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The neutral theory of molecular evolution states that the accumulation of neutral muta-
tions in the genome is fundamental for evolution to occur. The genetic representation of
gene expression programming, an artificial genotype/phenotype system, not only allows
the existence of non-coding regions in the genome where neutral mutations can accumu-
late but also allows the controlled manipulation of both the number and the extent of these
non-coding regions. Therefore, gene expression programming is an ideal artificial system
where the neutral theory of evolution can be tested in order to gain some insights into the
workings of artificial evolutionary systems. The results presented in this work show be-
yond any doubt that the existence of neutral regions in the genome is fundamental for
evolution to occur efficiently.
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1. Introduction

The evolving entities of many artificial evolutionary systems are simple replicators which
survive by virtue of their own properties. The chromosomes of genetic algorithms (GAs)
[9] or the parse trees of genetic programming (GP) [12] are examples of simple replicators.
The properties of such replicators are the properties of the individual and no development
takes place in these systems. This is very different from natural evolutionary systems in
which replicators survive by virtue of causal effects on the phenotype [6, 13]. In these
systems, replicators and phenotypes are autonomous entities with different functions and
properties. Also important is that, in replicator/phenotype systems, a certain degree of de-
velopment is already present.

No matter how complex the genotype/phenotype system, the development always starts
with translation, the transfer of information from the genotype to something else. This “some-
thing else” can take different forms like, for instance, the natural RNA or proteins. How-
ever, all the immediate products of expression share an important property: their class mem-
bership is intrinsic, i.e., the genes of a particular class always produce valid structures of
the respective class. Indeed, genotype/phenotype systems with imperfect translation mecha-
nisms are not known to exist in nature. Only in artificial evolutionary systems can these

Advances in Complex Systems, Vol. 5, No.4, 389-408, 2002



2

systems be found [3, 18]. In summary, a truly functional genotype/phenotype system must
allow a perfect mapping so that evolution could occur smoothly and efficiently.

The automatic evolution of computer programs can also be done smoothly and efficiently
provided a genuine genotype/phenotype mapping is created. The creation of such a map-
ping requires some creative thinking because proteins and computer programs are very
different things. Thankfully, computer programs are much easier to understand than pro-
teins and it is not necessary to know, for instance, the rules that determine the three-dimen-
sional structure of proteins to create a simple genotype/phenotype system capable of evolving
computer programs. What are, then, the fundamental properties common to the DNA/pro-
tein system and to an artificial system especially designed to evolve efficiently computer
programs? Obviously, the first is the creation of the genome/program dyad; and second, no
matter what, the genome must always produce valid programs. And how can that be ac-
complished?

Turning to nature for inspiration can help. How does the DNA/protein system cope with
complexity? Is the information somehow fragmented in the genome? Maybe the fragmen-
tation of the genome in genes can also be useful in a simple artificial evolutionary system?
And what about expression in nature? Is all the information encoded in the genome always
expressed? How is it possible to differentiate the information that gets to be expressed
from the silenced one? Why is differentiation important? Might this also be of any use in
artificial evolutionary systems? Although the answers to all these questions are still being
sought, what is known is that, in nature, genomes are vastly redundant, with lots and lots
of so called junk DNA which is never expressed: highly repetitive sequences, introns,
pseudogenes, and so forth. So, most probably, the introduction of junk sequences in an
artificial genome can also be useful.

The genetic representation used in gene expression programming (GEP) explores both
the fragmentation of the genome in genes and the existence of junk sequences or non-cod-
ing regions in the genome [7]. As Kimura hypothesized [11], the accumulation of neutral
mutations plays an important role in evolution. And the non-coding regions of GEP are
ideal places for the accumulation of neutral mutations. Thus, in this work, the importance
of neutral regions in the genome and, consequently, the importance of neutral mutations in
evolution is analyzed using the fully functional genotype/phenotype system of gene ex-
pression programming.

2. Genetic Algorithms with Tree Representations

All genetic algorithms use populations of individuals, select individuals according to fit-
ness, and introduce genetic variation using one or more genetic operators (see, e.g., [14]).
In recent years different systems have been developed so that these powerful algorithms
inspired in natural evolution could be applied to a wide spectrum of problem domains (see,
e.g., [14] for a review of recent work on genetic algorithms and [4] for a review of recent
work on genetic programming).

Structurally, genetic algorithms can be subdivided in three fundamental groups. i) Ge-
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netic algorithms with individuals consisting of linear chromosomes of fixed length devoid
of complex expression. In these systems, replicators (chromosomes) survive by virtue of
their own properties. The algorithm invented by Holland [9] belongs to this group, and is
known as genetic algorithm or GA. ii) Genetic algorithms with individuals consisting of
ramified structures of different sizes and shapes and, therefore, capable of assuming a richer
number of functionalities. In these systems, replicators (ramified structures) also survive
by virtue of their own properties. The algorithm invented by Cramer [5] and later devel-
oped by Koza [12] belongs to this group and is known as genetic programming or GP. iii)
And genetic algorithms with individuals encoded as linear chromosomes of fixed length
which are afterwards expressed as ramified structures of different sizes and shapes. In these
systems, replicators (chromosomes) survive by virtue of causal effects on the phenotype
(ramified structures). The algorithm invented by myself [7] belongs to this group and is
known as gene expression programming or GEP.

This classification not only stresses the fundamental differences between the different
kinds of genetic algorithms but also shows clearly the kinship between GEP and GP as
both are engaged in the evolution of computer programs as ramified structures. In the next
section the fundamental differences between GEP and GP are briefly highlighted.

2.1. Genetic programming

As simple replicators, the ramified structures or trees of GP are tied up in their own com-
plexity. On the one hand, bigger, more complex structures become less and less flexible
and, therefore, the evolution of more complex structures becomes extremely difficult as
these structures cannot be fragmented into smaller, manageable sub-trees. On the other hand,
the introduction of genetic variation can only be done at the tree level and, therefore, must
be done carefully so that valid structures are created. For instance, the tree-specific crosso-
ver illustrated in Figure 1 is practically the only source of genetic variation used in GP for
it allows the exchanging of sub-trees and, therefore, always produces valid structures. But
the implementation of other operators, like the equivalent of the high-performing point
mutation [8], is unproductive as most mutations result in syntactically incorrect structures
(Figure 2). Obviously, the implementation of other operators such as transposition or in-
version raises similar difficulties and the search space in GP remains vastly unexplored.

2.2. Gene expression programming

The phenotype of GEP individuals consists of the same kind of ramified structures used in
genetic programming. However, these complex entities are encoded in simpler, linear struc-
tures of fixed length – the chromosomes. Thus, there are two main players in GEP: the
chromosomes and the ramified structures or expression trees (ETs), being the latter the
expression of the genetic information encoded in the former. The transfer of information
from the chromosomes to the ETs is called translation. This translation implies obviously a
kind of code and a set of rules. The genetic code is very simple: a one-to-one relationship
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between the symbols of the chromosome and the functions or terminals they represent.
The rules are also very simple: they determine the spatial organization of the functions and
terminals in the ETs and the type of interaction between sub-ETs in multigenic individuals.

In GEP there are therefore two languages: the language of genes and the language of
ETs and, in this simple replicator/phenotype system, knowing the sequence or structure of
one, is knowing the other. In nature, although the inference of the sequence of proteins
given the sequence of genes and vice versa is possible, practically nothing is known about
the rules that determine the three-dimensional structure of proteins. But in GEP, thanks to
the simple rules that determine the structure of ETs and their interactions, it is possible to
infer immediately the phenotype given the sequence of a gene, and vice versa. This bilin-
gual and unequivocal system is called Karva language. The details of this language are
summarized below.

Fig. 1.  Tree-specific crossover in genetic programming. Sub-trees in parents are selected
and exchanged, forming two new daughter trees.
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2.2.1. Open reading frames and genes

In GEP, the genome or chromosome consists of a linear, symbolic string of fixed length
composed of one or more genes. As will next be shown, despite their fixed length, GEP
chromosomes code for ETs with different sizes and shapes.

The structural organization of GEP genes is better understood in terms of open reading
frames (ORFs). In biology, an ORF or coding sequence of a gene begins with the “start”
codon, continues with the amino acid codons, and ends at a termination codon. However, a
gene is more than the respective ORF, with sequences upstream of the start codon and
sequences downstream of the stop codon. Although in GEP the start site is always the first
position of a gene, the termination point does not always coincide with the gene last posi-
tion. It is common for GEP genes to have non-coding regions downstream of the termina-
tion point. (For now these non-coding regions will not be considered because they do not
interfere with the product of expression.)

Consider, for example, the algebraic expression:

ed
c

ba −+⋅
                                                       (2.1)

It can also be represented as a diagram or ET:

where “Q” represents the square root function.
This kind of diagram representation is in fact the phenotype of GEP chromosomes, where

the genotype is easily inferred from the phenotype as follows:

Fig. 2.  Illustration of an hypothetical event of point mutation in genetic
programming. Note that the daughter tree is an invalid structure.
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0123456789
+/Q*c-abde                                                                                                           (2.2)

which is the straightforward reading of the ET from left to right and from top to bottom
(exactly as we read a page of text). The expression (2.2) is an ORF, starting at “+” (posi-
tion 0) and terminating at “e” (position 9). These ORFs are called K-expressions (from
Karva notation).

Consider another ORF, the following K-expression:

012345678901
*-/Qb+b+aaab                                                                                                       (2.3)

Its expression as an ET is also very simple and straightforward. To express correctly the
ORF, the rules governing the spatial distribution of functions and terminals must be fol-
lowed. The start position (position 0) in the ORF corresponds to the root of the ET. Then,
below each function are attached as many branches as there are arguments to that function.
The assemblage is complete when a baseline composed only of terminals (the variables or
constants used in a problem) is formed. So, for the K-expression (2.3) above, the follow-
ing ET is formed:

Looking at the structure of GEP ORFs only, it is difficult or even impossible to see the
advantages of such a representation, except perhaps for its simplicity and elegance. How-
ever, when ORFs are analyzed in the context of a gene, the advantages of this representa-
tion become obvious. As stated previously, GEP chromosomes have fixed length, and they
are composed of one or more genes of equal length. Therefore the length of a gene is also
fixed. Thus, in GEP, what varies is not the length of genes but the length of the ORFs.
Indeed, the length of an ORF may be equal to or less than the length of the gene. In the
first case, the termination point coincides with the end of the gene and, in the latter, the
termination point is somewhere upstream of the end of the gene.

In summary, GEP genes usually contain non-coding regions downstream of the termi-
nation point and, because of this apparently trivial fact, the genome of GEP individuals
can be easily modified using any genetic operator. This means that, for the first time in
evolutionary computation, a truly functional genotype/phenotype systems is created in which
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the search space can be thoroughly explored by a myriad of genetic operators, among which
the high-performing point mutation [7, 8]. In fact, the chromosomal organization of GEP
individuals allows the easy implementation of genetic operators which always produce valid
structures and, therefore, no repair whatsoever is necessary.

The section proceeds with the study of the structural organization of GEP genes in order
to show how they invariably code for syntactically correct programs and why they allow
the unconstrained application of any genetic operator.

2.2.2. Structural organization of genes

GEP genes are composed of a head and a tail. The head contains symbols that represent
both functions and terminals, whereas the tail contains only terminals. For each problem,
the length of the head h is chosen, whereas the length of the tail t is a function of h and
maximum arity n, and is evaluated by the equation:

t = h (n-1) + 1                                                  (2.4)

Consider a gene for which the set of functions consists of F = {Q, *, /, -, +} and the set
of terminals T = {a, b}. In this case, n = 2 and if we chose an h = 15, then t = 16. Thus, the
length of the gene g is 15 + 16 = 31. One such gene is shown below (the tail is shown in
bold):

0123456789012345678901234567890
/aQ/b*ab/Qa*b*-ababaababbabbbba                                                          (2.5)

It codes for the following ET:

In this case, the ORF ends at position 7, whereas the gene ends at position 30.
Suppose now a mutation occurred at position 2, changing the “Q” into “+”. Then the

following gene is obtained:

0123456789012345678901234567890
/a+/b*ab/Qa*b*-ababaababbabbbba                                                          (2.6)
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And its expression gives:

In this case, the termination point shifts 10 positions to the right (position 17).
Obviously the opposite might also happen, and the ORF is shortened. For example, con-

sider again gene (2.5) above, and suppose a mutation occurred at position 5, changing the
“*” into “b”, obtaining:

0123456789012345678901234567890
/aQ/bbab/Qa*b*-ababaababbabbbba                                                          (2.7)

Its expression results in the following ET:

In this case, the ORF ends at position 5, shortening the parental ET in two nodes.
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It is worth noticing that any mutation occurring downstream of the termination point of a
gene is neutral in effect. For instance, the substitution in chromosome (2.7) of “/” at position
8 by another symbol, be it a function or a terminal, or the substitution of “b” at position 16 by
another terminal, are examples of neutral mutations. Note that mutations on the tails also
occur, but here a terminal can only be replaced by another terminal in order to maintain the
structural organization of genes and therefore guarantee their correct expression.

So, despite their fixed length, GEP genes have the potential to code for ETs of different
sizes and shapes, being the simplest composed of only one node (when the first element of
a gene is a terminal) and the biggest composed of as many nodes as the length of the gene
(when all the elements of the head are functions with maximum arity).

It is evident from the examples above, that any modification made in the genome, no
matter how profound, always results in a syntactically correct ET as long as the structural
organization of genes is maintained. Indeed, the implementation of high-performing ge-
netic operators in GEP is a child’s play, and Ferreira [7] describes seven: point mutation,
IS (from insertion sequence element) and RIS (from root IS element) transposition, two-
point and one-point recombination, gene transposition and gene recombination.

2.2.3. Multigenic chromosomes

GEP chromosomes are usually composed of more than one gene of equal length. For each
problem or run, the number of genes, as well as the length of the head, are a priori chosen.
Each gene codes for a sub-ET and the sub-ETs interact with one another forming a more
complex multi-subunit ET.

Consider, for example, the following chromosome with length 45, composed of three
genes (the tails are shown in bold):

012345678901234012345678901234012345678901234
Q/*b+Qababaabaa-abQ/*+bababbab**-*bb/babaaaab                       (2.8)

It has three ORFs, and each ORF codes for a sub-ET (Figure 3). Position 0 marks the start
of each gene. The end of each ORF, though, is only evident upon construction of the re-
spective sub-ET. As shown in Figure 3, the first ORF ends at position 8 (sub-ET

1
); the

second ORF ends at position 2 (sub-ET
2
); and the last ORF ends at position 10 (sub-ET

3
).

Thus, GEP chromosomes contain several ORFs, each ORF coding for a structurally and
functionally unique sub-ET. Depending on the problem at hand, these sub-ETs may be se-
lected individually according to their respective fitness (for example, in problems with mul-
tiple outputs), or they may form a more complex, multi-subunit ET where individual sub-
ETs interact with one another by a particular kind of posttranslational interaction or link-
ing. For instance, when the sub-ETs are algebraic or Boolean expressions, any algebraic or
Boolean function with more than one argument can be used to link the sub-ETs in a final,
multi-subunit ET. The functions most chosen are addition or multiplication for algebraic
sub-ETs, and OR or IF for Boolean sub-ETs.
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Figure 4 illustrates the linking of three sub-ETs by addition. Note that the final ET could
be linearly encoded as the following K-expression:

012345678901234567890123456789012
++*+-Q*bQ-ba*-*/b/aba*ba/aa+baaab                                                     (2.9)

However, to evolve solutions to complex problems, it is more effective the use of multigenic
chromosomes, for they permit the modular construction of complex, hierarchical structures,
where each gene codes for a small building block. These small building blocks are sepa-
rated from each other, and thus can evolve independently. Not surprisingly, these multigenic
systems are much more efficient than unigenic ones. Indeed, GEP is effectively a hierar-
chical invention system capable of discovering simple blocks and using them to form more
complex structures.

3. Analyzing the Importance of Genetic Neutrality Using Gene Expression
Programming

In order to analyze the importance of genetic neutrality in evolutionary systems, two sim-
ple, exactly solved test problems were chosen. These problems can be solved using both
unigenic and multigenic systems. On the one hand, the extent of non-coding regions in
unigenic systems can be easily increased by increasing the gene length. On the other, in
multigenic systems the number of non-coding regions can be increased by increasing the
number of genes.
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Fig. 3.  Expression of GEP genes as sub-ETs. a) A three-genic chromosome with the tails shown in
bold. Position 0 marks the start of each gene. b) The sub-ETs codified by each gene.
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Fig. 4.  Expression of multigenic chromosomes as multi-subunit expression trees. a) A three-genic chro-
mosome with the tails shown in bold. b) The sub-ETs codified by each gene. c) The result of
posttranslational linking with addition. The linking functions are shown in gray.
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3.1. General settings

Two problems of symbolic regression were chosen for this analysis. The first is the simple
test function:

y = a3 + a2 + a +1                                                (3.1)

and the second is the more difficult test sequence:

nnnnan +++= 234 234                                               (3.2)

where n consists of the nonnegative integers.
These problems were chosen for three reasons: first, although not trivial, they can be

exactly solved by the algorithm and therefore provide an accurate measure of performance
in terms of success rate; second, they require relatively small populations and relatively
short evolutionary times, making the task feasible; and third, they can be exactly solved
using both unigenic and multigenic systems and therefore provide two different approaches
for the analysis of genetic neutrality.

For the test function (3.1), a set of 10 random fitness cases chosen from the interval
[-10, 10] was used; the fitness function was based on the relative error with a selection
range of 25% and a precision error of 0.01%, giving maximum fitness f

max
 = 250 [7]; and

population sizes P of 30 and evolutionary times G of 50 generations were chosen.
For the sequence induction problem, the first 10 positive integers n and their correspond-

ing a
n
 term were used as fitness cases; the fitness function was also based on the relative

error with a selection range of 25% and maximum precision (0% error), giving f
max

 = 250;
the population size and the evolutionary time were increased, respectively, to 50 and 100
as this problem is slightly more difficult than the function finding one.

In all the experiments, the function set F = {+, -, *, /} and the terminal set T consisted
only of the independent variable which was represented by a, giving T = {a}; genetic modi-
fication was introduced using a mutation rate of 0.03, an IS and RIS transposition rates of
0.1 using three transposons of lengths 1, 2, and 3, and two-point and one-point recombina-
tion rates of 0.3; in multigenic systems gene recombination and gene transposition were
also used as sources of genetic modification, both at rates of 0.1 and the linking was made
by addition; the selection was made by roulette-wheel sampling coupled with simple elit-
ism and the success rate was evaluated over 100 independent runs.

3.2. Genetic neutrality in unigenic systems

The importance of genetic neutrality in unigenic systems can be easily analyzed in GEP by
increasing the gene length (Figure 5). After finding the most compact organization which
allows the discovery of a perfect, extremely parsimonious solution to the problem at hand,
any increase in gene length can lead to the evolution of perfect, less parsimonious solu-
tions in which both neutral blocks and non-coding regions might appear.
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For problems exactly solved by the algorithm, the most compact organization can be
found in most cases. As shown in Figure 5, the test function (3.1) can be compactly en-
coded using an head length of 6 (corresponding to g = 13). One such solution composed of
13 nodes is shown below:

0123456789012
*++*//aaaaaaa

Note that, in this case, all the elements of the gene are expressed and therefore no non-
coding regions exist.

The test sequence (3.2), however, requires more nodes for its correct and parsimonious
expression using the chosen function set. As shown in Figure 5, an h = 14 (corresponding
to g = 29) is the minimum head length necessary to solve this problem. The two perfect,
parsimonious solutions shown below are expressed using, respectively, 25 and 23 nodes:

01234567890123456789012345678
+*aa+*++**++/+aaaaaaaaaaaaaaa

01234567890123456789012345678
**a+a*a++/+/+/aaaaaaaaaaaaaaa

0

20

40

60

80

100

0 25 50 75 100 125 150 175

Chromosome length

Su
cc

es
s 

ra
te

 (
%

)

FF

SI

Fig. 5.  Variation of success rate with chromosome length for the function finding (FF) and
sequence induction (SI) problems.
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Note that the first gene has a small non-coding region composed of four elements, whereas
the second has a larger non-coding region with six elements.

As figure 5 emphasizes, the most compact organizations are not the most efficient. For
instance, in the function finding problem, the success rate obtained for the most compact
organization (g = 13) is only 2% whereas the highest success rate obtained for a chromo-
some length of 37 is 76%. In the sequence induction problem, an identical behavior is
observed with a success rate of only 1% for the most compact organization (g = 29) and
43% for the best chromosome length (g = 79). Therefore, a certain amount of redundancy
is fundamental for evolution to occur efficiently. Indeed, in both examples, a plateau was
found where the system evolves best. Note also that highly redundant systems adapt, none-
theless, considerably better than highly compact systems, showing that evolutionary sys-
tems can cope fairly well with genetic redundancy. For instance, in the function finding
experiment, the most redundant system with a chromosome length of 169, has a success
rate of 32%, considerably higher than the 2% obtained for the most compact organization
with g = 13. The same is observed in the sequence induction experiment, where the suc-
cess rate of the most redundant organization (g = 169) is 16% compared to 1% for the most
compact organization (g = 29).

The structural analysis of compact organizations and less compact ones can also be use-
ful for understanding the role of redundancy in evolution. For instance, the three following
perfect solutions to the function (3.1) were discovered using, respectively, head lengths of
6, 18, and 48 (only the K-expressions are shown):

(a) 0123456789012
    *++*//aaaaaaa

(b) 012345678901234567890123456
    +-*+/+a*/**a*/a++-aaaaaaaaa

(c) 0123456789012345678901234567890123456789...
    /+aa++*+aa+*-a--+-*+*+/**a*a-*--+*/-/-/a...

    ...0123456789012345678901234567890123456
    ...aa//-/*-aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Note that the first solution with an h = 6 is expressed using 13 nodes, and therefore the
entire gene was used for its expression; the second solution with an h = 18 is expressed
using 31 nodes, and therefore has a non-coding region with 6 elements; and the last solu-
tion with an h = 48 uses for its expression only 77 of the 97 elements and therefore has a
non-coding region with a length of 20. Note also that not only the length of the non-coding
region increases from the most compact to the less compact (0, 6, and 20, respectively) but
also increases the number of redundant or neutral motifs. For instance, two neutral motifs
using a total of 14 nodes can be found on the medium compact solution and seven neutral
motifs involving 38 nodes can be found on the less compact one. This phenomenon is known
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as code bloat in genetic programming and many have argued about its evolutionary func-
tion [1, 2, 15]. Like all kinds of genetic redundancy, neutral motifs are most probably ben-
eficial whenever used in good measure. This can be rigorously determined using GEP, al-
though such an analysis would require lots of time. However, what was learned from the
analysis shown in Figure 5 (and also from Figure 6 in the next section) and what is known
about the evolution of proteins or technological artifacts suggest an important role for neu-
tral regions in evolution. Their nonexistence or their excess results most probably in an
inefficient evolution whereas their existence in good measure, as shown here, is beneficial.

3.3. Genetic neutrality in multigenic systems

Another way of analyzing genetic neutrality in GEP, consists of increasing the number of
genes. For that a compact, unigenic system capable of exactly solving the problem at hand
is chosen as the starting point. Thus, the starting point for the function finding problem is a
unigenic system with h = 6 (a chromosome length c of 13), and h = 14 (c = 14) for the
sequence induction problem (see Figure 5).

As shown in Figure 6, the results obtained for multigenic systems further reinforce the
importance of neutrality in evolution. Note that, in both experiments, the efficiency of the
system increases dramatically with the introduction of a second gene and that compact
unigenic systems are much less efficient than less compact, multigenic ones. For instance,
in the function finding problem, the compact, unigenic system (c = 13) has a success rate
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of 2% whereas the success rate in the two-genic system (c = 26) is 94%. In the sequence
induction problem, the success rate in the unigenic system (c = 29) is only 1%, whereas in
the less compact two-genic system (c = 58) is 73%. Again, a plateau is observed where
systems are most efficient, showing that a certain amount of redundancy is fundamental
for evolution to occur efficiently. Indeed, it is intuitively understood that a certain room
to experiment, not only by forming new building blocks but also by rejecting existing
ones, is essential to come up with something new and useful. If there is no room to play,
it is only costly (if ever) that one comes up with a good solution to the problem at hand.
Note also that highly redundant systems are more efficient than extremely compact ones.
For instance, the 10-genic system used in the function finding problem (c = 130), has a
success rate of 61% compared to only 2% obtained with the most compact organization
(c = 13). The same behavior can be observed in the sequence induction problem where
the highly redundant 10-genic system (c = 290) performs slightly better than the extremely
compact one (c = 29) (1% and 11%, respectively).

The comparison of Figures 5 and 6 also shows that multigenic systems are considerably
better than unigenic ones. For instance, in the function finding problem, from two-genic to
six-genic systems (corresponding to chromosome lengths c = 26 through c = 78) the suc-
cess rates are in all cases above 94% and the best has a success rate of 100% (see Figure
6), whereas the best chromosome length in the unigenic system (c = 37 and h = 18) achieved
only 76% (see Figure 5). The same phenomenon can be observed in the sequence induc-
tion problem in which from two-genic to five-genic systems (corresponding to c = 58 through
c = 145) the success rates are above 60% and the best has a success rate of 79% (see Figure
6) whereas the best chromosome length in the unigenic system (c = 79 and h = 39) achieved
only 43% (see Figure 5).

The structural analysis of compact solutions and less compact ones can also provide
some insights into the role of redundancy in evolution. For instance, the following three
perfect solutions to the sequence induction problem were obtained, respectively, for sys-
tems with only one gene, three, and five genes:

(a) 01234567890123456789012345678
    **a+a*a++/+/+/aaaaaaaaaaaaaaa

(b) 01234567890123456789012345678
    **a+/*+a//++//aaaaaaaaaaaaaaa
    /*a+/*+a//++//aaaaaaaaaaaaaaa
    -*a+/-*a//++aaaaaaaaaaaaaaaaa

(c) 01234567890123456789012345678
    -aa+*///-+aa/*aaaaaaaaaaaaaaa
    --/*a/+/**/-/-aaaaaaaaaaaaaaa
    +/-*-*a-/a+*a-aaaaaaaaaaaaaaa
    aa/a/*a+*+/+/+aaaaaaaaaaaaaaa
    /-/*aa++**/+/+aaaaaaaaaaaaaaa
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Note that not only does the total length of the non-coding regions increase from the most
compact to the less compact but also does the number of neutral motifs. Specifically, the
length of the non-coding region in the unigenic solution is only six and no neutral motifs
are present; for the three-genic solution, the total length of the non-coding regions is 16
and three neutral motifs involving a total of 12 nodes can be counted; for the five-genic
solution, the non-coding regions encompass already 66 elements and there are six neutral
motifs involving a total of 31 nodes.

4. Conclusions

The neutral theory of evolution was tested using the artificial genotype/phenotype system
of gene expression programming. GEP provides an ideal framework to conduct such an
analysis for three main reasons. First, GEP is a simple artificial life system with a truly
functional genotype/phenotype mapping and therefore can provide valuable insights into
the workings of any genotype/phenotype system. Second, the number and extent of neutral
regions in the genome can be tightly controlled either by increasing the number of genes
or the gene length. And third, the high efficiency of the algorithm allows not only the ex-
ecution of thousands of runs in minutes but also the undertaking of non-trivial tasks with
which to make the analysis. Indeed, previous discussions on the importance of neutrality
in genetic programming are inconclusive, with some researchers claiming an important role
for introns (as neutral motifs are called in GP) and others claiming that introns are an hin-
drance and must be avoided [1, 2, 15, 17, 20, 21, 22]. How can these contradictory results
be explained? Either the conclusions were made using a non-representative number of runs
on a trivial task or the simple replicator system of GP is governed by other, still unknown
rules. At least for RNA molecules, it has been shown that neutral mutations play an impor-
tant role in evolution, allowing the diffusion of populations along neutral genotypic net-
works [10, 16, 19].

In this work, a total of four experiments involving thousands of runs each were made.
These experiments show that extremely compact systems with little or no room for neutral
regions are significantly less efficient than moderately redundant systems where a consid-
erable part of the genome is engaged in doing “nothing” either by being part of non-coding
regions at the end of the ORFs or by encoding neutral motifs that contribute nothing to the
individual program. Furthermore, it was also shown that highly redundant systems are,
nonetheless, more efficient than extremely compact ones, suggesting that evolutionary sys-
tems can cope very well with excessive redundancy. And finally, it was also shown that
multigenic systems are more efficient than unigenic ones, suggesting that the fragmenta-
tion of the genetic information into smaller units such as genes allows the evolution of
more complex programs composed of smaller sub-programs.

Because of their clarity, the results presented in this work are extremely useful for un-
derstanding the role of genetic neutrality both in artificial and natural evolution. As shown
here, there are two different kinds of neutral regions in GEP: the neutral motifs within the
ORFs and the non-coding regions at the end of the ORFs. In simple replicator systems
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such as GP or GAs, only the former exists whereas in genotype/phenotype systems such as
the DNA/protein system or GEP, both kinds exist. And the presence of non-coding regions
in genotype/phenotype systems is certainly entangled with the higher efficiency of these
systems. For instance, introns in DNA are believed to be excellent targets for crossover,
allowing the recombination of different building blocks without their disruption (e.g., [13]).
The non-coding regions of GEP can also be used for this purpose and, indeed, whenever
the crossover points are chosen within these regions, entire ORFs are exchanged. Further-
more, the non-coding regions of GEP genes are ideal places for the accumulation of neu-
tral mutations that can be later activated and integrated into coding regions. This is an ex-
cellent source of genetic variation and certainly contributes to the increase in performance
observed in redundant systems.

But, at least in GEP, the non-coding regions play another, much more fundamental role:
they allow the modification of the genome by numerous high performing genetic opera-
tors. And here by “high performing” I mean genetic operators that always produce valid
structures. This problem of valid  structures applies only to artificial evolutionary systems
for in nature there is no such thing as an invalid protein. How and why the DNA/protein
system got this way is not known, but certainly there were selection pressures to get rid of
imperfect genotype/phenotype mappings. The fact that the non-coding regions of GEP al-
low the creation of a perfect genotype/phenotype mapping, further reinforces the impor-
tance of neutrality in evolution, as a good mapping is essential for the crossing of the phe-
notype threshold in evolution.

On the other hand, the reason why neutral motifs within structures, be they parse trees
or proteins, can boost evolution, is not so easy to understand, although I think this is an-
other manifestation of the same phenomenon of recombining and testing smaller building
blocks. In this case, the building blocks are not entire genes with clear boundaries, but
smaller domains within genes. Indeed, in nature, most proteins have numerous variants in
which different amino acid substitutions occurred. These amino acid substitutions occur
mostly outside the crucial domains of proteins such as the active sites of enzymes and,
therefore, the protein variants work equally well or show slight differences in functional-
ity. At the molecular level, these variants constitute the real genetic diversity, that is, the
raw material of evolution. The neutral motifs of GEP or GP play exactly the same func-
tion, allowing the recombination and testing of different building blocks and, at the same
time, allowing the creation of neutral variants that can ultimately diverge and give rise to
better adapted structures.
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