. 
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Figure 5.1: An increase in the representation space size may uncover more potential fit 

solutions, but the overall number of unfit solutions will see a greater increase. 

This chapter does not set out to find the most appropriate method for evolving the fittest overall 

solution but rather to find the most effective way to evolve any fit solution where the 

probability of such is extremely low (i.e. the most efficient way to navigate to an area of the 

search space populated by a higher concentration of possible solutions). A number of questions 

are asked in order to ascertain this: 

 Does the number of applied constraints have a positive or negative effect on the 

evolutionary process? 

 Should constraints be seen as a necessary design component or a tool to improve 

search? 

 What is the most efficient way to relate constraint violations to the overall fitness of 

the individual? 

A method for applying accurate penalty values for individuals with multiple failed constraints 

is introduced, based on a quantifiable appraisal of the severity of any constraint violation. This 

method is compared against several methods from the literature using benchmark test cases of 

varying degrees of difficulty. The effect of differing constraint limits on the overall population 
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evolution is analysed. The differences between varying degrees of hard and soft limits are 

discussed, as are the implications of their use in different scenarios. 

The remainder of this chapter is structured as follows. Section 5.1 provides a background to 

the main themes discussed in this chapter. Section 5.2 details how changes to the definition of 

a problem can have greater or lesser impacts on the fitness landscape, thereby affecting the 

difficulty of the problem. This section includes a discussion on pre- and post-fit evolution in 

Section 5.2.2, and the development of a penalty function for unfit individuals in Section 5.2.3. 

This penalty function is compared against a number of benchmark numerical examples from 

the literature in Section 5.3, and the implications of these experiments are discussed in Section 

5.4. The conclusions are drawn in Section 5.5. 

5.1. Introduction 

Terry Jones’ work [4, 79] set in place a standardised model for understanding the terms 

associated with search space and landscapes. The terminology associated with certain 

components of heuristic algorithms in general must be understood correctly before the whole 

picture can be grasped.  

1. The search space (SS) contains the full set of all possible solutions. It is not limited in 

any sense by what the search algorithm is capable of producing and includes all 

conceivable (and non-conceivable) problem solutions regardless of their viability. 

2. The representation space (SR) is a subset of the search space, and encapsulates all 

potential design solutions which are capable of being generated and represented by the 

algorithm. The solutions in the representation space are derived from all permutations 

and combinations of genes in the chromosome, regardless of their actual merits as 

viable designs. Each point in the representation space represents a particular genotypic 

string which, when applied to a grammar, creates a phenotypical translation of that 

point. The larger the representation space, the greater the percentage of the search 

space that is covered and, therefore, the greater the search capabilities of the algorithm. 

3. The fitness space (SF) represents the SR when mapped through some valuation of each 

particular solution. This is most commonly called the fitness function. Each point in 

the SF is a quantifiable appraisal of a corresponding design solution from the SR.  
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A landscape is a term often used as a visual metaphor for the relationships between the fitness 

values of a population of individuals. It is defined by Jones [4] as a combination of five 

essential components: 

 
𝐿 = 𝑓(SR, 𝜃, 𝐹, 𝑆𝐹 , >𝐹) 

Eq. 5.1 

where, 

SR   = Representation space 

𝜃  = Operator (crossover, mutation, etc.) 

F = Fitness Function 

SR  = Fitness Space 

>F  = A partial order over the Fitness Space 

Jones’s work mainly focussed on manipulation of 𝜃 and the observance of changes apparent 

in the landscape. The focus of this particular chapter is the manipulation of F and consequently 

the observable effects on LF, the fitness landscape. By extension, if all other variables are kept 

constant (R, 𝜃, >F), any variation in F will signify a corresponding variation in LF. From this 

point forwards, the term fitness landscape can be thought of as equivalent to the SF, as all 

other variables are held constant. 

5.2. Variation in Fitness Landscapes 

The fitness landscape represents the performance aspects of each point within the SR. 

Individuals within the fitness landscape can be divided into two basic categories: 

1. Fit individuals 

Individuals which pass all constraints or limiting factors imposed on them are 

deemed to be fit for their designed environment, in that they adequately 

perform all of the tasks required of them. 

 

2. Unfit individuals 

Individuals which fail at least one constraint or limiting factor imposed on them 

are deemed to be unfit for their designed environment, in that they fail to 

adequately perform the tasks required of them. 

While the SR is concerned with the phenotypic appearance of an individual (i.e. physical 

dimensions and topological layout of a structure) and, as such, remains constant for any given 
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design envelope/grammatical representation, variations in the fitness function can lead to a 

dynamic fitness landscape. The fitness landscape will often have terminology applied to it, 

which refers to peaks, troughs, valleys, and hills. These address the differing fitness values of 

points in the space. A peak would represent a local optimum; a point where all surrounding 

points have a worse fitness value. Conversely a trough will be surrounded by points with a 

better fitness value. 

As a problem becomes more difficult (higher loading conditions, larger spans, thinner 

available members, etc.) the fitness landscape correspondingly changes. While there are still 

the same total number of potential solutions defined by the problem, the percentage of fit 

solutions in the representation space (hereafter called the fitness ratio) reduces and it becomes 

increasingly difficult for the evolutionary algorithm to find a fit solution. A simple analogy 

would be to think of a fitness landscape as a series of islands in a sea, with the sea level 

representing the boundary above which all individuals are feasible. If the sea level rises, the 

islands correspondingly shrink in size (i.e. the total number of feasible solutions diminishes), 

and it becomes more difficult to find feasible solutions. In this case, the process is tending 

towards a random search, where the benefits of the evolutionary approach are lost. This 

correlation is shown experimentally in Section 5.3 where the SR is kept constant, but the 

loading conditions are changed, leading to a decrease in the fitness ratio. To minimize 

evolutionary difficulties inherent with this effect, careful manipulation of constraints is 

essential. This concept is important to grasp, and the correlation can be demonstrated by a 

simple experiment. 

5.2.1. Experiment: Increasing Problem Difficulty and its Effect on the Fitness 

Space 

Consider a theoretical problem where an evolutionary algorithm has to find a suitable solution 

for the optimum size of a simply supported beam with a single point load at centre span. The 

only constraint relates to the bending moment capacity of the beam. The problem description 

consists of a solid rectangular steel beam (density 7,850 kg/m3) of variable cross-sectional 

area, of fixed length L = 10m, supporting a variable vertical point load of P (N) at its centre. 

There are 10 available beams to choose from, as shown in Table 5.1: 

 

 



 Constraint Handling and Evolutionary Selection Pressure 

 

117 

  

Table 5.1: Material properties 

Beam id 
Breadth 

(mm) 
Depth (mm) Self-Weight (kg) 

1 20 40 62.8 

2 30 60 141.3 

3 40 80 251.2 

4 50 100 392.5 

5 60 120 565.2 

6 70 140 769.3 

7 80 160 1,004.8 

8 90 180 1,271.7 

9 100 200 1,570 

10 110 220 1,899.7 

There are 8 test cases in consideration, each with a higher load than the previous: 

Table 5.2: Test cases with variations in loading 

Test Case 1 2 3 4 5 6 7 8 

Load = P (N) 100 2,000 5,000 10,000 15,000 25,000 35,000 50,000 

Traditional beam theory [57, 60] states that the maximum bending moment for a simply 

supported beam with a point load is: 

 𝑀 =
𝑃𝐿

4
 

Eq. 5.2 

The elastic section modulus S for a rectangle is given as: 

 𝑆 =
𝑏ℎ2

6
 

Eq. 5.3 

The moment capacity of a beam is given in the standards [60] as: 

 𝑀𝑐 = 𝑝𝑦𝑆 
Eq. 5.4 

Taking grade S275 steel, with a design strength 𝑝𝑦 of 275 N/mm2, it is then possible to 

calculate the moment capacity 𝑀𝑐 for any given section. Now, consider a representation space 
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R comprising of the selection of 10 solid rectangular beams of increasing size shown in Table 

5.1. The bending moment applied to each beam for each given load can then be calculated. 

The fitness function in this instance merely subtracts the actual bending moment from the 

moment capacity, as shown in Eq. 5.5. If the number is positive, then there is a surplus moment 

capacity, and the beam is fit for purpose. If, however, the number is negative, then the beam 

does not have the requisite moment capacity to carry the load, and it is deemed to be unfit for 

purpose. 

 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = (𝑝𝑦

𝑏ℎ2

6
) −

𝑃𝐿

4
 

Eq. 5.5 

Table 5.3 shows that as the load increases (i.e. the fitness function f changes), the fitness 

landscape LF changes and the fitness ratio (i.e. the percentage of fit solutions in the 

representation space) reduces, while the actual representation space (the list of available 

beams) remains constant. As the fitness ratio decreases, the likelihood of finding a fit 

individual correspondingly decreases. 

Table 5.3: Surplus moment capacity (kNm) for increasing loads. Fit individuals are green, 

unfit are red 

Section Properties Surplus Moment Capacity (kNm) for test cases 

Beam Id 

Moment Capacity 

(kNm) 1 2 3 4 5 6 7 8 

1 1.47 1.22 -3.53 -11.03 -23.53 -36.03 -61.03 -86.03 -123.53 

2 4.95 4.7 -0.05 -7.55 -20.05 -32.55 -57.55 -82.55 -120.05 

3 11.73 11.48 6.73 -0.77 -13.27 -25.77 -50.77 -75.77 -113.27 

4 22.92 22.67 17.92 10.42 -2.08 -14.58 -39.58 -64.58 -102.08 

5 39.6 39.35 34.6 27.1 14.60 2.1 -22.9 -47.9 -85.4 

6 62.88 62.63 57.88 50.38 37.88 25.38 0.38 -24.67 -62.12 

7 93.87 93.62 88.87 81.37 68.87 56.37 31.37 6.37 -31.13 

8 133.65 133.4 128.65 121.15 108.65 96.15 71.15 46.15 8.65 

9 183.33 183.08 178.33 170.83 158.33 145.83 120.83 95.83 58.33 

10 244.02 243.77 239.02 231.52 219.02 206.52 181.52 156.52 119.02 

Fitness ratio 100 80 70 60 60 50 40 30 

5.2.2. Constraints: Pre- and Post-Fit Evolution 

The evolutionary process can be divided into two stages: pre-fit evolution and post-fit 

evolution. Pre-fit evolution refers to the evolutionary process before any fit individuals have 

been found by the algorithm, while post-fit evolution begins as soon as a single fit individual 

appears within the population. In the pre-fit evolutionary phase, the interaction between 

objectives and constraints is of vital importance in navigating through the initial unfit-laden 
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search space to find fit individuals. This is achieved by managing the relationship between the 

constraints and the objectives of unfit individuals within the fitness function.  

Constraints provide high-level information about the performance of all elements and aspects 

of an individual, while the fitness represents the overall performance of the individual relative 

to both its peers and the overall evolutionary objective. The addition of more constraints does 

not necessarily improve search characteristics. Indeed the opposite could be argued. More 

constraints theoretically mean a lower quantity of fit individuals in the overall population, with 

a “worse” overall average fitness for those individuals with more constraints over those with 

fewer constraints. Supposing a second constraint is added to the original example from Table 

5.3: a vertical deflection limit. The formula for calculating vertical deflection δ is given [57, 

60] as: 

 𝛿 =
𝑃𝐿3

48𝐸𝐼
 

Eq. 5.6 

Limits on deflection for a steel beam are given in the standards [60] as: 

 𝛿𝑚𝑎𝑥 =
𝑆𝑝𝑎𝑛

200
 

Eq. 5.7 

With a span of 10m, the deflection constraint becomes: 

 𝛿𝑚𝑎𝑥 =
10,000𝑚𝑚

200
= 50𝑚𝑚 

Eq. 5.8 

With a modulus of elasticity E of 205,000 N/mm2 for grade S275 steel, we can calculate the 

maximum observed deflection as: 

 𝛿 =
𝑃 ∗ (10,000)3

48 ∗ 205000 ∗
𝑏𝑑3

12

 

Eq. 5.9 

 𝛿 = 101,626 ∗
𝑃

𝑏𝑑3

12

 

Eq. 5.10 
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Using these formulae, the fitness function can now calculate the actual deflection of each beam 

for each given load and compare it to the allowable deflection limit of 50mm, as shown in 

Table 5.4. 

Table 5.4: Addition of deflection constraint reduces number of fit individuals. Fit individuals 

are green, previously fit but now unfit individuals are orange, and originally unfit individuals 

are red. 

Section Properties Actual Deflection (mm) for load cases 

Beam Id I (mm4) 1 2 3 4 5 6 7 8 

1 106667 95.27 1905.49 4763.72 9527.44 14291.16 23818.6 33346.04 47637.2 

2 540000 18.82 376.39 940.98 1881.96 2822.95 4704.91 6586.87 9409.82 

3 1706667 5.95 119.09 297.73 595.46 893.2 1488.66 2084.13 2977.33 

4 4166667 2.44 48.78 121.95 243.9 365.85 609.76 853.66 1219.51 

5 8640000 1.18 23.52 58.81 117.62 176.43 294.06 411.68 588.11 

6 16006667 0.63 12.7 31.74 63.49 95.23 158.72 222.21 317.45 

7 27306667 0.37 7.44 18.61 37.22 55.82 93.04 130.26 186.08 

8 43740000 0.23 4.65 11.62 23.23 34.85 58.09 81.32 116.17 

9 66666667 0.15 3.05 7.62 15.24 22.87 38.11 53.35 76.22 

10 97606667 0.1 2.08 5.21 10.41 15.62 26.03 36.44 52.06 

Fitness ratio 90 70 50 40 30 20 10 0 

Comparisons between Table 5.3 and Table 5.4 show that the fitness ratio has reduced in all 

cases with the addition of a second constraint, with fewer overall fit individuals for every load 

case. Sections highlighted in orange represent members that were fit when only the single 

constraint of moment capacity was being considered but which are deemed unfit when both 

moment capacity and deflection are considered. 

In engineering optimisation the addition of constraints is more often than not a design 

necessity rather than an evolutionary choice. The existence of more constraints thus represents 

better design practice. In this regard, constraints can (and should) be used similarly to design 

codes of practice [59, 60, 117]. 

The number of constraints C and the number of fitnesses F will remain constant between 

individuals. Each element E in an individual I must pass c ∈ C constraints depending on the 

state of that element. For example, a member in compression might have constraints such as 

buckling, web bearing, compression limits, etc., while elements in tension will have different 

constraints applied; differing conditions will incur variable constraints per element E. 

Constraint application does not necessarily need to be limited to individual members within 

an individual I and can be applied broadly to the entire individual itself (such as an overall 
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cost or weight limit) or to portions thereof (such as groups of members forming joints). If E 

(∀ E ∈ I) passes all constraints c ∈ C, then the fitness f of the individual is left unchanged. If, 

however, any constraint c is violated (or indeed if multiple constraint violations occur), then 

that individual must be assigned a penalised fitness Fp such that it becomes correspondingly 

less likely for that individual to succeed to the next generation. In this instance the interaction 

between C and Fp becomes critical. 

5.2.3. Constraint Handling in Unfit Individuals: Development of a Reliable 

Penalty Function 

There are multiple ways of handling unfit individuals, but the most common is to add a penalty 

value to the original fitness of the individual [111]. Once an individual fails a constraint, it is 

deemed unfit for purpose and is assigned a penalised fitness. Constraint handling reviews from 

the literature (e.g. [109, 80]) recommend that the penalty to be applied to the fitness be kept 

as low as possible. It should be right above the feasible/infeasible boundary, or the Near 

Feasibility Threshold (NFT) (similar to the description of the boundary by Li et al. [64]); this 

method is often called the minimum penalty rule. However, in the case of structural 

engineering optimisation this might not be possible as there may be no clearly defined 

boundary between fit and unfit individuals when multiple constraints are present (indeed, 

Coello Coello acknowledges that this is apparent in most applications [109]). 

To continue with the beam optimisation example presented in the previous section, the 

constraints on the problem consist of the bending moment capacity and the vertical deflection 

of the beam. The fitness of each beam is determined as the self-weight of the beam, and the 

problem definition is concerned with minimising this self-weight for any particular load case. 

For load case 1 in Table 5.4, beams 2 and 10 are both fit for purpose, with beam 2 the “fitter” 

of the two options having a self-weight of 141.3 kg compared to 1,899.7 kg for beam 10.  

Suppose, theoretically, that the load for test case 1 suddenly increases from 100N to 300N, as 

shown in Table 5.5. 
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Table 5.5: Actual deflection for beams 2 and 10, load case 1 

Section Properties Actual Deflection (mm) for load 

Beam Id Self-Weight (kg) 100 N 300 N 

2 141.3 18.82 56.46 

10 1,899.70 0.1 0.31 

The actual deflection of beam 10 remains below the limit, at 0.31mm. However, the deflection 

of beam 2 is now 56.46mm, and it is no longer fit for purpose, as it fails the deflection 

constraint. Beam 2 must now be penalised such that its fitness cannot remain “better” than that 

of beam 10 (which already has a fitness over 10 times worse than that of beam 2 even though 

beam 10 is actually fit). There must be assurance that the fitness of unfit individuals cannot be 

better than the fitness of potential fit individuals, i.e. there must be a distinction made between 

fit and unfit individuals. 

Coello Coello [109] asserts that: 

 

“Penalties which are functions of the distance from feasibility are better 

performers than those which are only functions of the number of violated 

constraints.” 

 

Since the NFT cannot be clearly defined, the amount by which a constraint is violated must 

instead by calculated in order to gain an accurate estimate of the distance to feasibility (DTF) 

for that particular individual (i.e. some metric which indicates the number/severity of 

constraint failures). An accurate estimate of the DTF for each individual is theorised to 

improve the evolutionary selection pressure for fitter individuals, thereby improving the 

overall evolutionary process. What is developed here is a method of developing an accurate 

and quantifiable description of the severity of any constraint violation for any individual. This 

method compiles various recommendations from methods referenced from the literature and 

combines them to create an engineering-appropriate penalty function. This method is then 

compared against various methods from the literature in Section 5.3. 

Normalising Constraint Violations 

Since multiple different constraints may operate on different scales (i.e. deflection may be of 

the order of a few millimetres, while stress may be off by a few hundred Newtons per square 

millimetre), direct comparison of different constraint violations would be non-sensical. A 
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much more logical method of comparing differing constraints can be achieved by normalising 

each constraint by its own limit. This can be obtained by assuming that the limit of a constraint 

is 100%, and then everything over that limit represents the percentage by which that constraint 

has failed (as shown in Eq. 5.11). This penalty mechanism provides a level metric by which 

to judge all constraint failures across all individuals in a population.  

 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑎𝑏𝑠 (

(𝑣𝑎𝑙𝑢𝑒 − 𝑙𝑖𝑚𝑖𝑡)

𝑙𝑖𝑚𝑖𝑡
×

100

1
) Eq. 5.11 

In the presented example, the deflection limit is 50mm and beam 2 now deflects by 56.46 mm. 

The failure of beam 2 can now be quantified as: 

 
𝐷𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑎𝑏𝑠 (

56.46 − 50

50
×

100

1
)

= 12.92% 
Eq. 5.12 

Thus, beam 2 exceeds its deflection constraint by 12.92% of its capacity. 

Using this technique, the amount by which any constraint has failed for any individual and for 

any test case can be rapidly assessed, which provides a level metric by which all failed 

constraints can be compared. 

Multiple Constraint Failures 

While normalising constraints can allow for unbiased comparison between separate 

individuals with single constraint failures, a new issue arises with individuals with multiple 

constraint failures. In test case 4 (Table 5.4), both beams 4 and 5 have failed. However, beam 

4 fails in both bending and deflection, whereas beam 5 only fails in deflection. The failure 

percentages for beam 4 are: 

 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑎𝑏𝑠 (
22,916,666.67 − 25,000,000

25,000,000
×

100

1
) 

= 8.33% 

Eq. 5.13 

 

 

 
𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑎𝑏𝑠 (

243.90 − 50

50
×

100

1
) 

      = 378.8% 

Eq. 5.14 

while the percentage failure for beam 5 is: 
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𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑎𝑏𝑠 (

117.62 − 50

50
×

100

1
)

= 135.25% 
Eq. 5.15 

These failures must be processed in such a way that they not only accurately describe the 

performance of the individual for the task at hand, but also such that they sufficiently 

differentiate failed individuals. In addition to the most popular constraint handling method of 

static penalties, three separate methods of penalty function generation by processing constraint 

violation information from the literature can be further developed using the normalisation 

method introduced in the previous section in order to relate them to the overall fitness of the 

individual [109, 80, 130, 111]: 

1. Number of Failed Constraints 

The first method merely counts the number of violated constraints and assigns a 

penalty value to that individual proportional to the number of failed constraints, but 

not to the severity of those violations. 

2. Maximum Failure 

The second method takes the single constraint that produces the greatest percentage 

violation of its limitation. This means that an individual that might violate multiple 

constraints will only be assessed on the basis of the worst violated constraint [62]. This 

method can be readily modified to use the normalised percentage-based method 

described above. 

3. Summation of All Failures 

The third method sums all constraint violations by which each element E of an 

individual I has failed any constraint c. This means that individuals with multiple 

constraint violations will have a correspondingly poor fitness, as they cumulatively 

have a higher DTF. This method can be readily modified to use the normalised 

percentage-based method described above. 

Penalty Function 

Once the violation amount has been quantified, the final step is to transfer that information to 

the fitness via a penalty function of some form. While both Coello Coello [110] and 
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Michalewicz [80] advocate the addition of a constraint violation penalty to the fitness, this 

might not sufficiently differentiate individuals as the violation can be very small and the range 

of possible fit solutions may be very large (i.e. a fit solution for a truss may exist at 1,000 kg, 

while a different fit solution may also exist at 20,000 kg). The end result may be that an unfit 

individual, even when penalised, could still theoretically end up with a “better” fitness than a 

truly fit individual since there is no clear boundary between fit and unfit individuals. For this 

reason all constraint violations and associated penalties in this thesis are multiplied by the 

fitness, as advocated by Kawamura et al. [73]. This multiplicative constraint violation is 

correspondingly hereafter known as the “violation multiplier”. 

Due to the wide range of possible fitness values for fit individuals, an additional multiplication 

buffer is advised [62] in order to ensure that individuals are sufficiently differentiated from 

the total range of plausible fit individuals. The overall fitness of unfit individuals is therefore 

multiplied by both a constant (set at 100 in this thesis) and the violation multiplier described 

above, as shown in Eq. 5.16. If no constraints are broken then the fitness of the individual is 

unaffected. Most importantly, this multiplication method acknowledges Coello Coello’s 

findings that the penalty be a function of the DTF. 

 𝑓𝑝 = (100 ∗ 𝑓 ∗ violation multiplier) 
Eq. 5.16 

The evolutionary process must also be prevented from “cheating”. The violation multiplier 

has been defined above as a percentage of the normalised constraint limits, which is then 

multiplied by the original fitness. Thus, the evolutionary process can produce an individual 

that violates the constraints by only a very small fraction of a percentage. This fraction would 

then be multiplied by the original fitness value to generate a total penalised fitness, which 

would be deemed “better” than the original fitness by virtue of being a lower value, even 

taking the multiplication buffer of 100 into account. 

For example, consider a bridge with a weight of 5,000 kg and a deflection of 100.01mm. If 

the fitness of this bridge is its self-weight and given the sole constraint of a deflection limit of 

100mm, this bridge would violate its constraint by 0.01mm, corresponding to an overall 

violation of 0.01%. The penalised fitness of this bridge would then be: 

 𝑓𝑝 = (100 ∗ 5000𝑘𝑔 ∗ 0.01%) = 5000 
Eq. 5.17 
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From Eq. 5.17 it can be seen that if the overall fitness of the bridge is multiplied by (100 * 

0.01), contrary to penalising it there would not be any net effect on the fitness of the individual. 

This could then create an individual with a seemingly better fitness than other truly fit 

individuals, due to the multiplication of the overall fitness by a fraction of a percentage. 

Because of this potential anomaly, this thesis recommends that all normalised constraint 

violations must have a (+ 1) value added to the given violation multiplier. This extra buffer 

ensures that only positive, non-fractional violation multipliers can be used for penalty factors. 

Combining all the various recommendations thus far, the two main DTF methods of handling 

constraint violations mentioned earlier (Maximum Failure and Summation of All Failures) can 

be heavily modified to incorporate these findings. The resultant penalty functions are novel 

and can be considered well suited to discrete evolutionary structural engineering as they are 

designed to work well with multiple conflicting objective constraints of varying magnitude. 

The final proposed maximum violation penalty value to be used for unfit individuals is: 

 

𝑓𝑝 𝑚𝑎𝑥 = 100𝑓 ∗ ( (max (𝑎𝑏𝑠
(𝑐𝑜

𝑖 − 𝑐𝑙
𝑖)

𝑐𝑙
𝑖

×
100

1
)) +  1)  

∀ 𝐸 ∈ 𝐼 

Eq. 

5.18 

 

 

while the final proposed summation violation penalty value to be used for unfit individuals is: 

 

𝑓𝑝 𝑠𝑢𝑚 = 100𝑓 ∗ ( (∑ (𝑎𝑏𝑠
(𝑐𝑜

𝑖 − 𝑐𝑙
𝑖)

𝑐𝑙
𝑖

×
100

1
)

C

i=1

)  +  1)  

∀ 𝐸 ∈ 𝐼 

Eq. 

5.19 

 

 

 

where: 

 𝑐𝑜
𝑖  = the observed value of constraint i 

 𝑐𝑙
𝑖  = the limiting value of constraint i 

The bridge failure example above would now have a penalised fitness of: 
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 𝑃𝑒𝑛𝑎𝑙𝑖𝑠𝑒𝑑 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 100 ∗ 5000𝑘𝑔 ∗ (0.01 + 1) = 500,050 
Eq. 5.20 

This additional 1% buffer now separates all individuals according to their constraint violations, 

on a sliding scale depending on the severity of the violation. All unfit individuals are 

sufficiently differentiated from fit individuals by the multiplication buffer of 100. 

5.3. Constraint Handling Experiments 

In order to observe the impact of the differing methods of handling broken constraints, a set 

of experiments was conducted. The procedure for these experiments was to steadily increase 

the load on varying structures, thereby reducing the fitness ratio and increasing the difficulty 

of the problem. In the following experiments, three of the most popular methods of handling 

constraints (as described on page 124) from the literature were compared against the 

Summation Violation technique presented here: 

1. Summation violation (Sum Fail, as detailed in Eq. 5.19) 

2. Maximum violation (Max Fail, as detailed in Eq. 5.18) 

3. Number of failed constraints (Num Fail) 

4. Static penalty (Default Fit) 

Three benchmark test cases from the literature were investigated, hereafter named Test Case 

1 (TC1), Test Case 2 (TC2), and Test Case 3 (TC3). In order to demonstrate the variation in 

effectiveness of differing constraint handling methods on problems of varying difficulty, 

different loading cases were examined for each test case. Each test case contained three load 

cases - light, medium, and heavy loading (hereafter named Load Case 1 (LC1), Load Case 2 

(LC2), and Load Case 3 (LC3)), thereby representing successive increases in the problem 

difficulty. Loads far in excess of those specified in the literature were selected such that the 

evolutionary process would have great difficulty in evolving any fit solutions.  

 

Fitness ratios were calculated for each problem by performing a partial enumeration of the 

search space. In each case, 1,000,000 randomly generated solutions were evaluated (in line 

The objective of these experiments was to ascertain which of the given constraint 

handling methods is the most suitable for use with high-difficulty problems (i.e. 

problems with a very low fitness ratio). 
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with methods described by Michalewicz [130]) and the percentage of fit individuals in the 

representation space was calculated. This fitness ratio gives a direct numerical index for the 

difficulty of a problem [130]. A larger number indicates a larger proportion of fit individuals 

in the representation space, which means that the problem is easier and could potentially be 

solved by random search. A high fitness ratio also means that there is a high probability that 

fit solutions will be generated in the randomly initialised first generation, meaning there is less 

of a challenge for evolution. 

The hypothesis for these experiments was that for any load case of any test case, there should 

be a notable difference between the effectiveness of varying methods of handling broken 

constraints. At the highest loading levels (representing the highest difficulty levels and the 

lowest fitness ratios), it was expected that fit individuals would no longer appear in the 

randomly initialised first population for any constraint handling method. At the lowest loading 

level it was expected that most methods would have little difficulty in evolving fit solutions. 

In each test case a popular benchmark structural engineering design envelope was generated 

to represent standard evolutionary design problems. All four constraint handling methods were 

tested against all three loading conditions for each of the three test cases, giving 36 sets of 

experimental runs in total. The aim of these experiments was not to evolve the best individual 

for any particular test case, but rather to find the quickest way to evolve a single fit solution 

in an evolutionary run. This allows for comparison of constraint handling methods and 

assessment of the most appropriate method to use in cases where:  

 the representation space is very large, and 

 the fitness ratio is very low. 

Since standard truss optimisation representation spaces are quite small (with a limited number 

of potential available solutions based on permutation and recombination of pre-defined truss 

layouts, as detailed in previous chapters), a new method of evolving truss structures by 

allowing variation in node placement rather than variation in node connections was developed. 

This new method allows variation in the placement of nodes rather than variation in node 

connections. In this fashion, all that is required in the definition of the problem is the boundary 

description, or design envelope (i.e. all necessary external forces and reactions, but no 

information about the internal layout of the structure). This new method vastly increases the 

representation capabilities of the search algorithm. A detailed discussion of this method is 

given in Chapter 6. 
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The measure of success for these experiments was determined as whether or not a single fit 

individual was evolved at any stage in the evolutionary run. This metric is hereafter called the 

probability of evolutionary success, with the reasoning that if a single fit individual has been 

evolved in a population, the algorithm has succeeded in finding a suitable solution for the 

problem (i.e. a solution which passes all imposed constraints). The probability of evolutionary 

success for a single loading condition on a particular test case will reach 100% if all algorithm 

runs for a particular constraint handling method evolve fit individuals. Evolutionary runs for 

each constraint method were performed 100 times per load case per test case (i.e. 100 runs for 

“TC1, LC1, Max Fail”, 100 runs for “TC3, LC2, Default Fit”, etc.). The test cases and load 

cases employed are described in subsequent sections. Experimental variables were set at: 

 Population size: 1000 

 Generations: 100 

 Mutation Probability: 0.01 

 Crossover Probability: 0.75 

 Tournament Selection 

 Tournament Size: 1% of Population Size 

 Elite size: 1% of Population Size 

 Generational Replacement 

5.3.1. Test Case 1: Simply Supported Truss 

The design envelope for TC1 (as shown in Figure 5.2) is taken from a common optimisation 

problem given by Li and Chen [51] and Wei et al. [89]. It describes a generic simply supported 

truss with a span of 18,288mm (720 inches), a depth of 9,144mm (360 inches), a pinned 

support at one end, and a rolling bearing at the other. A single point load F1 is applied 

vertically at the midpoint of the truss. Three load cases were tested:  

1. 10MN (fitness ratio of 7.7003) 

2. 15MN (fitness ratio of 0.4664) 

3. 20MN (fitness ratio of 0.0364). 
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Figure 5.2: Basic simply supported truss example for constraint comparison. 

Figure 5.3 shows that for LC1 (10MN) all three DTF methods (Sum Fail, Max Fail, and Num 

Fail) effectively produce the same results, with all 100 runs evolving fit individuals, indicating 

a 100% probability of evolutionary success. 

 

Figure 5.3: Number of successful runs for TC1 out of 100 total runs for increasingly difficult 

problems  

The use of a static penalty, however, performed noticeably less well than the other three 

methods and was only able to evolve fit solutions in 74 out of 100 runs, indicating a maximum 

probability of success of 74%. When the problem is made more difficult (i.e. the load increases 

from 10MN to 15MN, as shown in LC2), this probability of success drops to only 2% for the 
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static penalty method, while the Num Fail method reduces to 74%. Both the summation and 

maximum failure methods perform extremely well, with all 100 runs using the summation of 

all failures metric succeeding in finding fit solutions, and only 3 runs using the maximum 

failure metric failing to find a single fit solution. For the final LC3, the Default Fitness fails to 

produce any fit individuals, and the Num Fail method only registers a 9% chance of success. 

The Max Fail method produces less than 50% success (with only 42 successful evolutionary 

runs), whereas by contrast Sum Fail is still able to deliver 87%. 

Further information on the comparative performance of these constraint handling methods 

across varying degrees of difficulty can be seen in Table 5.6. Therein, the total number of 

successful generations (out of a total number of 10,000 generations – 100 generations per run 

for 100 runs) for each constraint handling method and each load case for TC1 can be seen. By 

using the formula developed in Eq. 5.21, the average number of generations required to evolve 

a single successful solution for each constraint handling method and each load case can be 

calculated. 

 

𝐴𝑣𝑔. 𝑛𝑜. 𝑔𝑒𝑛𝑠

=
(𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 ∗ 100) − 𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑔𝑒𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠
 

Eq. 

5.21 

In all load cases, the static penalty method (Default Fit) does not perform as well as the DTF 

methods (Sum Fail, Max Fail, and Num Fail). This is evident from the lower numbers of both 

successful generations and successful runs from this method compared to the others. Further 

discussion is in Section 5.4. 

Increasing the problem difficulty for TC1 has a corresponding effect on the efficiency of the 

varying methods of constraint handling with unfit individuals. The number of generations 

required to evolve a fit solution increases steadily, while the probability of evolving a fit 

solution decreases. This correlation is not seen with the use of a static penalty however, as 

there is no evolutionary pressure towards the generation of more fit solutions. With this 

approach, evolution of a fit solution is purely based on the initialisation method from the first 

generation. This means that if a fit solution is not randomly discovered in the first few 

generations, it will likely not be discovered.  
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Table 5.6: Constraints - Experimental results from TC1 

  
Total no. 

successful gens 

(out of 10,000) 

Total no. successful 

runs (out of 100) 

Avg. no. gens needed 

to evolve a successful 

solution 

Load 

Case 1 

Sum Fail 9833 100 1.7 

Max Fail 9830 100 1.7 

Num Fail 9817 100 1.8 

Default Fit 7222 74 2.4 

Load 

Case 2 

Sum Fail 9401 100 6.0 

Max Fail 9176 97 5.4 

Num Fail 6593 74 10.9 

Default Fit 194 2 3.0 

Load 

Case 3 

Sum Fail 7498 87 13.8 

Max Fail 3509 42 16.0 

Num Fail 702 9 22.0 

Default Fit 0 0 N/A 

5.3.2. Test Case 2: Cantilevered Truss 

The envelope for TC2 is illustrated by Li et al. [64], Lee and Geem [76], Khot and Berke [128] 

and Adeli and Kumar [129]. It describes a simple cantilevered truss with a span of 10,160 mm 

(400 inches) and a depth of 2,540 mm (100 inches), as shown in Figure 5.4. A single point 

load F1 was placed at the end of the structure, and the load was varied to see the evolutionary 

effects of increased difficulty. The three load cases tested were as follows: 

1. 1.5MN (feasibility ratio of 0.3811) 

2. 3MN (feasibility ratio of 0.0000) 

3. 3.5MN (feasibility ratio of 0.0000) 

All of the above loading conditions are considerably higher than the benchmark loading of 

444,800 N from the literature (which carries a feasibility ratio of 16.7738). 
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Figure 5.4: Basic cantilevered truss design envelope 

As with TC1, an increase in the problem difficulty for TC2 led to deterioration in the efficiency 

of various constraint handling mechanisms (shown in Figure 5.5). For the first load case, all 

DTF methods achieved a perfect success rate, with all 100 runs evolving fit individuals, while 

only 2 Default Fitness runs failed to evolve a single fit individual. Increasing the load from 

1.5MN to 3MN for LC2 corroborates the results from TC1 by showing a dramatic drop in the 

efficiency of both Num Fail and Default Fitness, while both Sum Fail and Max Fail remained 

unchanged. 

 

Figure 5.5: Number of successful runs for Test Case 2 out of 100 total runs for increasingly 

difficult problems 
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Increasing the load on the cantilevered truss to a maximum load of 3.5MN reduced the 

probability of evolutionary success when using either the number of constraint violations or 

the static penalty function to 0. Over 100 runs, each for 100 generations, no fit individuals 

were found using either method. The best performing DTF method (Sum Fail) reduced the 

success rate observed in LC2 to 53%, and the average number of generations needed to evolve 

a successful solution increased more than five-fold from 4.7 to 23.09, as shown in Table 5.7. 

The use of Max Fit performed poorer still, with only 46 successful runs out of 100. 

Table 5.7: Constraints - Experimental results from TC2 

  
Total no. 

successful gens 

(out of 10,000) 

Total no. successful 

runs (out of 100) 

Avg. no. gens needed 

to evolve a successful 

solution 

Load 

Case 1 

Sum Fail 9894 100 1.06 

Max Fail 9892 100 1.8 

Num Fail 9746 100 2.54 

Default Fit 9663 98 1.4 

Load 

Case 2 

Sum Fail 9530 100 4.7 

Max Fail 9395 99 5.1 

Num Fail 1023 13 21.31 

Default Fit 93 1 7 

Load 

Case 3 

Sum Fail 4076 53 23.09 

Max Fail 3591 46 21.93 

Num Fail 0 0 N/A 

Default Fit 0 0 N/A 

5.3.3. Test Case 3: Cantilevered Truss, Two Loads 

The final test case evolved a cantilevered truss with two loads, as described by Deb and Gulati 

[14], Hajela & Lee [69], Luh and Lin [77], Li et al. [64], and Kaveh and Talatahari [65]. The 

truss sports the same dimensions as those of TC1, with a span of 18,288 mm (720 inches) and 

a depth of 9,144mm (360 inches). Two identical point loads are placed on the bottom chord 

of the truss, one at the midpoint and the other at the extreme end of the truss, as shown in 

Figure 5.6. The three load cases tested examined forces F1 of: 

1. 2.5MN (feasibility ratio of 0.1135) 

2. 3.5MN (feasibility ratio of 0.0028) 

3. 5MN (feasibility ratio of 0.0000). 

As with TC2, these loading conditions are far greater than the original design load of 444,800N 

from the literature (which has a feasibility ratio of 22.6274).  
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At an initial force F1 of 2.5MN (i.e. a combined load of 5MN), all 100 runs using each of the 

three DTF constraint handling methods successfully managed to evolve fit individuals, within 

nearly identical average evolution times of 1.47 and 1.46 generations for the Sum Fail and 

Max Fail methods respectively. The Default Fitness method did not perform as well, with only 

76 successful runs, indicating a probability of success of 76%. 

 

Figure 5.6: Dual-load cantilevered truss envelope 

Increasing the force to 3.5MN for LC2 (a combined load of 7MN) saw the Sum Fail and Max 

Fail methods still maintaining a 100% probability of evolutionary success, but with a marginal 

dip in the efficiency of the evolution, with the average number of generations needed to evolve 

a fit solution increasing from 1.5 to 4.2 for both (Table 5.8). The Num Fail method reduced 

slightly down to 95%, while the static penalty method of Default Fitness being applied to 

individuals with violated constraints saw a drop in performance from 76 successful runs to 

just 1 successful run out of 100 total runs. 

For a final maximum force F1 of 5MN (a total combined load of 10MN), the difference 

between the Sum Fail and Max Fail methods of constraint handling becomes clearer, with the 

former posting a 52% probability of evolutionary success compared to the 37% of the latter. 
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Just like with the previous two test cases, the number of failures method and the static penalty 

method reduces down to 2% and 0% success rates, respectively, with a corresponding increase 

in the difficulty of the problem. This indicates that these are the least appropriate methods to 

use for handling of violated constraints. 

 

Figure 5.7: Number of successful runs for TC3 out of 100 total runs for increasingly difficult 

problems 

Table 5.8: Constraints - Experimental results from TC3 

  
Total no. 

successful gens 

(out of 10,000) 

Total no. successful 

runs (out of 100) 

Avg. no. gens needed 

to evolve a successful 

solution 

Load 

Case 1 

Sum Fail 9853 100 1.47 

Max Fail 9854 100 1.46 

Num Fail 9836 100 1.64 

Default Fit 7462 76 1.82 

Load 

Case 2 

Sum Fail 9575 100 4.25 

Max Fail 9580 100 4.2 

Num Fail 8898 95 6.34 

Default Fit 97 1 3 

Load 

Case 3 

Sum Fail 4083 52 21.48 

Max Fail 2900 37 21.62 

Num Fail 170 2 15 

Default Fit 0 0 N/A 
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5.4. Discussion 

A number of observations can be gleaned from the experiments performed in this chapter. 

Firstly, the partial enumeration experiments performed for all experimental settings clearly 

show that increasing the loading on a structure decreases the fitness ratio (as shown in Table 

5.9). 

Table 5.9: Fitness ratios for all problems and load conditions 

Problem Name Loading Fitness Ratio 
Probability of fit 

solution in 1st generation 

Test Case 1 

10 MN 7.7003 45.5% 

15 MN 0.4664 0.75% 

20 MN 0.0364 0% 

Test Case 2 

Original 16.7738 100% 

1.5 MN 0.3811 74.25% 

3 MN 0 0.25% 

3.5 MN 0 0% 

Test Case 3 

Original 22.6693 100% 

2.5 MN 0.1135 53% 

3.5 MN 0.0028 1% 

5 MN 0 0% 

Table 5.9 also shows that the lower the fitness ratio, the less the probability that the random 

initialisation method will be able to generate a fit solution in the first generation. An interesting 

observation is that different problems have different difficulty thresholds. A similar fitness 

ratio across different problems does not necessarily constitute a similar difficulty level. For 

example, at a fitness ratio of just 0.3811 LC1 of TC2 has a probability of fit initialised 

individuals of 74.25%, whereas LC2 of TC1 (with a similar fitness ratio of 0.4664) has a far 

lower probability of just 0.75%. Furthermore, Figure 5.5 shows that for TC2 LC1 this fitness 

ratio sees a probability of evolutionary success of 98% for the Default Fit constraint handling 

method, while Figure 5.3 shows that TC1 LC2 (with a similar fitness ratio) has a probability 

of evolutionary success of just 2% for the same method. 

As mentioned in Chapter 2, the death penalty technique of simply rejecting unfit individuals 

outright is the most popular constraint handling method. However, when the difficulty of the 
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problem increases such that the probability of discovering a fit individual in the initial 

generation (i.e. the fitness ratio) tends towards zero (as is the case with the highest loading 

cases for all of the test cases listed in Section 5.3), this method can no longer be applied. 

The next most popular method over the death penalty [109] is the use of a static penalty. This 

technique has a number of advantages over DTF methods, primarily in that it is extremely 

easy to implement. However, with a static penalty a single, uniform, “bad” fitness penalty is 

given to the individual regardless of the actual number of constraint failures or severity of any 

single failure. This penalty, therefore, remains constant across every individual. This means 

that for a population of unfit individuals all individuals will have the same fitness value and 

will be treated as performing identically. Since no information on the relative performance of 

individuals is passed through to the selection and replacement part of the algorithm (as detailed 

in Section 3.9), the fitness landscape (i.e. the total landscape of fitnesses of each individual 

solution once evaluated by the fitness function) is zero-dimensional; all individuals in the 

fitness landscape occupy a single point. This means that there is no way for the evolutionary 

process to differentiate between separate unfit individuals as each unfit individual is deemed 

identical in terms of evolutionary performance. Pre-fit evolution is therefore essentially a 

random search (based on a random initialisation) as the population cannot be sorted in any 

meaningful manner.  

Since there is no selection pressure for any particular solution, it can be seen from the 

experiments in Section 5.3 that (in the pre-fit phase) a static penalty method will either 

randomly generate a fit solution within the first 5 generations, or it will fail to evolve a fit 

solution at all. If the problem is very difficult, such that the probability of randomly producing 

a fit solution in the first 5 generations is extremely low, then a static penalty method may fail 

to find a fit individual entirely. It can be seen from Figure 5.3, Figure 5.5, and Figure 5.7 that 

the performance trend of the Default Fit method would appear to be directly correlated with 

the trend of the fitness ratio (i.e. the lower the fitness ratio, the less the probability that a static 

penalty method will successfully evolve a fit solution). In order to uncouple this correlation, 

constraint handling methods in the fitness function must be a function of the Distance To 

Feasibility (DTF). 

In Section 5.3 it was seen that all DTF methods out-performed the static penalty method in all 

load cases for all test cases. Furthermore, Figure 5.3, Figure 5.5, and Figure 5.7 show that such 

methods are not correlated with the fitness ratio, and can hence be considered more applicable 
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to a wider range of more difficult problems. However, of the three DTF methods investigated, 

the Num Fail method of handling broken constraints was outperformed by the Max Fail 

method, which in turn did not perform as well as the Sum Fail method. This discrepancy is 

due to the fact that insufficient information about constraint failures is being given to the 

fitness function. Consequently, the algorithm becomes stuck in a local optimum. This is due 

to the fact that the evolutionary process cannot differentiate between individuals with a similar 

number of failed constraints. For example, if two individuals both have one failed constraint, 

but one fails by 20%, while the other fails by only 3%, they are both treated as equal in terms 

of fitness. This stalls the search process. 

While the use of the Max Fail DTF method does produce a multi-dimensional fitness 

landscape (allowing the algorithm to distinguish between relative failed individuals), in some 

cases there is still not enough information being transferred to the final fitness value for each 

individual on the failure of all constraints. Because of this, the evolutionary process cannot 

differentiate between individuals with multiple constraint failures. For example, if one 

individual fails only one constraint by 10%, while another individual fails one constraint by 

10% and five constraints by 9%, the evolutionary process will treat both individuals as having 

equal performance, even though one is far worse than the other. With the use of a Max Fail-

style constraint handling method, individuals can be evolved with multiple counts of very low 

constraint violations. However, these individuals may occupy an area of the search space that 

is not near any truly fit solutions. As such, the evolutionary process gets stuck in a local 

optimum searching around the best known (but still unfit) solution and cannot navigate to a 

different area of the search space without a large increase in the mutation rate. Although 

mutation rates which adapt and react according to fitness values have been described [131], a 

simpler and more effective solution in this case is to merely provide more information to the 

fitness function on the failure of all constraints in an individual. 

All performed experiments indicated that the best constraint handling method for structural 

engineering truss optimisation was to pass on as much information as possible on all failed 

constraints to the final fitness of the individual. This minimises the risk of the algorithm getting 

stuck in a local optimum in the pre-fit evolutionary phase (although this still can occur with 

very high difficulty problems and is a characteristic of heuristic algorithms) and maximises 

the probability of evolutionary success. In every case described, the summation failure method 
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developed for this application in this chapter either out-performed or matched all other 

methods. 

5.5. Conclusions 

In cases where the representation space is very large and the feasibility ratio is very low (i.e. 

the problem difficulty is such that very few feasible individuals exist in the space), a static 

penalty approach for constraint handling (while still enjoying popularity in less theoretically 

difficult problems) is not the most effective, as the fitness landscape is zero-dimensional. 

Experimental results show that there exists a theoretical difficulty limit above which the use 

of a static penalty will not evolve any feasible individuals. In order to create an n-dimensional 

fitness landscape (where n represents the number of fitnesses used), information on the 

distance to feasibility of failed individuals must be passed through to the fitness function. If a 

constraint is violated, the penalty to be applied to the overall fitness must be related to the 

severity of that violation. 

Caution is to be urged, however, when adding relative performance information into the fitness 

of each individual. As shown Section 5.4, failing to provide enough information can actually 

have a negative effect on the evolutionary performance of an algorithm, allowing the 

evolutionary process to get stuck in a local optimum. To this extent, the method of accurately 

generating penalty values for failed individuals by calculating the normalised value of any 

failed constraint shown in Eq. 5.19 is preferable. This method, developed for this application, 

allows the evolutionary algorithm to accurately distinguish between differing constraint 

violations between individuals. Experiments conducted in this chapter concluded that the more 

information on the distance to feasibility of an individual the fitness function is given, the 

better the chance that the selection and replacement mechanism of the evolutionary algorithm 

will have of differentiating between individuals with multiple constraint failures in a highly 

competitive fitness landscape.  

5.6. Summary 

A key challenge for designers when using evolutionary approaches is the need to find an 

accurate metric that will provide sufficient evolutionary pressure to evolve viable solutions. A 

need was, therefore, identified to find an effective method of applying such evolutionary 

pressure on unfit individuals in order to evolve fit individuals. Through a series of experiments 

evolutionary pressure was shown to be more important as the problem becomes more difficult. 
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An increase in problem difficulty can come through a change in loading conditions, a change 

in the constraint limits, or any combination thereof. Variation in the fitness landscape can 

occur, even if the representation space remains constant. This variation was observed through 

a number of experiments, which demonstrated the effectiveness of varying methods of penalty 

function applications. Appropriate methods for handling both single and multiple failed 

constraints were discussed, and a new method of calculating penalty values for unfit 

individuals was introduced for this application, based on the normalised values of all failed 

constraints. Finally, a recommendation was made that as much information as possible on the 

magnitude of the failures of all aspects of an individual be included in the overall applied 

penalty to the fitness of that unfit individual, in order to minimise the risk of the evolutionary 

algorithm becoming stuck in a local optimum in pre-fit evolution. The following chapter puts 

these recommendations into practice by employing an extremely large representation space in 

order to solve ill-defined problems. 
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Chapter 6. Discrete Truss Optimisation via Node 

Placement and Variation 

 

Continuum topology optimisation in design methods represent the current cutting edge in 

engineering design optimisation [12, 132, 133]. In large scale civil and structural engineering 

projects however, manufacturing solid structures fully optimised using these techniques is 

generally prohibitively expensive and difficult [12, 7]. Discrete beam structure optimisation 

methods are more appropriate for large scale designs, as they allow regular elements and 

construction methods to be used, leading to savings in cost and weight over more traditional 

construction methods. Classical discrete topology optimisation, such as those methods 

discussed in Chapter 2 and Chapter 4, follows a ground structure approach, with all possible 

node and beam locations being specified a priori and the algorithm selecting the most 

appropriate configuration from the given list of options [10]. These methods have been shown 

to be inherently restrictive as they severely limit the representation space to what is defined; a 

larger representation space can be more effectively navigated to find the global optimum [14].  

While continuum topology optimisation is arguably the most effective optimisation method, 

it has inherent flaws [11, 7], primarily in that the computational cost of generating a solution 

increases exponentially with the physical size of the structure. As such, large-scale structures 

cannot yet be optimised due to the current limitations of computing power [7]. This is an area 

in which ground structure optimisation excels [12], yet there are still limitations in the 

techniques employed. Luh and Lin [77] make particular note of the fact that the most optimal 

solutions for discrete methods can only be found by simultaneously considering optimisation 

of size, shape, and topology, as each has an effect on the others. This concept was proven in 

Chapter 4, where it was demonstrated that simultaneous evolution of structural shape, 

structural topology, and member sizing was not only possible with the use of two 
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chromosomes, but that improvements over traditional ground structure methods could be thus 

achieved. 

Rozvany [13] explicitly stated that globally optimal solutions for discrete optimisation 

problems cannot be found with enforced layouts and a small number of members, i.e. the 

representation with a ground structure approach is too constrained to effectively find the global 

optimum of the overall search space, regardless of the size of the representation space. Deb 

and Gulati [14] confirmed this by proving that even limited variation of node locations in a 

ground structure approach led to improved fitness results. Chapter 5, however, showed that a 

problem arises in that an increase in representation capabilities spreads the search process over 

a much wider area than before. To counteract this, an improved technique for applying penalty 

functions to unfit individuals was demonstrated in Chapter 5, thereby enabling the search 

process to quickly and efficiently navigate through the initial unfit-laden fitness space towards 

areas populated by fitter solutions. 

Further unconstrained discrete representations from the literature such as the principal stress 

line method provide even better results [13], but can only be used with compliance 

minimisation problems [51]. Therefore a wholly unconstrained discrete optimisation method 

that can improve any fitness value is likely to be a more effective tool. In order to develop 

such a method, a number of hypotheses are proposed:  

 That it is possible to create an unconstrained grammatical representation, given 

minimal information for the desired solution; 

 That such an unconstrained representation will be able to evolve viable solutions; 

 That minimal information should be required for a viable solution to be evolved; 

This chapter aims to test these hypotheses, along with whether better solutions achievable with 

more or less provided information. 

The remainder of this chapter is structured as follows. Section 6.1 provides an introduction to 

the topics discussed in the chapter. Section 6.2 describes the importance of the design envelope 

in both discrete and continuum optimisation. The approach to node generation within this 

design envelope is discussed in Section 6.3, including a number of different methods of 

describing node locations using a grammatical representation. Methods of connecting nodes 

are discussed in Section 6.3.6, and the GE ripple effect is described in Section 6.3.7. A number 

of benchmark numerical examples from the literature are detailed in Section 6.4, including 
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proof-of-concept examples (Section 6.4.1) and non-regular truss forms (Section 6.4.4). The 

implications of these experiments are discussed in Section 6.5, and the conclusions are drawn 

in Section 6.6. 

6.1. Introduction 

Standard practice for ground structure optimisation follows a binary-style approach whereby 

the full set of possible solutions are specified beforehand with the algorithm adding or 

removing pre-existing elements (Figure 6.1). However, this limits the search space to only 

what is explicitly defined in the algorithm. Potential fit solutions that lie outside the 

representation space are never considered. 

 

Figure 6.1: Traditional 16-member, 6-node ground structure optimisation approach [14]. Red 

lines represent possible edge locations. 

If even a slight variation of the placement of nodes can lead to a better fitness, then a question 

must be asked about whether the ground structure-style approach of evolution and 

optimisation of node connections with fixed node locations is the most efficient method of 

discrete structure generation. Since a larger representation space can be efficiently managed 

by carefully manipulating the fitness values of unfit individuals, the size of the representation 

space should be of non-primary concern to discrete methods.  

Another important omission to note is that traditional 2-dimensional ground structure 

optimisation methods roundly ignore the fact that co-planar members which intersect by 

definition create an extra nodal connection. Along with idealised material specifications 
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(including unrealistic stress limits and cross-sectional area optimisation that exceeds 

manufacturing precision capabilities, as demonstrated in Chapter 4), there is an apparent 

assumption that solid members can pass through one another with no structural effect. 

Classical ground structure optimisation problems, such as the 10-bar truss problem described 

in Section 4.3.1 or the 15-member structure shown in Figure 6.1 are therefore unrealistic. In 

reality, the 6-node, 10-bar truss from Figure 4.2 should be more accurately described as an 8-

node, 14-bar truss, as shown in Figure 6.2. 

 

Figure 6.2: 10-bar truss problem more accurately described as a 14-bar, 8-node truss 

problem. Extra nodes and edges indicated in red. 

This 14-bar truss has completely different characteristics from the 10-bar example, as the four 

longest members are now effectively halved in length. This has a notable effect on buckling 

of compression members, as these long diagonal members are now braced at their mid-points. 

In order to generate and optimise realistic structures, every meeting of multiple members 

should be treated as a nodal connection, splitting all connected members into shorter members 

and changing the solution outcome. 
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In conclusion, if even a slight variation in the location of nodes can lead to improvements in 

fitness, a question must be asked over whether or not methods which use fixed representations 

can truly be considered the most appropriate discrete optimisation methods. A radical 

suggestion would be to effectively invert this process by to selecting and indicating the 

presence and location of the actual nodes themselves, rather than the edges connecting fixed 

(or minimally variable) points. Variable nodes could then be connected using a simple and 

repeatable method such that the emphasis were on the node locations themselves rather than 

the interconnectivity between them. The central hypothesis that this chapter aims to examine 

is whether or not this method would demonstrate any advantages or disadvantages over the 

traditional connection-focussed ground structure method. 

6.2. Design Envelope 

Kawamura et al. [73] noted that, as with observable nature, the environment has the greatest 

effect on the evolution of an individual, and that any individual placed in a well-defined 

environment should evolve successfully to suit it. The problem definition in continuum 

optimisation begins with the definition of this environment: the design envelope. This 

envelope defines the maximum and minimum boundaries in all dimensions for the location of 

any element of the design; elements (be they nodes, edges, or design material) that lie outside 

the design envelope are not considered, and indeed in most cases are not permitted to be 

generated. Discrete optimisation does not technically have a similar concept, but the design 

envelope could be said to be described by the outermost node locations of the structure [51]. 

In order to replicate the continuum method using discrete elements, the design envelope must 

incorporate limits for all possible element locations. These limits can be set by either 

penalising designs that fall outside the limits, or more effectively, by only allowing elements 

to be placed within (or on the boundary of) the limits. 

Considering that the hypothesis of this chapter is that a node location-based discrete approach 

will be capable of generating fitter solutions than a fixed node connectivity-based discrete 

approach, a representation must be built with the capability of placing nodes anywhere within 

the design envelope. A GE approach introduces the possibility of defining a design envelope 

by providing dimensional limits for the nodes within the structure. As defined in Chapter 3 

and demonstrated in Chapter 4, two chromosomes can be used to define the structure itself 

[117]. The first, Chromosome A (Ch.A), defines the topological form, or shape, of the 

structure. This can be done by using the genes in Ch.A to map to the locations of any number 
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of nodes within the physical problem space, or to select more nodes to add to the structure 

(Figure 6.3). Once node locations are set by Ch.A, a simple and repeatable algorithm can be 

used to connect nodes together to form the truss structure. Once connections are made, the 

second chromosome (Ch.B) is used to set member sizings from a pre-defined list of available 

material options. 

 

Figure 6.3: Node location-based optimisation approach. Possible node locations are indicated 

by red dots. 

6.3. Node Generation 

Deb and Gulati [14] broke down the node characteristics of an individual into two sections: 

essential nodes and non-essential nodes (they use the phrases “basic” and “optional”). 

Essential nodes are those nodes that are necessary for the problem definition. These represent 

the location of all fixed and loaded points in the structure. Any other nodes are viewed as non-

essential (i.e. a theoretical solution to the problem can be found using only the essential nodes, 

as shown in Figure 6.4).  
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Figure 6.4: Stable truss configuration, using only essential nodes (no non-essential nodes 

present) 

To use this analogy, the essential nodes must first be defined: all fixed nodes and loaded nodes. 

These are the only fundamentally necessary nodes in the structure. There is no need to specify 

“boundary” nodes at the edges of the design envelope. If these are deemed necessary by the 

structure, they will be subsequently evolved. 

Loads can be applied to nodes as a three-dimensional vector (with x, y, and z co-ordinates), 

allowing for a point load of any size and direction to be placed on any node in the structure. 

For example, a vertical downward force of 100 N would be described as:  

 [0, -100, 0]  

Figure 6.5: Loading by force vector 

In this manner any point load in any direction for any load can be specified, simply by 

specifying the node location and force vector. 

In a similar manner to point loading, fixed node locations can be indicated by a triple tuple of 

Boolean values, with each indicating a fixing in that particular dimension. For example, a fully 

pinned support would be indicated by: 

 [True, True, True]  

Figure 6.6: Node fixing indicated as triple tuple of Boolean values 
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while a pinned support with a rolling bearing on the x-axis would be indicated as: 

 [False, True, True]  

Figure 6.7: Pinned / rolling bearing node fixing 

All other nodes in the structure (i.e. those nodes which are neither loaded nor providing 

reactionary support) can, therefore, be deemed to be non-essential, with one caveat: if all 

essential nodes were co-linear (that is, if all essential nodes were to exist on the same line), it 

would be possible for the grammar to generate non-optimal, kinematically unstable, one-

dimensional structures, as shown in Figure 6.8. 

 

Figure 6.8: Kinematically unstable structure resultant from co-linear essential nodes 

Because of this, there should be at least one pre-specified node for each structure which is not 

co-linear to all other essential nodes. This would ensure that all generated structures are at 

least two-dimensional and, as such, are all kinematically stable and theoretically valid (actual 

fitness notwithstanding). While three dimensional structures are indeed possible, unless stated 

otherwise, all experiments in this chapter are performed in two dimensions. 

Once essential nodes are defined, the grammar selects any number of non-essential nodes for 

the interior of the structure. The recursive capabilities of Grammatical Evolution can easily be 

employed to allow the grammar to select irrespective of the number of required nodes, by 

allowing a simple production rule to either add a single node or to add a single node and to 

call itself again, as detailed in Figure 6.9. 

 
<node_iter> ::= <node> | <node>,<node_iter> 

<node> ::= [<x>, <y>, <z>] 
 

Figure 6.9: Simple recursive grammar segment showing potential for multiple node selection 

through the production rule <node_iter> 

The grammar next needs to be able to indicate the actual locations for potential non-essential 

nodes. This requirement leads to a slight complication. Specifically, the grammar needs to be 
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able to select from within a range of numbers (i.e. the boundaries of the design envelope) in 

such a way that it can effectively cover the entire design envelope. This is a problem in itself. 

A major drawback of the BNF grammar format is that it cannot specify a range of numbers 

from which to choose from, without first defining every individual available number. Thus, 

for a very large range of numbers this procedure would be extremely tedious and inefficient. 

From a coding point of view this would require adding every selectable value, as any small 

change in the geometry of the design envelope would lead to the addition or removal of large 

amounts of code from the grammar. To overcome this, an effective method of selecting a 

single value from a within a range of values using a BNF grammar format must be created. 

This method must be repeatable (i.e. the same Ch.A input will generate the same phenotype), 

fast, and accurate. It must also use as little genetic information as possible and must provide 

as broad a representation as possible. Sections 6.3.1 to 6.3.4 explore various approaches of 

achieving this. 

6.3.1. Direct Chromosome to Phenotype Mapping 

The simplest way to generate node locations within a variable space would be to map directly 

from the chromosome to the design space, in the style of a GA, with each codon on the 

chromosome representing either an x or y value (two dimensions are shown here for simplicity 

but each method discussed can be extended to three dimensions). This would entail setting the 

maximum permissible codon value greater than or equal to the greater dimension of the design 

space such that each dimensional node value will equal the codon value modulo the maximum 

permissible value for that vertex, as shown in the grammar excerpt in Figure 6.10.  

 

<span> ::= 18288 

<depth> ::= 9144 

<node> ::= [<x>, <y>] 

<x> ::= <GECodonValue> % <span> 

<y> ::= <GECodonValue> % <depth> 

 

Figure 6.10: Grammar excerpt showing direct mapping from chromosome to design space 

While this method requires a very small chromosome (comparatively speaking) in that only a 

single codon is required per dimensional value of each node (i.e. one codon per x value, one 

per y value, one per z value), a few key problems arise. One is that mutation of a single gene 

would equate to mutation of an entire dimensional value of a particular node. Since genetic 
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mutation is completely random, this would have drastic effects on the phenotype of the 

individual, thereby prohibiting small mutation steps. At a much higher level however, this 

method is severely limits the representation capabilities of the grammar. Figure 6.10 shows a 

maximum span of 18288 mm (in the x-dimension), with a maximum depth of 9144 mm (in 

the y-dimension). Since this grammar can only select numbers between 0 and these values for 

the respective dimensions, it can by definition only allow for regular square or rectangular 

design spaces to be generated. If used in three dimensions, this would result in the generation 

of a cube or rectangular box. Since the creation of each dimension is independent of the other 

(i.e. neither is a function of the other) no complex shapes can be produced. If, for example, a 

non-standard design envelope such as a curved design envelope were to be required, a direct 

chromosome mapping would not be possible without heavy manipulation of the code. To 

accommodate for variations in the geometry and size of the design envelope with different 

problems, the grammar would need to be re-written for every problem, which would be 

exceedingly tedious and inefficient.  

6.3.2. Non-Terminal Mapping 

Another suggestion would be to treat the design space as a sequence of non-terminal integers, 

as shown in the grammar excerpt in Figure 6.11:  

 

<node> ::= [<x>, <x>] 

<x> ::= int(<n><n><n><n><n>) 

<n> ::= 0|1|2|3|4|5|6|7|8|9 

 

Figure 6.11: Grammar excerpt showing node generation using non-terminal mapping 

This particular method would be highly efficient at localised hillclimbing, as any node 

mutation of any single dimensional value would be well segmented, thereby allowing for a 

high degree of evolutionary control. For example, mutation of the first digit would create a 

large phenotypic change of the order of tens of metres, but mutation of the fifth integer would 

have a comparatively small change, in the tens of millimetres. As such, given the right design 

problem, this approach would be a highly efficient method of quickly finding the global 

optimum. 

However, this method has a number of significant drawbacks. First, it requires a relatively 

long chromosome to be used, as each node would require five genes for an x-value and a 

similar number for a y-value (with more again for a z value if a three-dimensional 
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representation space is employed). Furthermore, the method will only work effectively, if the 

maximum value (i.e. the range/span of the design) is a multiple of 10,000 (dependant on the 

number of digits in the maximum permitted value). 

A grammar like this would have difficulty representing a search space if, for example, the 

maximum value of one dimension was 18,288 (as is the case with the 10-bar truss optimisation 

problem detailed in Figure 4.2). The first digit would be simple (either 0 or 1), but all 

subsequent digits are less so. If the first digit were 0, then the second digit could be any integer 

between 0 and 9. If, however, the first digit were 1, then the second digit could only vary 

between 0 and 8. This would have a cascading effect on the remainder of the digits in the 

sequence. Very quickly this would become a highly complex tree. For a single problem, a 

grammar could be created to generate an efficient solution, but if the problem definition 

changed, it would require a complete re-writing of the grammar, which would render the 

method highly inefficient.  

6.3.3. Random Number-Based Node Generation 

A random number generator (RNG) such as the Mersenne Twister [123] can be used to select 

from a pre-specified range of numbers using the python call random.randrange(from, 

to, step). Step in this instance refers to the resolution, or step size that the random 

number generator can select from, within the range (from, to). With the use of an RNG, 

problems arise with the repeatability of each action. Unless a random seed is set, a different 

number will be returned every time the RNG is used, and no genetic information would be 

transferred between generations. To counteract this, each time a node was to be generated a 

random seed would need to be set for each separate coordinate. This can be done by taking a 

codon directly from the chromosome using <GECodonValue>, as shown in Figure 6.12. 
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<span> ::= 18288 

<depth> ::= 9144 

<node> ::= [<set_rand >, <x>, < set_rand >, 

<y>] 

<set_rand> ::= random.seed(<seed>) 

<seed> ::= int(<GECodonValue>) 

<x> ::= random.randrange(0, <span>, 

<resolution>) 

<y> ::= random.randrange(0, <depth>, 

<resolution>) 

<resolution> ::= 10 

 

Figure 6.12: Grammar excerpt showing RNG-based node generation, 10mm resolution 

Importantly, a sufficient quantity of seeds must be provided such that the random number 

generator can create enough nodes to populate the entire design envelope. If the maximum 

permissible size of each gene is too small (see Section 3.6.1), then there will not be enough 

unique random seeds such that all possible node locations generated by terminals within the 

grammar are covered. Due to this, the maximum permissible codon value must be set greater 

than or equal to the largest dimension of the design envelope. This will ensure that there are 

at least as many unique individual random seeds as desired node locations. To illustrate this, 

Figure 6.13 shows a basic rectangular design envelope, with a span of 10 and a depth of 7. 

 

Figure 6.13: Simple design envelope for random number-based node generator 
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In this instance, if the maximum codon value were set to 10, there would be 11 potential codon 

values: 0 to 10 inclusive, and hence 11 unique random seeds. Since there are less than 11 

possible choices for the y-dimension (8 choices, 0 to 7 inclusive), and there are exactly 11 

choices for the x-dimension, this maximum codon value is capable of generating a sufficient 

quantity of unique random seeds to cover the entire space. However, if the maximum codon 

value was set to 7, then, while there would be sufficient quantity of random seeds to cover the 

y-dimension, there would not be sufficient unique seeds to fully explore the x-dimension, and 

some values would remain unused. 

Since this random number-based method essentially places nodes on a grid pattern within 

given boundaries, the grid resolution itself can be easily changed. If a smaller node resolution 

is set, e.g. a node every n mm, then the max codon value can be set to span/n of the greater 

dimension (as shown in Eq. 6.1). 

 CODON_A_SIZE ≥
max (span, depth)

resolution
 

Eq. 6.1 

Using an RNG to generate structures has both positive and negative aspects. As with the direct 

mapping method described in section 6.3.1, a single codon from Ch.A is responsible for each 

dimensional coordinate for each node. This means that mutation of any single codon would 

have a completely random effect on the phenotype of the individual, giving the algorithm little 

or no hillclimbing ability. There is no way for the program to differentiate between a “large” 

mutation or a “small” mutation (in terms of phenotypic effect) as all actions will have equally 

random effects. Since mutation in GE is carried out on a per-codon basis (i.e. each codon has 

the same percentage chance of mutating), and since mutation of any codon which maps to a 

random seed for a node’s x or y value would completely change the phenotype of the structure, 

mutation is effectively amplified. Conversely, since Grammatical Evolution is a heuristic 

method, this increased random search would theoretically mean that a wider area of the 

representation space is covered, with less chance of the algorithm getting stuck in a local 

optimum. 

Reducing the Representation Space 

With a heuristic evolutionary method an overly large representation space can foil the search 

process before it has even begun, as there are simply too many possible outcomes to search 

through, especially when the ratio of fit to unfit individuals is very small. Michalewicz 
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conducted a study [130] to study the evolutionary effects of a comparatively small ratio 

(between 0% and 0.5% in all test cases) of fit individuals to unfit individuals in the 

representation space. That study found that such a small ratio can make effectively finding any 

fit individuals in the representation space extremely difficult for the evolutionary algorithm, 

without careful management of the constraints (as detailed in Chapter 5). Bohnenberger et al. 

[72] also proposed the idea of reducing the representation space, but their solution was simply 

to limit the representation capabilities of their algorithm, which potentially had a detrimental 

effect on the quality of their overall solutions. When seeking to reduce the size of the 

representation space, techniques should be used which endeavour to preserve the overall 

quality of potential solutions. This can be accomplished by both limiting the resolution of the 

available node locations in the initial generations and by setting universal materials across 

each individual in the first generation. 

With python’s random number-based node generation, this method would be capable of 

placing a node anywhere within the given structure boundaries on a grid of 1mm using the 

step operation from the random.randrange(from, to, step) function. The 

representation space could be effectively reduced by limiting the step size to a grid of 100mm 

at the start of the evolutionary process. If a predefined limit were to be reached (in this 

particular instance once a single fit individual has been found), the grid could be expanded to 

a mesh resolution of 10mm, increasing the representation space. The net result of this would 

be that the overall end representation space would remain the same, but the search would move 

more quickly towards areas of the representation space populated by a higher percentage of fit 

individuals. 

6.3.4. Percentage-Based Node Generation 

Combining the methods of RNG-based node generation from Section 6.3.3 and non-terminal 

mapping from Section 6.3.2 creates a grammar which generates nodes from within a select 

range of numbers, and with a well-segmented representation, which gives fine-grained control 

to mutation, thereby allowing for localised hillclimbing. If, instead of allowing a node to be 

placed at a grid of every millimetre, node locations were instead based on a percentage of the 

overall dimensions of the structure, this would then eliminate the need for a random number 

generator to be used, as the grammar would no longer be selecting from within a range of 

numbers but would be selecting a percentage of a given maximum value. Instead of mapping 

directly from the genotype to the phenotype, the grammar would specify that both the x- and 
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y-values of the node would be a percentage of the order of _ _._ _% of the maximum 

permissible value for that dimension (the span or the depth of the structure). The basic 

grammar excerpt shown in Figure 6.14 illustrates the principle. 

 

<span> ::= 18288 

<depth> ::= 9144 

<i_node> ::= (<percentage>, < percentage>) 

<percentage> ::= <n><n>.<n><n> 

<n> ::= 0|1|2|3|4|5|6|7|8|9 

<node> ::= (<x>, <y>) 

<x> ::= <span>/100 * <i_node>[0] 

<y> ::= <depth>/100 * <i_node>[1] 

 

Figure 6.14: Grammar excerpt showing percentage-based node generation 

The grammar representation shown in Figure 6.15 only has a range of between 00.00% and 

99.99%; this grammar will never be able to generate a full 100%, and no node will be able to 

be placed at that very boundary of the design envelope. This can be rectified with the use of a 

multiplier, which can be added to the percentage value such that an evolved value of 99.99% 

would equal 100%, but 0% would still remain 0%. This multiplier is defined in Eq. 6.2: 

 x′ =
span

100
∗ (x + (x ∗

100 − 99.99

99.99
)) 

Eq. 6.2 

This addition ensures that the full range of 100% of the design space can be covered by the 

grammar, with an equal bias for all percentage values, as shown in the amended grammar in 

Figure 6.15. 

This percentage-based grammar, newly developed by the author for this specific application 

in this thesis, now utilizes the best aspects of all previous node generation options. The 

grammar is entirely non-biased towards any particular outcome, and it exhibits high locality. 

The coordinates for each node are well-defined, and the relatively high number of codons 

required for each coordinate allows for fine-grained mutation and crossover control. This itself 

allows for local hillclimbing in the search space.  
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<span> ::= 18288 

<depth> ::= 9144 

<i_node> ::= (<percentage>, < percentage>) 

<percentage> ::= <n><n>.<n><n> 

<n> ::= 0|1|2|3|4|5|6|7|8|9 

<node> ::= (<x>, <y>) 

<x> ::= <span>/100 * (i_node[0]+( 

i_node[0]*0.00010001)) 

<y> ::= <depth>/100 * (i_node[1]+( 

i_node[1]*0.00010001)) 

 

Figure 6.15: Grammar excerpt showing percentage-based node generation with modification 

to allow for 100% range.  

6.3.5. Grammatical Bias and Regularity of Structures 

One of the major benefits of GE’s use of a formal grammar structure in defining its individuals 

is the ability to add bias to the grammar [48]. The question of bias in the grammar is an 

interesting one. The percentage-based grammar described in Figure 6.15 has no bias towards 

any particular outcome with regards to the locations of nodes; it is equally likely that that node 

can appear anywhere within the structure. 

Bias can be added to this grammar by adding extra options to the node generation process. 

Line 4 of the grammar shown in Figure 6.15 shows only a single terminal option; the rule 

<percentage> will always return a figure in the range 00.00% - 99.99%, with an equal 

probability for all options. This rule could be changed to add bias towards different outcomes, 

as shown in Figure 6.15: 

 <percentage> ::= 0 | <n><n>.<n><n> | 99.99  

Figure 6.16: Line 4 from Figure 6.15, amended to add bias towards boundaries 

Now the grammar is biased towards placing nodes at the boundaries of the design envelope. 

There is a 1 in 3 chance that a node will be placed at any of the three options, meaning that 

cumulatively the probabilities of node location are as follows: 
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Table 6.1: Probabilities of node placement locations 

0% (lower boundary) 33.33% 

0.00% - 99.99% 33.33% 

99.99% (upper boundary) 33.33% 

Broken down even further, each location in the range 00.00% - 99.99% now has a probability 

of 0.0033% of selection (see Eq. 6.3).  

 33.33% ÷ 10,000 = 0.0033% 
Eq. 6.3 

This means that cumulatively, the probability of the grammar placing a node at either the upper 

or lower boundaries of the structure is: 

 33.33% + 0.0033% = 33.3366% 
Eq. 6.4 

The bias in this grammar now is heavily towards placing nodes at the boundaries of the design 

space, with a 33.3366% probability that a node will be at either boundary, compared to a 

probability of 33.3266% that a node will be at any other location within the design space. 

With certain, well-defined structural optimisation problems, the forms of the solutions are 

well-known, as they have been exhaustively covered by the literature. Taking a well-defined 

problem where know the structure of the solution is known, e.g. the cantilevered truss problem 

as defined in Figure 4.2, this domain knowledge can be used to write a grammar in such a way 

that it is biased towards a particular set of solutions. In the case of this 10-bar cantilevered 

truss, this problem would seem to favour a regular solution, i.e. structures with nodes at 

midpoints of the depth and quarter points of the overall span. Amendment of the percentage-

based grammar from Section 6.3.4 to only account for regular node locations at quartile 

instances is trivial, as shown in Figure 6.17: 
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<span> ::= 18288 

<depth> ::= 9144 

<i_node> ::= (<percentage>, < percentage>) 

<percentage> ::= 0 | 25 | 50 | 75 | 100 

<node> ::= (<x>, <y>) 

<x> ::= <span>/100 * i_node[0] 

<y> ::= <depth>/100 * i_node[1] 

 

Figure 6.17: Grammar excerpt showing quartile-based node generation 

This new grammar now only places nodes in regular quartile locations associated with the 

accepted solution. This is actually an interesting case, as theory insists that this type of 

grammar will produce a more correct solution for a specific problem. However, the literature 

has already shown that a limited increase in variation of node locations in a ground structure 

approach can to better fitness results [14], and severely limiting the representation of the 

grammar effectively turns the approach into a ground structure method. If, as predicted by the 

literature presented at the start of this chapter, an unconstrained representation performs better 

than a constrained representation, then the hypothesis presented in this chapter can be 

considered to have been upheld.  

6.3.6. Node Connection 

The recursive capabilities of Grammatical Evolution [46, 115, 114] allow for variations in the 

number of nodes between individuals, resulting in a variable amount of the chromosome 

(Ch.A) being used. Kawamura et al. [73] found that representation of truss structures by 

combinations of triangles led exclusively to kinematically stable structures with a high degree 

of optimality, being able to reduce (or even eliminate entirely) the number of unnecessary 

members. By passing the list of nodes through a Delaunay triangulation algorithm [134], 

connections between nodes (edges) are defined. Delaunay triangulation operates by 

triangulating a set of points in a plane such that no point lies within the circum-circle of any 

triangle (as shown in Figure 6.18). 
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Figure 6.18: Delaunay Triangulation [135] 

This triangulation method of connecting a given set of nodes is guaranteed to result in a 

kinematically stable, fully-triangulated structure. Materials for each of these edges are then 

assigned by directly mapping the genes from Chromosome B (Ch.B) to the corresponding 

graph objects. In this way evolution of the structural topology and shape and the sizing of 

individual members in tandem is possible. 

The ability of DO-GE to delete unstressed members from its solutions can also be retained 

with this method. Though not an evolutionary feature, it nevertheless would give the method 

the potential to produce irregular quadrilateral shapes which might otherwise be unattainable, 

subject to a single caveat: the deletion of unstressed members can only be allowed to occur if 

a kinematic mechanism is not resultant. For a kinematically stable structure to be created, two 

conditions must be met: 

i. Eq. 6.5 must be satisfied [9]: 

 𝑟 + 𝑚 − 2𝑛 ≥ 0 
Eq. 6.5 

where: 
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ii. All nodes must have at least two edges attached 

If both of these conditions are met, then an unstressed edge may be removed from the structure 

leaving a kinematically stable structure.  

6.3.7. The GE Ripple Effect 

A number of potential issues can be identified with this Delaunay-based GE method, mainly 

revolving around the use of two chromosomes and the subsequent effects of mutation and 

crossover on a dual chromosome setup with GE. Particular note should be taken on the topic 

of the GE ripple effect, as detailed by O’Neill et al. [122]. GE codons are said to have intrinsic 

polymorphism, with the exact meaning of any single codon being affected by the immediately 

preceding codons. With one chromosome, a mutation change early on in the gene sequence 

might change that gene’s production value from a terminal to a non-terminal, which would 

mean the next gene in the chromosome would change its mapping, with a cascading/rippling 

effect on the remaining part of the gene sequence, potentially leading to significant alterations 

in the phenotype of the individual. This issue affects all applications of GE, not just those 

specified in this thesis. 

The problem amplifies with two chromosomes, particularly when changes in Ch.A are taken 

into consideration. Since both the mapping and the amount of Ch.B that is used are entirely 

reliant on the phenotype derived from Ch.A, a single small change in Ch.A could completely 

change both the mapping for Ch.B and the portion of the chromosome that is used. If a single 

gene mutation occurs in Ch.A that changes a production rule from a terminal to a non-terminal 

(i.e. if a mutation change makes recursion possible), this would have a ripple effect which 

would completely change the derivation of the remaining portion of Ch.A, itself changing the 

mapping of Ch.B, potentially radically changing the phenotype of the individual.  

These dual chromosome ripple effects are yet further with the addition of the Delaunay 

triangulation algorithm. Since the method described above generates node locations by 

selecting a percentage value of the overall limits of the design envelope, mutation of these 

percentage values could end up creating an entirely new coordinate value. With Delaunay 

r = Number of reactions 

m = Number of members 

n = Number of nodes 
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triangulation, even if the total number of nodes remains constant, a change in the location of 

a single node could end up creating an extra edge, as shown in Figure 6.19. Once again, this 

would then have a chain effect on the remaining portion of Ch.B, shifting the subsequent 

material values to different edges. 

 

Figure 6.19: Five-node Delaunay triangulated structure, movement of node x from exterior 

to interior creates an additional edge 

Crossover of either Chromosome of two individuals with differing amounts of edges would 

also lead to a GE ripple. Intrinsic polymorphism means that crossover of Ch.A would 

completely change the mapping of the tail end of the crossed genome, thereby changing the 

mapping of the latter portions of Ch.B. Similarly, crossover of Ch.B would obviously produce 

a different mapping process for the tails of Ch.B for both children, possibly rendering each 

design unfit. 

O’Neill et al. [122] noted that there were no apparent detrimental effects from GE ripple. 

Indeed, the ripple effect seems to diminish convergence by performing a more varied global 

search, allowing for longer runs to be performed. 

6.4. Truss Optimisation Examples 

Continuum Topology Optimisation deals with minimisation of compliance, given a specified 

weight (a volume fraction of the original design space). Ground structure (beam) optimisation 

could be considered the opposite, as it generally deals with minimisation of self-weight, given 

specified deflection limit (deflection being linearly related to compliance). Since specifying a 

volume fraction or weight using a ground structure approach is impossible, the objective of 

these experiments is the minimisation of structure self-weight, given pre-specified deflection 
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limits (unless stated otherwise). This new discrete optimisation is, hereafter, given the name 

SEOIGE – Structural Engineering Optimisation In Grammatical Evolution. 

In this section, a number of experiments are conducted to demonstrate the capabilities of the 

SEOIGE technique. These experiments can be divided into three categories:  

i. Proof of concept – simply supported truss example 

ii. Regular truss forms and problems – benchmark tests 

iii. Non-regular truss forms and problems 

6.4.1. Proof of Concept: Simply Supported Truss 

The first test conducted using the SEOIGE method was a “proof of concept” experiment, with 

the objective of evolving an arbitrary simply supported truss for minimal self-weight. The 

ultimate goal of this experiment was to validate the hypotheses presented at the beginning of 

this chapter: that it is possible to create a highly unconstrained grammatical representation 

(providing minimal knowledge about the form of the solution other than external inputs) which 

could generate a viable solution. 

A generic simply supported truss design envelope was generated, with a total span of 40 m, a 

height of 10 m, and a single vertical force acting at centre span (as shown in Figure 6.20). 

Support conditions are pinned-roller. In accordance with the findings of Kicinger et al. [68], 

which stated that the most effective and efficient method of designing large structures is 

through the use of symmetry, a simply supported truss structure can be achieved by merely 

mirroring a cantilevered truss about its central axis. Thus, the algorithm only needs to evolve 

half of the structure. 

 

Figure 6.20: Design envelope for simply supported truss 
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In most cases for truss design, the truss itself will be required to conform to a specific outer 

shape (similar in concept to the design envelope itself). In such cases, addition of extra “design 

specific” nodes to the list of basic nodes is possible. These nodes will ensure that the actual 

envelope of the evolved solution will conform to that of the design envelope itself. These 

design nodes combine with essential load and support nodes to bring the total number of nodes 

to six essential nodes: 

Table 6.2: Basic nodes for simply supported truss 

Node Index Node Location Node Label 

1 

2 

3 

4 

5 

6 

(20,000, 0) 

(20,000, 10,000) 

(-20,000, 0) 

(-20,000, 10,000) 

(0, 0) 

(0, 10,000) 

Pinned support 

Design node 

Rolling support 

Design node 

Loaded (1,000,000 N) 

Design node 

The validity of the hypothesis of this chapter can be summed in Figure 6.21, which shows a 

number of elite solutions taken from the initial generations of a single evolutionary run. A 

clear progression in the evolution of the fittest solutions is visible from generations 0 to 8. 

Initial generations begin with a random arrangement of internal nodes within the structure. As 

generations progress this nodal arrangement becomes less and less random as evolution drives 

the placement of nodes. 
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Figure 6.21: Evolution of a simply supported truss structure.  

This experiment demonstrates that the SEOIGE method is indeed capable of generating viable 

solutions given only minimal knowledge of the problem itself. The following sets of 

experiments take this knowledge and compare solutions generated by SEOIGE for benchmark 

problems against those from the literature. 
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6.4.2. 10 – Bar Cantilever Truss 

A cantilevered truss grammar (as shown in Appendix A.1) was created to match the 

dimensions and loads of the 10-bar cantilevered truss example from Section 4.3.1, as shown 

in Figure 6.22. The main conceptual difference between the SEOIGE method and the standard 

ground structure approach is that no information about the internal layout of the structure is 

required. A design envelope was generated by setting the maximum node dimensions to a span 

of 18,288 mm (corresponding to 720 inches) and a depth of 9,144 mm (corresponding to 360 

inches). Any additional nodes defined by the grammar are generated via percentages of the 

span and the depth for the x and y coordinates respectively.  

 

Figure 6.22: Design envelope for 10-bar cantilevered truss example, dimensions shown in 

inches 

As with the problem defined in Section 4.3.1, two load cases were tested: 

1. F1 = 444,800 N (100 kips) 

F2 = 0 

2. F1 = 667,200 N (150 kips) 

F2 = 222,400 N (50 kips) 
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Load Case 1 

For load case 1, only four essential nodes were defined (Table 6.3): 

Table 6.3: Essential nodes for 10-bar cantilevered truss problem, load case 1 

Node Index Node Location Node Label 

1 

2 

3 

5 

(0,0) 

(0, 9144) 

(9144, 0) 

(18288,0) 

Pinned support 

Pinned support 

Loaded (444,800 N) 

Loaded (444,800 N) 

No other information on the design of the desired solution was detailed in the grammar. 

Options for either the adding of a single node or the addition of multiple nodes were given 

equal bias of 50% each. Node locations followed the percentage-based option as defined in 

Section 6.3.4, and unfit individuals were left unrepaired (i.e. no sizing optimisation was used 

to repair unfit individuals). A total of 100 runs were completed, each with a population of 1000 

individuals over 100 generations. Mutation probability was set at 1%, and crossover 

probability at 75%. Both elite size and tournament size were set at 1% of the overall population 

size. 

In terms of benchmark solutions against which to compare, Deb and Gulati [14] and Hajela & 

Lee [69] tackled the same problem as Luh and Lin [77], Li et al. [64], and Kaveh and 

Talatahari [65], but included a Boolean topological value in their genetic representation, 

allowing them to select the presence or absence of individual members. Their evolved optimal 

topologies (matching the globally optimum topology shown in Figure 4.4, needing only 6 bars 

as opposed to the original problem description of 10) resulted in greatly improved results over 

those portrayed in Table 4.2. As with the examples described in Section 4.2, two material sets 

were used for these experiments: steel Circular Hollow Sections (CHS) taken from the Tata 

blue book [118], and Aluminium Circular Solid Sections (CSS) as used in the literature. 

Progressive stages of evolution for this problem are shown in Figure 6.23. The self-weight and 

load path are shown for best individuals sampled from the population at regular intervals.  
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Figure 6.23: Progressive evolution of SEOIGE solution for load case 1 of the 10-bar truss 

problem 
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The optimum topological solution as derived by SEOIGE is shown in Figure 6.24. While there 

are still 6 nodes in the structure, there are now only 9 bars, with a substantially different 

topological and overall shape layout. The longest members in the structure (members 4, 3, and 

9) are now all in tension, thus reducing the overall effect that lateral torsional buckling has on 

the structure. For this solution, SEOIGE evolved two new nodes, in addition to the four 

essential nodes listed in Table 6.3, as shown in Table 6.4: 

Table 6.4: Non-essential nodes defined by SEOIGE for 10-bar truss, load case 1, CHS 

materials 

Node “X” 

Percentage 

Node “Y” 

Percentage 

Actual Node 

Coordinate 

58.77 83.11 (10749, 7600) 

45.26 38.59 (8278, 3529) 

New cross sectional areas for all members are listed in Table 6.5. Since the topological layout 

has changed dramatically, these cross-sectional areas cannot be compared with previous 

attempts (as in Table 4.2). 

Table 6.5: Cross sectional areas for members shown in Figure 6.24 

Element CHS Area (mm2) CSS Area (mm2) 

1 4210 11871 

2 4700 12968 

3 4210 12129 

4 4700 14839 

5 2140 2710 

6 153 N/A 

7 3710 9290 

8 4700 9484 

9 3310 14194 
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Figure 6.24: 10-bar cantilevered truss, load case 1 - optimum SEOIGE solution, CHS 

materials 

When compared against previous results from the literature, Table 6.6 shows that SEOIGE is 

capable of producing results that are significantly lower than previously possible. 

Table 6.6: 10-bar cantilevered truss: Evolved minimum truss weights for load case 1 

 

Hajela & 

Lee 

(1995) 

Deb & 

Gulati 

(2001) 

DO-GE SEOIGE 

Using 

Tata 

CHS 

steel 

Aluminium 

solid 

sections 

Using Tata 

CHS steel 

Aluminium 

solid 

sections 

Weight (lb) 4942.7 4912.85 5102.05 5056.88 4834.1 4888.84 

While the best achieved result of DO-GE using CHS steel is 5102.05 lb, 189.2 lb heavier than 

the best achieved result of Deb and Gulati, SEOIGE was able to reduce this to 4834.1 lb, 78. 

75 lb lighter than the best achieved solution of Deb and Gulati. These results can be yet further 

ratified by the fact that SEOIGE uses readily available CHS Steel [118] rather than the 

idealised solid aluminium sections of the literature.  

An interesting case can be seen when the lighter Aluminium Solid Sections (as described in 

Table 4.1) are used. SEOIGE derives the same topological layout as shown in Figure 6.24, but 

member 6 was evolved with very low stresses in it, allowing for SEOIGE to delete it to 

improve the overall solution, as shown in Figure 6.25. Cross sectional areas are described in 

Table 6.5. What is interesting to note is that similarities can be seen between this solution and 

that of the literature [14], shown in Figure 4.4. SEOIGE’s solution contains the same number 
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of bars and the same topological layout. Although the shape itself has been distorted 

somewhat, the solution still improves upon those from the literature. 

 

Figure 6.25: 10-bar cantilevered truss, load case 1 - optimum SEOIGE solution, CSS 

materials 

Although it was able to find a directly comparable solution which was better than those of the 

literature (i.e. using the same material properties and improving on Deb & Gulati’s solution 

by 24.01 lb), SEOIGE was unable to improve on the best solution found using the CHS steel. 

Load Case 2 

Load case 2 of the 10-bar cantilevered truss was not attempted by either Hajela & Lee or Deb 

& Gulati, and no examples could be found in the literature of the application of a topological 

bit-style approach to this particular problem. As such, the only comparisons that can be made 

are against the same literature as described in Section 4.3.1 – those of Li et al. and Kaveh and 

Talatahari [64, 65]. 

The addition of two more loads to the structure requires the addition of two more essential 

nodes, for a total of six essential nodes (as described in Table 6.7), the same number as with 

the original 10-bar truss model: 
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Table 6.7: Essential nodes for 10-bar cantilevered truss problem, load case 2 

Node Index Node Location Node Label 

1 

2 

3 

4 

5 

6 

(0, 0) 

(0, 9144) 

(9144, 0) 

(9144, 9144) 

(18288, 0) 

(18288, 9144) 

Pinned support 

Pinned support 

Loaded (667,200 kN) 

Loaded (222,400 kN) 

Loaded (667,200 kN) 

Loaded (222,400 kN) 

All other variables and settings remained the same as the previous load case. 

 

Figure 6.26: Progressive evolution of SEOIGE solution for load case 2 of the 10-bar truss 

problem 
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The progressive evolution of the best solutions from regular generations of a typical 

evolutionary run can be seen in Figure 6.26. What is interesting to note is that in this case the 

load path continually increases until the optimal solution is evolved. However, the self-weight 

of the solutions continuously decreases. 

The evolved optimised topology for both material cases is shown in Figure 6.27: 

 

Figure 6.27: 10-bar cantilevered truss, load case 2 - optimum SEOIGE solution, CHS 

Materials 

As with load case 1, it can be seen that the member with the highest risk of buckling has been 

broken into smaller segments to reduce the risk and to better dissipate the stresses. One 

optional node was added to this structure in addition to the six essential nodes listed in Table 

6.7, as shown below in Table 6.8: 

Table 6.8: Non-essential nodes defined by SEOIGE for 10-bar truss, load case 2 

 
Node “X” 

Percentage 

Node “Y” 

Percentage 

Actual Node 

Coordinate 

CHS 

Materials 
26.31 54.16 (4812, 4952) 

CSS 

Materials 
31.15 51.79 (5697, 4736) 

As with load case 1, a different topological layout makes comparisons between evolved 

member cross-sectional areas of previous approaches difficult. Similarities, however, between 
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Figure 4.2 and Figure 6.27 show many common members, meaning direct comparisons are 

not impossible in this case.  

The use of CSS materials evolved a very similar solution, as shown in Figure 6.28. Again, 

only one essential node was added to the solution, described in Table 6.8 above. 

 

Figure 6.28: 10-bar cantilevered truss, load case 2 - optimum SEOIGE solution, CSS 

Materials 

Cross-sectional areas for all members are given in Table 6.9 below. Member 5 for both 

solutions is of the lowest available cross-sectional area, and examination of the analysis results 

shows that there are actually zero stresses in the member itself, meaning that potential 

improvements to the overall structure can be made without that member.  

Table 6.9: Cross-sectional areas for 10-bar truss, load case 2, SEOIGE solution 

Element CHS Area (mm2) CSS Area (mm2) 

1 4670 15161 

2 153 64.52 

3 5010 13032 

4 3760 9161 

5 153 65 

6 1070 1290 

7 4670 9097 

8 2570 8581 

9 3710 12774 

10 3760 13032 

11 4030 4774 
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However, while member 5 contains zero stresses, its deletion from the solution would create 

a kinematic mechanism whereby member 6 is only connected to one node and is free to rotate, 

as shown in Figure 6.29.  

 

Figure 6.29: Kinematically unstable structure obtained with deletion of member 5 

For this reason member 5 must be kept in the solution. 

The optimisation results for load case 2 using both Tata CHS steel and the Aluminium Solid 

Sections are presented in Table 6.10: 

Table 6.10: 10-bar cantilevered truss: Evolved minimum truss weights for load case 2 

 

Li et al. 

(2007) 

  

Kaveh & 

Talatahari 

(2009) 

DO-GE SEOIGE 

Using 

Tata 

CHS 

steel 

Aluminium 

solid 

sections 

Using Tata 

CHS steel 

Aluminium 

solid 

sections 

Weight (lb) 4677.3 4675.8 5016.3 4612.8 4880.43 4624.35 

The best achieved result for DO-GE using commercially available CHS steel materials and 

material properties was 5016.3 lb, some 340.5 lb off the best achieved minimum weight of 

Kaveh and Talatahari. SEOIGE was able to improve on the achieved result of DO-GE by 

135.87 lb, bringing it down to 4880.43 lb when using CHS steel, although still 204.63 lb off 

the best achieved result of Kaveh and Talatahari. Comparisons of DO-GE and SEOIGE using 

the idealised Aluminium Solid Sections show that although SEOIGE was able to achieve a 

better result than that of Kaveh and Talatahari (besting their solution by 51.45 lb), it was still 

11.55 lb off the best achieved result by DO-GE. The reasoning for this is that the number and 

location of the essential nodes for Load Case 2 severely limits the scope of this problem for 
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the SEOIGE method. Whereas SEOIGE performs well when there is little information given 

about the form of the solution (i.e. in Load Case 1), in Load Case 2 there is very little room 

for SEOIGE to evolve its own solution as the anticipated form of the solution is pre-set by the 

location of the essential nodes. This discussion is expanded on in Section 6.5. 

6.4.3. 17 – Bar Cantilever Truss 

Li et al. [64], Lee and Geem [76], Khot and Berke [128], Adeli and Kumar [129], and Fenton 

et al. [117] proposed solutions to a planar 17-bar cantilevered truss problem, as described in 

Section 4.3.3. A new design envelope for a cantilevered truss grammar was created to match 

the dimensions and loads of this problem, shown in Figure 6.30.  

 

Figure 6.30: Design envelope for 17-bar cantilevered truss 

The design envelope for this problem measures 400 inches by 100 inches (10160 mm by 2540 

mm), with a vertical load of 100 kips (444,800 N) acting at the far end of the structure. Only 

three essential nodes need to be defined in this instance: 

Table 6.11: Essential nodes for 17-bar cantilevered truss problem 

Node Index Node Location Node Label 

1 

2 

3 

(0, 0) 

(2540, 0) 

(0, 10160) 

Pinned support 

Pinned support 

Loaded (444,800 N) 

In this instance both the shape of the design envelope and knowledge of prior successful 

solutions provide clues to the potential shape of the optimum solution. Thus, the grammar can 

be biased accordingly such that SEOIGE has a greater chance of generating a fitter solution. 

As described in Section 6.3.5, SEOIGE’s percentage-based node generation makes it possible 
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to easily add bias towards specific percentages to create more regularised structures. In the 

case of the 17-bar truss problem, previously successful solutions (as shown in Figure 4.12 and 

Figure 4.14) indicate that nodes placed at quarter points along the x-axis (i.e. at 25%, 50%, 

and 75% of the total span) will generate an optimum solution. These options were added to 

the grammar such that the production rule <node> has four options, as shown in Figure 6.31: 

 
<node> ::= 25 | 50 | 75 | float("<n><n>.<n><n>") 

<n> ::= 0|1|2|3|4|5|6|7|8|9 
 

Figure 6.31: Node generation production rule for SEOIGE grammar, 17-bar truss case 

Notably, this grammar, though biased towards placing nodes in regularized locations, still 

retains the capability of placing nodes at any location within the design envelope. In this 

manner SEOIGE can determine the optimum topological layout, with hints at what that 

optimum layout is suspected to be. 

As with the previous examples, idealised materials (solid steel sections as described in Table 

4.1) were used by the literature in solving this problem. The experiments were therefore run 

using Tata CHS steel and again with the idealised solid steel sections in order to benchmark 

against the performance of both the results from the literature and previous results from DO-

GE.  

 

Figure 6.32: Progressive evolution of SEOIGE solution for 17-bar truss 
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Progressive evolution of the SEOIGE solution to the 17-bar truss problem can be seen in 

Figure 6.32. As with Figure 6.23 and Figure 6.26, Figure 6.32 shows that while the overall 

objective of the structural self-weight is continually minimised, the load path of the best 

solution sometimes increases incrementally. The final solution, however, is always the most 

superior result in terms of both self-weight and load path. 

The optimum evolved topology for this problem can be seen in Figure 6.33. What is interesting 

to note is that this solution is visually identical to that derived by DO-GE, as shown in Figure 

4.14 earlier. Even though the grammar retained the capability of placing a node at any location, 

the most optimum node locations as determined by the grammar were, as predicted, at quartile 

points. 

 

Figure 6.33: 17-bar cantilevered truss – optimum SEOIGE solution, CHS Materials 

Evolved optional nodes are shown in Table 6.12.  
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Table 6.12: Non-essential nodes defined by SEOIGE for 17-bar truss 

Node “X” 

Percentage 

Node “Y” 

Percentage 

Actual Node 

Coordinate 

25.00 99.99 (2540, 2540) 

50.00 00.00 (5081, 0) 

75.00 99.99 (7620, 2540) 

Cross sectional areas for all members using both realistic CHS steel and the idealised CSS 

steel sections are listed in Table 6.13: 

Table 6.13: Cross sectional areas for members shown in Figure 6.33 

Element CHS Area (mm2) CSS Area (mm2) 

1 7920 8065 

2 3360 3226 

3 8920 10452 

4 3760 3419 

5 5010 5226 

6 3360 3742 

7 4030 2387 

8 3360 4000 

The results of these experiments are shown in Table 6.14. 

Table 6.14: 17-bar cantilevered truss: Evolved minimum truss weights 

 

Khot Adeli Li et al. DO-GE SEOIGE 

      

Using 

Tata CHS 

steel 

Steel 

solid 

sections 

Using Tata 

CHS steel 

Steel 

solid 

sections 

Weight 

(lb) 
2581.9 2594.4 2581.9 2642.1 2595.4 2743.61 2581.9 

It must be noted from Table 6.14, however, that in this case SEOIGE was unable to match the 

exact minimum weight derived by DO-GE or of the literature. The interpretation of this is 

explained in the discussion in Section 6.5. 

6.4.4. Non-Regular Truss Forms 

Since the SEOIGE method has been validated and benchmarked against standard forms and 

tests from the literature in the above experiments, examination of its capacity to optimise non-
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standard truss envelopes would be useful. The constraints on structural design will often be 

driven by physical dimensions and limitations. Architects desire the freedom to design form 

over function, but are often limited by the nature and capacity of regular structural support 

mechanisms. Conversely, engineers are routinely pushed to design solutions for the ever more 

complex problems that arise from pushing the boundaries of shape and form. A design 

approach that could provide structural support solutions for arbitrary shapes and forms would 

therefore be of great value to both engineer and architect. This is a particular area where the 

node-based SEOIGE method can excel. 

For design envelopes with non-regular shapes, limits can be set on either the x or y-values by 

using an equation that defines the boundary conditions, in the form of:  

 𝑦 = 𝑓(𝑥) 

Eq. 6.6 

The design envelope for any shape which can be defined by an equation can then be thus 

described. 

Figure 6.34 shows a design envelope for a long span curved truss, with a span of 100 m and 

three point loads of 1,000,000 N, at both quarter points and at midpoint.  

 

Figure 6.34: Design envelope for large span curved truss with high loading 

The design envelope only limits the placement of nodes, and as such elements connecting 

nodes within the design envelope may stray outside of it, as shown in the solution in Figure 

6.35. Removal of this capability from the program, however, is entirely possible by further 

defining the problem. 
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Figure 6.35: 100 meter curved truss, no limit to length of members 

Inclusion of a maximum length limit for members is also possible in these structures. While 

this is not necessary (long members in tension pose no risk, long members in compression are 

evolved such that they are not at risk of buckling), the results are interesting. The 100 meter 

curved truss problem from Figure 6.35 was once again attempted, but a maximum limit for all 

member lengths was set at 20 meters. The resultant structure, shown in Figure 6.36, differs 

dramatically from the original solution. 

 

Figure 6.36: 100 meter curved truss, maximum member length limited to 20 meters 

Other forms were also evolved, such as a circular arched structure, shown in Figure 6.37. 

 

Figure 6.37: Truss shape derived from circular arch design envelope 
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These experiments demonstrate the capacity of the SEOIGE method to generate viable 

solutions for problems where there is little to no information known about the form of the 

solution, other than the external acting forces. 

6.5. Discussion 

Comparison of results from the various experiments performed in this chapter yield interesting 

conclusions. The benchmark experiments in Sections 6.4.2 and 6.4.3 show that in most cases, 

the SEOIGE method was able to improve on the results from ground structure approaches in 

the literature. SEOIGE was also able to improve on the results evolved by DO-GE in Chapter 

4 for at least one of the given material cases in each of the benchmark tests attempted. For 

load case 1 of the 10-bar cantilevered truss benchmark problem, SEOIGE produces a 

significant improvement over both DO-GE and the results found in the literature. However, 

the method introduced in this chapter notably was not able to improve on traditional ground 

structure approaches for a number of cases. For load case 2 and the 17-bar case, SEOIGE’s 

results aren’t quite as impressive, only matching or marginally improving on results from the 

literature when using comparative materials (and failing to improve at all using commercially 

available materials). The reasoning for this can be thus explained. 

SEOIGE can be seen to perform well where there is both a large design envelope area and 

where little information is known about the optimal solution. In the instance of load case 1 for 

the 10-bar truss, there are four essential nodes and a design envelope where one dimension is 

twice the length of the other, creating a broad area over which new nodes can be placed (and 

therefore a broad area over which new structures can be evolved). Since the SEOIGE method 

operates by addition and subsequent connection of newly defined nodes above and beyond 

predefined essential nodes, there is plenty of scope for adding new nodes and structure. This 

is promoted as there is little information given about the structure of potential solutions. An 

example of an unintuitive yet highly successful solution evolved using this method can be seen 

in Figure 6.24. This solution is very different to the previously accepted solutions to the 

problem.  

However, the SEOIGE method does not perform quite as well when the problem is well 

defined (i.e. in cases with known solutions and little flexibility in the design space). Such is 

the case with both load case 2 for the 10-bar truss problem and the 17-bar cantilevered truss 

problem. Since SEOIGE operates by adding new nodes to form a structure, it performs best 

when it has control over not only the topological layout but more importantly the overall shape 
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of the structure. With load case 2 for the 10-bar truss, the shape of the structure is pre-

determined by the number of essential nodes on the boundary of the design envelope, and 

SEOIGE therefore does not have the freedom it needs to define its own solution. Additional 

nodes can still be added to the interior of the structure, but the optimal solution contains a 

minimal amount of edges, and therefore a minimal number of nodes. As such, SEOIGE cannot 

perform as well in these conditions. 

The gulf between the performance of regular ground structure methods from the literature and 

the SEOIGE method can further be explained by the fact that SEOIGE’s Delaunay 

triangulation approach to node connections is algorithmic in nature and lacks an appreciation 

for specific topological efficiency. The Delaunay triangulation method cannot specify which 

connections are required. With load case 2 for the 10-bar truss, there are six essential nodes 

defined (as shown in Table 6.7). Since the optimal solution for this problem contains a minimal 

number of edges, SEOIGE does not have the freedom it needs to evolve an optimal shape by 

adding new nodes. The only logical course of action in this case is to optimise the topology of 

the existing structure (i.e. vary the connectivity between fixed node locations to obtain a fitter 

solution). This means that this particular problem is well suited to a ground structure approach. 

A method which varies the number and location of nodes, and which automatically connects 

nodes in an algorithmic fashion, lacks the fine topological control that this particular problem 

requires and is consequently less effective.  

A similar situation, although less dramatic, is seen with the 17-bar truss problem. In this 

instance however, the extreme dimensions of the design envelope, with one dimension being 

four times greater than the other, coupled with the fact that the most appropriate solutions are 

known (structures with regular node locations and elements) means that again SEOIGE’s 

options are limited. Although SEOIGE is always given the option of deciding its own node 

locations in the regular fashion described in Section 6.3 (and, thus, retaining the full 

representation space capabilities), the inclusion of the regular quartile node locations at 25%, 

50%, 75%, and 100% of the total span allows the program to sample a wide range of potential 

solutions whilst hinting at the potential correct solution. The fact that SEOIGE evolves optimal 

solutions using only these suggested quartiles and not using any nodes generated using the 

regular percentage-based method means that the problem can be considered well-defined in 

that the solution of the structure is known. 
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6.6. Conclusion 

Traditional ground-structure-based discrete topology optimisation methods have been proven 

capable of deriving optimal solutions to benchmark problems [77]. However, the literature has 

suggested that the small representation spaces of ground structure methods limit their 

efficiency [14, 7, 13]. A hypothesis was posed at the beginning of this chapter that a method 

which could evolve the number and placement of nodes rather than the connectivity between 

fixed nodes would provide a vastly increased representation space over traditional ground 

structure methods. This would theoretically allow for a wider sample base, consequently 

increasing the potential for superior solutions. 

The literature shows that the most optimal solutions for discrete structures can only be found 

by optimising the topology, shape, and member sizing of a structure simultaneously [77]. In 

choosing the location of its nodes, the method presented in this chapter gains fine control over 

both the shape and topology optimisation of the overall structure. This ability, combined with 

the use of two chromosomes (one for evolving topology and shape of the structure, and the 

other for evolving the member sizing) means that SEOIGE can truly optimise the structural 

shape, structural topology, and member sizing of a structure in tandem. Using this method, 

SEOIGE is able to out-perform various methods from the literature, producing superior 

solutions for an array of benchmark problems. As such, all research objectives can be 

considered to be successfully satisfied. 

However, while the SEOIGE method can produce optimal solutions for problems where the 

solution is not known, it works best when both the structure of the solution and the design 

envelope (and more importantly the shape of the potential solution in the form of the number 

and locations of essential nodes) are ill-defined. The less essential nodes that exist (i.e. the 

looser the design brief), the better the solution SEOIGE can evolve. In cases where the 

structural shape is already set and connectivity between pre-existing nodes is paramount to 

finding the global optimum, SEOIGE has difficulty in improving upon existing solutions due 

to its lack of fine topological control over member connections. 

6.7. Summary 

A need was identified in the literature review (Chapter 2) to generate an unconstrained 

representation for discrete truss structures. The literature review also found that variation in 

node placement can lead to improved fitness results over traditional ground structure methods 
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with fixed node locations. Bearing this in mind, this chapter introduced the idea of generating 

discrete structures through placement and variation of the nodes themselves rather than 

variation in connectivity of pre-existing nodes. This method, when combined with the novel 

use of a Delaunay triangulation algorithm to connect evolved nodes, is capable of generating 

repeatable fully triangulated, kinematically stable structures. The only input required for this 

method to function is the external actions acting on the structure (i.e. forces and reactions). No 

information about the interior structure of the solution is required to evolve viable solutions. 

The use of two chromosomes (a concept introduced in Chapter 4) allowed for the simultaneous 

optimisation of structural shape and topology, and of member sizing. These structures were 

then evolved to find minimum weight arrangements for benchmark problems, and in cases 

where the problem was ill-defined and the structure of the solution was not previously known 

the SEOIGE method was able to improve on the results from the literature. 
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Chapter 7. Conclusion 

 

This chapter presents a summary of the work explored in this thesis, and relates this work back 

to the original research questions posed in Section 1.2.1. This chapter concludes with 

recommendations for future work in this field, discussed in Section 7.2. 

7.1. Thesis Summary 

The primary aim of this thesis was to investigate whether, given only boundary conditions 

such as loading and reactions, it is possible to evolve viable solutions using a discrete 

optimisation method. Based on a review of the literature, a number of research objectives were 

posed in order to ascertain whether this was possible. These aspects incorporated both 

structural engineering and evolutionary computation problems. As each objective is stated in 

this summary, the conclusions derived from that question are discussed. 

7.1.1. Both sizing and topology optimisation conducted in tandem 

The literature review presented in Chapter 2 found that simultaneous optimization of member 

sizing, structure shape, and structure topology theoretically produces the best optimization 

results. However, formulation is difficult with a constrained ground structure representation, 

and even more difficult to achieve effectively. In Chapter 4 a new technique for evolving 

multiple datasets simultaneously was introduced. This was enabled by the use of two separate 

chromosomes; one for evolving the overall shape and topology of the structure, and one for 

evolving the sizes of individual members in the structure. This method was compared, with 

identical materials and constraints, against various results from the literature, and it was found 

to be able to produce comparable results. This demonstrated that simultaneous optimisation of 

structural shape, topology, and member sizing is possible. Comparison was also made between 

this dual chromosome optimisation method and an optimisation method which used a 

deterministic approach to directly calculate the optimum member sizings for any given 
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topology. The deterministic approach resulted in a five-fold increase in computational time 

and a lower overall average fitness value for evolved solutions. 

7.1.2. A comparison of commercially available materials and code compliant 

constraints against their idealised counterparts 

The very same comparison with the discrete optimisation literature discovered that the 

majority of the literature used unrealistic assumptions about material properties and physical 

structure layout. The literature review showed that there is a tendency in the literature to focus 

on minute improvements to optimization methodologies, while fundamental engineering 

principles are overlooked. When real world construction materials and building code-

compliant constraints were utilized in the same problems, experimental data showed that the 

results, while still acceptable, were not as impressive as the initial set. The widespread use of 

identical tensile and compressive stress limits on the material and the lack of use of design 

codes and standards of practice in such optimisation methods, thus, gives a false impression of 

both the efficiency of the algorithm and the importance of the achieved results. 

7.1.3. An efficient penalty function for violated constraints in Grammatical 

Evolution  

A review of the literature indicated that a larger representation space would result in both an 

improved chance of evolutionary success and a better overall quality of individuals. 

Traditional ground structure discrete optimization approaches are also limited in their 

representation capabilities and thus cannot cover the search space as effectively as possible. 

Chapter 5 showed that an increased representation space coupled with an increased number of 

unfit individuals requires careful manipulation of individuals with violated constraints in order 

to evolve any fit solution. Although experiments in Chapter 5 demonstrated that the addition 

of more constraints further lessens the total amount of potential fit solutions in a population, 

the results from Chapter 4 indicate that design constraints in the form of building standards 

and codes of practice must be viewed as an engineering necessity. As such the use of more 

constraints can generally be regarded as representing better design practice. Finally, a new 

method of generating a penalty function for unfit individuals was generated, and this method 

was compared against various methods from the literature. Although most methods performed 

identically for less difficult problems, this new method provided an improvement over 

previous methods for highly difficult problems such as those with a very large representation 

space. 
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7.1.4. Creation of an unconstrained grammar representation  

Once an efficient method of handling a large representation space was established the various 

methods of creating a grammar capable of generating such an unconstrained representation 

space were discussed in Chapter 6. Since the literature review found that allowance for small 

variation in node placement can lead to an improved fitness result in traditional ground 

structure optimisation, the hypothesis was posed that complete freedom in nodal positioning 

and placement would allow the heuristic process to get closer to the true global optimum. 

Various approaches were discussed with regard to generating nodal coordinates within a pre-

specified design envelope, and the most effective method was the representation of potential 

new node locations as a percentage of the overall dimensional limits. A novel method of 

connecting existing nodes using a Delaunay triangulation algorithm was implemented, and 

repeatable, fully triangulated, kinematically stable structures were generated using this 

method. 

7.1.5. Evolution of viable solutions given only boundary conditions and constraints  

Chapter 6 also showed that the only design components necessary to evolve a viable solution 

using this new method were the nodal locations (and magnitudes) of external forces acting on 

the structure, including loading forces and reactionary forces. Experiments showed that viable 

solutions can be evolved given no prior information on the interior structure of the solution. 

Finally, using two separate chromosomes as defined in Chapter 4, and combined with the new 

penalty function described in Chapter 5, experiments conducted in Chapter 6 compared this 

new Delaunay-based node variant method against benchmark discrete ground structure 

optimisation methods from the literature. These experiments showed that the new method 

presented in this thesis produced superior results to those of the literature in cases where the 

problem was ill-defined and the structure of the solution is not known a priori. 

7.2. Contributions 

A number of contributions have arisen from this work. These include publications, which are 

listed in the “Publications Arising” section on page xvii.  

Literature Review: A review of the literature in the area of Evolutionary Computation and 

Structural Design optimisation was presented in Chapter 2. 
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Applications of GE in Structural Engineering: A version of GE has been developed (as 

described in Chapter 3), which allows for the evolution of structural engineering designs using 

engineering parameters for both design constraints and as an objective function. 

Realistic material design generation: The use of commercially available construction 

materials in evolutionary design was explored. In Chapter 4, it was found that solutions very 

close to leading solutions from the literature can be achieved using commercially available 

elements. 

Code-compliant constraints: Current building codes of practice were translated into design 

constraints. When combined with realistic materials, these allow for critical knowledge of 

section geometry and orientation to be correctly used. In Chapter 4 it was found to be therefore 

possible to calculate fully accurate material stress limits as a constraint for structural design. 

Twin chromosome GE: A version of GE was developed which used two chromosomes, 

allowing genetic information of two separate data sets to be transferred between generations. 

These separate chromosomes were used to evolve the member sizing and the overall topology 

of a structure in tandem, and it was shown in Chapter 4 that it is possible to simultaneously 

optimise the structural topology and member sizing of a structure. 

Fitness landscapes and search: Definitions of the terms fitness landscapes and search were 

given in Chapter 5. Experiments demonstrated the properties of these landscapes as the 

attempted problems become more difficult. It was shown that an increase in the difficulty of a 

problem will correspondingly reduce the number of potential fit solutions in the overall fitness 

space. 

Penalty Function: A new penalty function was developed in Chapter 5, for use on individuals 

with failed constraints (as shown in Eq. 5.19). This penalty function sums the normalised 

values of all constraint violations allowing for accurate comparisons between individuals with 

multiple constraint violations. 

Unconstrained discrete truss grammar representation: A new grammar was developed 

with an unconstrained discrete truss representation, which allows GE to evolve its own 

solutions. This was detailed in Chapter 6, where it was shown that more representational 

freedom in a grammar can generate fitter individuals. 
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Edge generation and truss connectivity using Delaunay triangulation: A Delaunay 

triangulation algorithm was used within the grammar to connect nodes together to form truss 

members. This technique, as described in Chapter 6, is novel in this application, but has ties 

to the field of finite element analysis and mesh generation, where the use of Delaunay 

triangulation is prevalent. 

7.3. Limitations 

This thesis focussed on the development of a simultaneous optimisation technique for 

structural shape, structural topology, and member sizing for discrete truss structures. As such, 

certain limitations were inherent in the scope of the investigations. These limitations are 

explained below. 

Although it is entirely possible for building codes of practice of any type to be used in 

conjunction with the work presented here, all experiments were performed using the British 

Standards due to the author’s familiarity with the system. Use of Eurocodes, International 

Building Codes (IBC), etc. is entirely possible, but requires the user to apply the relevant 

constraints and limitations as detailed by the regulations. 

Conduction of a complete parameter sweep of all evolutionary operators, including mutation 

and crossover rates, was not possible. Recommendations from the literature were adhered to 

as much as possible, and where such references were not available, popularly accepted settings 

were used. These settings remained consistent throughout the duration of the study.  

All possible options for grammar generation were not explored. While this thesis only used 

traditional grammar forms, recently there have been advances in tree-adjoining grammars 

[136] and probabilistic grammars [137] which have been developed for GE. Similarly, only 

the most popular methods of selection and replacement (tournament selection and generational 

replacement) were used, although numerous different methods exist. These are examined in 

the literature review, but not implemented, as the focus of this thesis was on engineering 

optimisation. 

All joints between members are treated as fully pinned in this thesis. Accurate modelling, 

along with comparisons of different jointing methods, was not possible as this was beyond the 

scope of this thesis. Jointing systems are however identified as a potential area for future 

research in Section 7.4. 



 Conclusion 

 

191 

  

7.4. Future Work 

Although the field of structural engineering optimisation is well-established, new 

technological innovations mean it is constantly growing and evolving as new fields of research 

are discovered. A number of potential future research areas have been identified during the 

course of this thesis.  

I. From the review of the literature, it was noted that Zhou [100] evolved continuum 

structures with the objective function of optimising particular fundamental frequencies 

for the structure itself. One interesting area of potential research would be to look at 

optimising discrete structures for this same purpose. An example application would be 

to evolve a bridge with specific fundamental frequencies which would limit the effects 

of heavy traffic or human footfall. This lessened impact would have a consequent 

beneficial effect on the maintenance and overall lifespan of the bridge by reducing 

fatigue. 

II. Michell [5] and Chan [6] noted that if it is possible to design a structure whereby all 

members are either in tension (such as catenary structures) or all members are in 

compression (such as arch structures), then the global optimum for that particular 

problem has been found, and no better solution can exist. An optimisation method 

which evolves pure tensile or pure compressive structures warrants further 

investigation. 

III. Large structures are difficult to truly optimise in a discrete fashion, as their physical 

size renders the requisite representation space infeasibly large. However, they have 

been successfully evolved with techniques which use simple repeatable elements or 

bays [68]. The inclusion of a recursive/fractional component to a grammar would allow 

it to generated repeatable periodic features, in a similar fashion to Huang and Xie’s 

work [105]. Combined with the techniques described in this thesis, this method could 

prove very powerful for design of large structures where it may not be computationally 

economical to evolve structures over the complete design domain. 

IV. Chapter 6 demonstrated that the SEOIGE method can be readily extended to three 

dimensions. An interesting future application would be to evolve tensegrity structures 

using this method. Tensegrity structures require struts for members in pure 

compression and cables for members in pure tension. Class 1 tensegrities are 

considered extremely difficult to design; they are defined as structures with only one 

compressive member per nodal joint, with all other members being cables in tension. 
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A heuristic discrete search algorithm such as SEOIGE would be well suited to evolving 

viable solutions, especially since the form of the solution is not known beforehand. 

V. Joint connections between structural members could be more accurately modelled to 

further increase the analytical accuracy of the method. At present all joints between 

members are treated as fully pinned. Since it was not possible to accurately model, 

compare, and contrast different jointing methods due to the scope limit of this thesis, 

the method could benefit from this work in the future. 

VI. The use of variable mutation and crossover rates [66, 131] has been proven to improve 

evolutionary capabilities with other methods. This area warrants investigation as it 

could yield additional performance benefits. 

VII. The ground structure problems attempted in this thesis are very small. Ground 

structures with a very high number of members (> 100,000,000) have been 

successfully solved in the literature [87]. Evolution of structures on a similar scale 

using techniques such as those described in this thesis would be a difficult challenge, 

and would be worthy of further study. 

VIII. Multiple objective optimisation has been successfully applied to GE [56, 50]. Design 

of multiple load cases for structures could be attempted using individual load case 

fitness values as multiple objectives.  

IX. An investigation into varying connection algorithms other than the Delaunay 

triangulation method described in Section 6.3.6 could not only yield increases in 

performance, but could potentially be used for architectural and aesthetic purposes. 

X. Design of structures in three dimensions would be a particular challenge with the 

SEOIGE method described in Chapter 6. At present structures can be generated in 3D, 

but the Delaunay triangulation method is more suited to surface mesh generation (e.g. 

in the generation of finite element meshes or surface textures). A particular challenge 

would be to find a method capable of generating internal structures for 3D shapes.  
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Appendix A: Grammars & Phenotypes 

1. SEOIGE Grammar - Cantilevered Truss 

<S> ::= <program>{}<call> 

 # initialises the grammar 

<program> ::= def mutant():{<init>{}<constants>{}<get_node>{}<cross_brace>{}<get_genome>{} 

       <make_truss>{}<make_all>{}<return>{}} 

 # defines the main function call of the phenotype 

<init> ::= truss_graph = graph.graph(){}state = random.getstate(){} 

 # initialises the graph class 

<constants> ::= span = <span>{}depth = <depth>{}edge_list = []{} 

truss_graph.save_graph_info(["delaunay", span, depth]){} 

 # sets the variables for span and depth 

<get_node> ::= def get_node(node):{ 

x = round(float(span)/100 * (node[1] + (node[1]*(100-99.99)/99.99))){} 

y = round(float(depth)/100 * (node[2] + (node[2]*(100-99.99)/99.99))){} 

return [node[0], x, y, node[3]]} 

 # function definition for percentage equaliser function, as defined in Eq. 6.2 

<cross_brace> ::= def cross_brace():{essential_list = [[0, 0, depth, "fixed", [True, True,  
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True]],[0, <span>, 0, "load",<load>],[0, <span>/2, 0, "load", <load>],[0, 0, 0, "fixed", 

[True, True, True]]]{}optional_list = [<node_iter>]{}all_nodes = []{}for node in 

essential_list:{if node not in all_nodes:{ all_nodes.append(node)}}for node in 

optional_list:{brogue = get_node(node){} if node not in all_nodes: 

{all_nodes.append(brogue)}}{}a_set = []{}b_set = []{}for point in all_nodes:{node = 

[point[1], point[2], point[0]]{}label = point[3]{}if label == "load":{load = point[4]{}item 

= [node, label, load, none]} elif label == "fixed":{fix = point[4]{} item = [node, label, 

None, fix]}else:{item = [node, label, None, None]}{}if a_set:{if item not in a_set:{if 

item[0] not in b_set:{a_set.append(item){}b_set.append(item[0])}else:{break}}} 

else:{a_set.append(item){}b_set.append(item[0])}}a = []{}b = []{}for node in a_set:{node_id 

= truss_graph.add_unique_node(node[0], str(node[1]), node[2], 

node[3]){}a.append(node[0][0]){}b.append(node[0][1])}cens,edg,tri,neig = 

triang.delaunay(a,b){}for edge in edg:{if edge not in edge_list:{edge_list.append(edge)}}} 

 # function definition for truss generation, including Delaunay triangulation connections 

<get_genome> ::= def get_genome(i):{return genome[i]} 

 # function definition for returning material section size from Ch.B 

<make_truss> ::= def make_truss():{for i, edge in enumerate(edge_list):{ 

if truss_graph.node[edge[0]]['label'] == "fixed" and truss_graph.node[edge[1]]['label'] == 

"fixed":{pass}else:{truss_graph.add_edge(edge[0], edge[1], material=get_genome(i), 

genome_id=i)}}} 

 # function definition for graph generation 

<load> ::= [0,-444800,0] 
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 # load 

<node> ::= [0, <%>, <%>, "node"] 

 # defines a node 

<%> ::= float("<n><n>.<n><n>") 

 # defines a nodal co-ordinate 

<n> ::= 0|1|2|3|4|5|6|7|8|9 

 # 10 terminal production choices for the non-terminal <n> 

<span> ::= 18288 

 # span 

<depth> ::= 9144 

 # depth 

<node_iter> ::= <node> | <node>,<node_iter> 

 # recursive node call, allowing the grammar to produce any number of node locations 

<make_all> ::= cross_brace(){}make_truss(){}random.setstate(state){} 

 # function call for all defined functions 

<return> ::= return [truss_graph, len(edge_list), "cantilever"]{} 

 # return for resultant solution 

<call> ::= XXXeval_or_exec_outputXXX = mutant() 

 # call to execute phenotype 
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2. SEOIGE Phenotype - Cantilevered Truss 

def program(): 

truss_graph = graph.graph() 

 # initialises an instance of the graph class 

    span = 18288 

    depth = 9144 

    edge_list = [] 

    truss_graph.save_graph_info(["delaunay", span, depth]) 

    def get_node(node): 

    # function definition for percentage equaliser function, as defined in Eq. 6.2 

        x = round(span/100 * (node[1] + (node[1]*(100-99.99)/99.99))) 

        y = round(depth/100 * (node[2] + (node[2]*(100-99.99)/99.99))) 

        return [node[0], x, y, node[3]] 

    def cross_brace(): 

    # function definition for truss generation, including Delaunay triangulation connections 

        essential_list = [[0,0 , depth, "fixed", [True, True, True]],[0, 18288, 0, "load", [0,-

444800,0]],[0, 18288/2, 0, "load", [0,-444800,0]],[0, 0, 0, "fixed", [True, True, True]]] 

        # define the essential list 

        optional_list = [[0, float("41.42"), float("83.51"), "node"],[0, float("54.99"), 

float("38.78"), "node"]] 

        # define the optional list 

        all_nodes = [] 
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        for node in essential_list: 

            if node not in all_nodes: 

                all_nodes.append(node) 

        for node in optional_list: 

            new_node = get_node(node) 

            if node not in all_nodes: 

                all_nodes.append(new_node) 

        a_set = [] 

        b_set = [] 

        for point in all_nodes: 

        # set the node definitions for the graph class 

            node = [point[1], point[2], point[0]] 

            label = point[3] 

            if label == "load": 

                load = point[4] 

                item = [node, label, load, None] 

    elif label == "fixed": 

                fix = point[4] 

                item = [node, label, None, fix] 

            else: 

                item = [node, label, None, None] 

            if a_set: 
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                if item not in a_set: 

                # ensure we have no duplicate nodes 

                    if item[0] not in b_set: 

                        a_set.append(item) 

                        b_set.append(item[0]) 

                    else: 

                        break 

            else: 

                a_set.append(item) 

                b_set.append(item[0]) 

        a = [] 

        b = [] 

        for node in a_set: 

        # add node information to the graph 

            node_id = truss_graph.add_unique_node(node[0], str(node[1]), node[2], node[3]) 

            a.append(node[0][0]) 

            b.append(node[0][1]) 

        cens,edg,tri,neig = triang.delaunay(a,b) 

        # generate the Delaunay mesh connections given the list of nodes 

        for edge in (edg): 

            if edge not in edge_list: 

                edge_list.append(edge) 
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    def get_genome(i): 

        return genome[i] 

    def make_truss(): 

    # create graph edges from the edge list 

        for i, edge in enumerate(edge_list): 

            if truss_graph.node[edge[0]]['label'] == "fixed"  

  and truss_graph.node[edge[1]]['label'] == "fixed": 

              pass 

            else: 

                truss_graph.add_edge(edge[0], edge[1], material=get_genome(i), genome_id=i) 

    cross_brace() 

    #  function call to generate nodes and edges 

    make_truss() 

    #  function call to generate graph 

    return [truss_graph, len(edge_list), "cant"] 
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Appendix B: File Formats 

1. SLFFEA Input File Format (abridged) 

numel numnp nmat nmode  (This is for a truss) 

9 6 157 0 

matl no., E modulus, density, and Area 

0 210000 7.85e-06 153.0 

1 210000 7.85e-06 2140.0 

2 210000 7.85e-06 3310.0 

3 210000 7.85e-06 3710.0 

4 210000 7.85e-06 4210.0 

5 210000 7.85e-06 4700.0 

el no., connectivity, matl no 

0 0 4 5 

1 0 5 4 

2 1 2 5 

3 1 4 2 

4 1 5 0 

5 2 3 4 

6 2 5 1 

7 3 5 5 

8 4 5 3 

node no., coordinates 

0 0 9144 0 

1 18288 0 0 

2 9144 0 0 

3 0 0 0 

4 10749 7600 0 

5 8278 3529 0 

prescribed displacement x: node  disp value 

0 0.0 
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3 0.0 

-10 

prescribed displacement y: node  disp value 

0 0.0 

3 0.0 

-10 

prescribed displacement z: node  disp value 

0 0.0 

1 0.0 

2 0.0 

3 0.0 

4 0.0 

5 0.0 

-10 

node with point load and load vector in x, y, z 

1 0 -444800 0 

2 0 -444800 0 

-10 

element with stress and tensile stress vector 

-10 
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2. SLFFEA Output File Format (abridged) 

   numel numnp nmat nmode (This is for the truss mesh file: 

slf/1) 

       9    6  157    0 

 matl no., E modulus, density, Area  

     0    2.100000e+05 7.850000e-06 1.530000e+02 

     1    2.100000e+05 7.850000e-06 2.140000e+03 

     2    2.100000e+05 7.850000e-06 3.310000e+03 

     3    2.100000e+05 7.850000e-06 3.710000e+03 

     4    2.100000e+05 7.850000e-06 4.210000e+03 

     5    2.100000e+05 7.850000e-06 4.700000e+03 

el no., connectivity, matl no.  

     0      0      4      5 

     1      0      5      4 

     2      1      2      5 

     3      1      4      2 

     4      1      5      0 

     5      2      3      4 

     6      2      5      1 

     7      3      5      5 

     8      4      5      3 

node no., coordinates  

   0       0.000000    9144.000000       0.000000 

   1   18278.132161     -50.797659       0.000000 

   2    9138.261321     -22.855161       0.000000 

   3       0.000000       0.000000       0.000000 

   4   10752.914765    7576.391149       0.000000 

   5    8277.201854    3511.170309       0.000000 

prescribed displacement x: node  disp value  

   0   0.000000e+00 

   1  -9.867839e+00 

   2  -5.738679e+00 

   3   0.000000e+00 

   4   3.914765e+00 
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   5  -7.981465e-01 

 -10  

prescribed displacement y: node  disp value  

   0   0.000000e+00 

   1  -5.079766e+01 

   2  -2.285516e+01 

   3   0.000000e+00 

   4  -2.360885e+01 

   5  -1.782969e+01 

 -10  

prescribed displacement z: node  disp value  

   0   0.000000e+00 

   1   0.000000e+00 

   2   0.000000e+00 

   3   0.000000e+00 

   4   0.000000e+00 

   5   0.000000e+00 

 -10  

node with point load and load vector in x,y,z  

   0  -1.334400e+06    5.572703e+05    0.000000e+00  

   1  -4.110916e-10   -4.448000e+05    0.000000e+00  

   2   2.910383e-10   -4.448000e+05    0.000000e+00  

   3   1.334400e+06    3.323297e+05    0.000000e+00  

   4  -1.164153e-10    5.820766e-10    0.000000e+00  

   5   2.328306e-10    5.820766e-11    0.000000e+00  

 -10 

element no. with stress and tensile stress vector  

   0    1.398491e+02  

   1    1.962590e+02  

   2   -9.482980e+01  

   3    1.882505e+02  

   4    4.763997e+01  

   5   -1.317938e+02  

   6    2.140172e+02  
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   7   -1.803043e+02  

   8   -1.100180e+02  

 -10  

element no. with strain and tensile strain vector  

   0    6.659480e-04  

   1    9.345665e-04  

   2   -4.515705e-04  

   3    8.964311e-04  

   4    2.268570e-04  

   5   -6.275895e-04  

   6    1.019130e-03  

   7   -8.585921e-04  

   8   -5.238952e-04  

 -10   
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