
Experimental Study of Multipopulation Parallel
Genetic Programming.

Fernández F.1, Tomassini M. 2, Punch III, W. F., 3, Sánchez J.M. 1,

1 Departamento de Informática. Escuela Politécnica. Universidad de Extremadura. Cáceres.
{fcofdez, sanperez} @unex.es

2 Institut d’Informatique. Universite de Lausanne.
mtomassi@iissun4.unil.ch

3Computer Science and Engineering Department. Michigan State University.
punch@cse.msu.edu

Abstract. The parallel execution of several populations in Evolutionary
Algorithms has usually given good results. Nevertheless, researchers have to
date drawn conflicting conclusions when using some of the Parallel Genetic
Programming models. One aspect of the conflict is population size, since
published GP works do not agree about whether to use large or small
populations. This paper presents an experimental study of a number of
common GP test problems. Via our experiments, we discovered that an optimal
range of values exists. This assists us in our choice of population size and in
the selection of an appropriate Parallel Genetic Programming model. Finding
efficient parameters helps us to speed up our search for solutions. At the same
time, it allows us to locate features that are common to Parallel Genetic
Programming and the classic Genetic Programming Technique.

1 Introduction

Many researchers have supported the use of several populations when working with
Evolutionary Algorithm (EA) techniques. Different experimental and theoretical
studies have reported the efficiency of parallel Genetic Algorithms and have studied
the relationship between the classic model and the Island model [1][2]

But in the Genetic Programming (GP) domain, things are less clear. Some
researchers talk about the usefulness of working with multiple large populations [3],
while others question both the size of populations [4] and the efficiency of multiple
populations in GP [5], at least for the few problems that have been intensively
studied.
Nevertheless, there is no doubt about the nature of the Parallel Genetic Programming
(PGP) algorithm. All authors agree that tuning parallel GP parameters, (e.g. the
number of populations, the size of each population, the topological connections
between populations) is important for gaining maximal performance.

Our goal is to study the parameters that affect parallel performance and study their
interactions in common problems. By so doing we hope to develop a more robust
model of how parameters might be set so as to maximize the performance of parallel
GP on many different types of problems.

This article is structured as follows. The next section deals with the Island Model for
parallel processing and the design of our experiments. Afterwards, we look at the tool
we used that facilitated the development of these experiments. Next, we present the
problems addressed, followed by a detailed description of results and regularities
found in all the problems. Finally, we offer our conclusions, which lead us to the
suggestion of the existence of an optimal parameter range of values in both GP and
PGP.

2 Methodology

2.1 The Island Model

Many researchers have investigated how to parallelize classic evolutionary
computation algorithms. Several ideas have been proposed and employed:
parallelization using multiple interacting populations, parallelization of fitness
evaluation etc.
In GP, parallelization using multiple interacting populations has been used in a
number of interesting experiments [3][6][7]. This model introduces some new
parameters into the algorithm and so we decided to use it to compare results.

While multipopulation models can be classified in a number of ways [8], we are
most interested in coarse-grain parallelisation. In coarse grained models, also called
island parallel models, the population of individuals is divided into several
autonomous subpopulations, usually called demes. Demes are allowed to exchange
individuals at a certain rate, called the migration rate, according to a usually
predefined communication topology. The main reason for using this approach is its
ability to avoid premature convergence by injecting new individuals, -these promote
diversity- while at the same time exploring different portions of the search space
within each deme.

Within each deme, a standard sequential evolutionary algorithm is executed
between migration phases. Several migration policies have been described [8]. The
most common one replaces the worst k individuals of a deme with the same number
of individuals coming from other different populations, usually copies of the best
individuals.

The topology of communication is also important. The most common topologies
are ring structures, 2-d and 3-d meshes. Hypercubes and random graphs have also
been employed. Here we introduce a dynamical topology, described in the following
section, in which the exchange pattern changes during the run.

At present, there is no commonly accepted way of deciding the best set of
parameters (number of demes, size of each demes, frequency of exchange, size of
exchange, quality of exchange, topolgy, etc.). Moreover, changes on the part of an
algorithm sometimes modify the behavior of the rest. These new parameters not only
affect the “parallel” behavior of the system, but also affect the other aspects of all the
algorithms; it is thus difficult to decide how parameters affect results.
Therefore, due to the high number of parameters and their interaction, we cannot
simultaneously study all of them, and instead must select those that a priori seem to

be the most important. Thus, in our work, we decided to study how the number of
subpopulations, the number of individuals, and the migration rate affect the results.
Furthermore, we wanted to see how a dynamically changing topology, which will be
explained below, may help to solve several typical problems.

2.2 The Software Tool

 We chose to modify a standard GP tool [9] to allow us to work with several demes
over an heterogeneous network. Our tool [10] uses the Parallel Virtual Machine [11]
communication primitives to connect processes, which in this case are
subpopulations.

This tool allows us not only to decide classic parameters like the number of
individuals per population or mutations and crossover probabilities, but also to choose
the number of populations involved in the experiment, the migration rate, the number
of migrating individuals and the communication topology.

The tool works by means of the client/server model, in which each client is a
subpopulation and the server is a process that takes charge of the input/output buffers
and of establishing the communication topology (Fig 1). Thus the server can either
work with a predefined topology or dynamically change it during the run.

Fig. 1. Client/Server Architecture. The Server decides the topology.

The exchange method we explored most deeply was a random exchange topology. In
fact, this means that no set topology was employed. When a population was ready for
an exchange, the central server decided randomly from which population the new
values would be drawn. This topology proved very effective on the test problems (see
section 3.2) Executions and Effort

When using a parallel algorithm, one must carefully judge “improved performance”
as these improvements could be due to two factors:

− The time saved by a simultaneous execution of code.
− The possible improvement due to the parallel nature of the algorithm.

While the first factor is useful for shortening the time required to find solutions in
GP, which is often a slow process, the second is interesting because it shows us new
features of the algorithms compared to the sequential version.

Although the first point certainly helped us to gather a lot of results in an
affordable time, we designed the experiments to explore the second factor. We were
interested in finding out how different parameters affect results.

Thus, in order to compare results, we decided to analyze data by means of the
computational effort, calculated as the number of nodes that are evaluated in a GP
tree. Let’s suppose that we have executed the same experiment N times; we can
compute the average size of individuals per generation in each of the executions (the
number of nodes per individual solution tree), and then calculate the average of those
N values. What we really have in each generation is the average number of nodes per
individual over N execution in a particular problem. Once this average has been
computed, the required effort in a particular generation will be: I*N*AVG_LENGTH,
where I is the number of individuals in the population, and AVG_LENGTH is the
average number of nodes previously calculated.

The computed effort is not necessarily useful for comparing results between very
different problems, because different functions, nodes, etc, may require different time
values. Nevertheless, it is a helpful measure when comparing different results from
the same problem.

Since we are working with several populations instead of just one, it is also easy to
compute the effort. In each execution we compute the average number of nodes,
taking into account the average number of nodes per individual per generation in each
of the populations. Then we can proceed as we would in a classic model, by
averaging all the values of the N different executions per generation. Finally we
multiply the number of population by the number of individuals and by the average
number of nodes.

If we add up a number of generations’ efforts, we’ll have the computational effort
required to obtain a result in a particular generation.

2.4 The Problems Addressed.

GA and GP have proven to be powerful tools when solving problems in many
different fields. Results often have improved on others previously obtained by other
kinds of machine learning methods.

In our work we are not particularly interested in solving specific problems but in
extracting some basic features that could be useful in many problems; thus we
decided to use some classic GP test problems. We chose “the even parity 5 problem”
and “the symbolic regression problem”.

2.4.1 The Even Parity 5 (Evenp 5) problem.
The goal here is to decide the parity of a set of 5 bits. The Boolean even-k-parity
function of k Boolean arguments returns T if an even number of its Boolean
arguments are T, and otherwise returns NIL. If k=5, 32 different possible
combinations are available, so 32 fitness cases must be checked to evaluate the
accuracy of a particular program in the population. The fitness can be computed as
the number of mistakes over the 32 cases.

Every problem to be solved by means of GP needs a set of functions and terminals.
In the case of the Evenp-5 problem, the set of functions we have employed is the
following: F={NAND,NOR}, smaller than that described in the original version of
the problem [12].

2.4.2 The Symbolic Regression Problem.
The goal here is to find an individual i.e. a program which matches a given

equation. For each of the values in the input set, the program must be able to compute
the output obtained by means of the equation. We employ the classic polynomial
equation:

xxxxxf +++= 234)((1)

And the input set is composed of the values 1 to 1000.
For this problem, the set of functions is the following: F={*,//,+,-} where // is like

/ but returns 0 instead of ERROR when the divisor is equal to 0, thus allowing
syntactic closure.

3 Results: Optimal Parameter Range of Values

Once the problems were defined, the different parameters of the experiments had to
be chosen. We decided to deal only with the number of populations, the migration
rate, the number of individuals in each deme.

Different test cases were tried. First we used only one population to solve the
problem, with different number of individuals each time. Afterwards we tried to
solve the problems with several populations and different numbers of individuals..
Each of the graphs we show is an average over 60 executions, so the results are
statistically significant. Note that overall we performed approximately 4000 runs to
gather these statistics.

3.1 Even Parity 5.

Figure 2 compares different sizes of populations when solving the Evenp-5 problem.
We can see that there is an optimum number of individuals which produces the best
results. This seems to agree with other researchers results [1][4]
The best possible result in this problem is the value 16, when a given effort is applied.

Fig. 2. Evenp-5 problem solved by means of Classic sequential GP.

Fig. 3. The Evenp-5 problem solved by means of 5 population with a random communication
Topology, where each population sends the best individual after 1 generation.

Figure 3 also compares different population sizes, but we are now working with the
island model PGP. Again we find an optimum population size. In these experiments
we used 5 populations communicating by means of random topology.

 Finally, figure 4 depicts the same results as figure 3 but now using 2 populations.
In both experiments, each population sends its best individual after each generation,
according to random communication topology.

None of the three graphs finds solutions in the end, because we did not wait for
them to be reached. However, some important information can be retrieved from the
results.

Fig. 4. The Evenp-5 problem solved by means of 2 population with a random communication
Topology, in which each population sends the best individual after 1 generation.

We can observe an interesting point: the best choice in the classic problem
corresponds with the best choice in PGP case: we just have to multiply the number of
populations by the number of individuals. Although we cannot exactly say the
optimum number of individuals in each of the cases, we can establish an optimal
range limited by two numbers which indicate the best option each time. Let’s
imagine that the numbers are [A, B]. If we decide to use NP populations, in the PGP
model, then this range tells us that the number of individuals per population should be
chosen from between [A/NP, B/NP]. If we make NP equal to 1, then we are just
talking about a number of individuals. For this problem the range seems to be
[200,500].

But one should not generalize when talking about individuals. We think it’s more
accurate to talk about a pathway delimited by NUMBER_POPULATIONS *
NUMBER_INDIVIDUALS.

3.2 Symbolic Regression

We present the results obtained from this problem when conducting the same
experiments as with the evenp-5 problem.

In these diagrams, the best fitness value is 0. Therefore the best curves are at the
bottom of each diagram.

Fig. 5.The Symbolic Regression problem solved by means of Classic GP.

Figure 5 now compares different population sizes when solving the problem with
1000 checkpoints. Again, an optimum number of individuals can be observed,
although it is different from that obtained in the evenp-5 problem (Figure 2).

 Figure 6 is equivalent to figure 3 but the results are for the problem at hand and
using 10 populations instead of 5. Figure 7 is also analogous to figure 4 employing 2
populations.

If we apply the same reasoning as in Evenp-5 problem, we observe that a different
range appears again. Now, the limits could be [100,200]. So, when using one
population we have a range of individuals [100/1, 200/1]. When using X, we have
[100/X,200/X] which agree with the previous results: if we put 1 instead of X.

Fig. 6. The Symbolic Regression problem solved by means of 10 population with a
random communication topology in which each population sends the best individual
after 1 generation.

Fig. 7. The symbolic regression problem solved by means of 2 population with a
random communication topology, in which each population sends the best individual
after 1 generation.

Effort

4 Conclusions and Future Work.

We have presented a study of parallel GP as applied to two standard GP problems. It
indicates that there is an optimal parameter range of values that allows us to reduce
the effort involved in solving these problems. Moreover, the range is different for
each problem. Thus, we should try to classify problems by means fo this range. The
validity of these results is being checked via investigation into other problems. To
date, the results for these new problems have supported our previous conclusions
concerning the existence of the pathway. These experiment’s results help us to
understand the working of GP and PGP and the relationship between several
parameters, particularly between the number of populations and the number of
individuals. We think that only by means of a series of experiments like that which
we presented above will we be able to understand perfectly the dynamics of
evolutionary techniques.

On the other hand, we must bear in mind that more experiments, and more kinds of
problems should be addressed. We are planning to compare different communication
topologies in order to find out which is the best, or at least to classify problems
according to the results of the experiments.

Moreover, theoretical models of the multiple populations’ dynamics should be
built in order to obtain more explanations for the empirically observed phenomena.

In future papers we will present new comparisons between other interesting
parameters when using PGP.

5 References

1. Cantú Paz and David Goldberg: “Predicting Speedups of Ideal Bounding Cases
of Parallel Genetic Algorithms”. Proceedings of the Seventh International
Conference on Genetic Algorithms. Morgan Kaufmann.

2. Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. “Island Model
Genetic Algorithms and Linearly Sparable Problems”. Evolutionary Computing:
Proceedings of the AISB Workshop, Lecture notes in computer science, vol. 305
D. Corne and J. L. Shapiro (Eds), Springer-Verlag, Berlin, 109-125, 1997.

3. David Andre and John Koza: “Parallel Genetic Programming: A Scalabel
Implementation Using the Transputer Network Architecture”. Advances in
Genetic Programming 2. The Mit Press.

4. Matthias Fuchs: “Large Populations are not always the best choice in Genetic
Programming”. Proceedings of the Genetic and Evolutionary Computation
Conference GECCO 1999.

5. William F. Punch: “How effective are multiple populations in Genetic
Programming”. Genetic Programming 1998: Proceedings of the Third Annual
Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B.
Fogela, M. Garzon, D. Goldberg, H. Iba and R. L. Riolo (Eds),Morgan

Kaufmann,
San Francisco, CA, 308-313, 1998.

6. S. Arnone, , M. Dell’Orto, A. Tettamanzi, M. Tomassini,: “Highly Parallel
Evolutionary Algorithms for Global Optimization, Symbolic Inference and Non-
Linear Regression”. Proceedings of the 6th Joint EPS-APS International
Conference on Physics Computing. 1994.

7. M. Oussaidéne, B. Chopard, O. V. Pictet, , M. Tomassini: “Parallel Genetic
Programming and its application to trading model induction”. Parallel
Computing, 23, pp. 1183-1198, 1997.

8. S-C Lin, W.F. Punch and E.D. Goodman, "Coarse-grain Genetic Algorithms,
Categorization and New Approaches" Sixth IEEE Parallel and Distributed
Processing Oct 94, pg. 28-37.

9. Weinbrenner, T.;”Genetic Programming Kernel Version 0.5.2 C++ Class
Library”. http://thor.emk.e-technik.th-darmstadt.de/~thomasw/gpkernel1.html

10. Francisco Fernández, Juan M. Sánchez, Marco Tomassini and Juan A. Gómez: “
A parallel Genetic Programming Tool Based on PVM”. Jack Dongarra, Emilio
Luque, Tomás Margalef (Eds) Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer.

11. V.S. Sunderman “PVM: A Framework for Parallel Distributed Computing”,
Journal of Concurrency: Practice and Experience” pp. 315-339, Dec 1990.

12. J. Koza “Genetic Programming II”. The MIT Press.

