
Funes, P. and Pollack, J. (1997) Computer Evolution of Buildable Objects. Fourth European
Conference on Artificial Life.P. Husbands and I. Harvey, eds., MIT Press. pp 358-367.

knowledge into the program, which would result in familiar
structures, we provided the algorithm with a model of the
physical reality and a purely utilitarian fitness function, thus
supplying measures of feasibility and functionality. In this
way the evolutionary process runs in an environment that has
not been unnecessarily constrained. We added, however, a
requirement of computability to reject overly complex struc-
tures when they took too long for our simulations to evalu-
ate.

The results are encouraging. The evolved structures had a
surprisingly alien look: they are not based in common
knowledge on how to build with brick toys; instead, the com-
puter found ways of its own through the evolutionary search
process. We were able to assemble the final designs manually
and confirm that they accomplish the objectives introduced
with our fitness functions.

After some background on related problems, we describe
our physical simulation model for two-dimensional Lego
structures, and the representation for encoding them and
applying evolution. We demonstrate the feasibility of our
work with photos of actual objects which were the result of
particular optimizations. Finally, we discuss future work and
draw some conclusions.

2 Background

In order to evolve both the morphology and behavior of
autonomous mechanical devices which can be manufactured,
one must have a simulator which operates under several con-
straints, and a resultant controller which is adaptive enough
to cover the gap between simulated and real world.

Features of a simulator for evolving morphology are:

• Universal - the simulator should cover an infinite gen-
eral space of mechanisms.

• Conservative - because simulation is never perfect, it
should preserve a margin of safety.

• Efficient - it should be quicker to test in simulation than
through physical production and test.

• Buildable - results should be convertible from a simula-
tion to a real object

Computer Evolution of Buildable Objects

Pablo Funes and Jordan Pollack
Computer Science Department

Volen Center for Complex Systems
Brandeis University

Waltham, MA 02254-9110
{pablo,pollack}@cs.brandeis.edu

Abstract

Creating artificial life forms through evolutionary
robotics faces a “chicken and egg” problem: learn-
ing to control a complex body is dominated by
inductive biases specific to its sensors and effectors,
while building a body which is controllable is con-
ditioned on the pre-existence of a brain.

The idea of co-evolution of bodies and brains is
becoming popular, but little work has been done in
evolution of physical structure because of the lack
of a general framework for doing it. Evolution of
creatures in simulation has been constrained by the
“reality gap” which implies that resultant objects
are usually not buildable.

The work we present takes a step in the prob-
lem of body evolution by applying evolutionary
techniques to the design of structures assembled out
of parts. Evolution takes place in a simulator we
designed, which computes forces and stresses and
predicts failure for 2-dimensional Lego structures.
The final printout of our program is a schematic
assembly, which can then be built physically. We
demonstrate its functionality in several different
evolved entities.

1 Introduction

In this paper we report our work in evolution of buildable

designs using Lego1 bricks. Legos are well known for their
flexibility when it comes to creating low cost, handy designs
of vehicles and structures (see [22], for example). Because of
these properties and general availability, Legos constitute a
good ground for one of the first experiments involving evolu-
tion of computer simulated structures which can be built and
deployed.

Instead of incorporating an expert system of engineering

1. Lego is a registered trademark of the Lego group.

2

There are several fields which bear on this question of
physical simulation, including qualitative physics and struc-
tural mechanics, computer graphics, evolutionary design and
robotics.

2.1 Qualitative Physics

Qualitative Physics is the subfield of AI which deals with
mechanical and physical knowledge representation. It starts
with a logical representation of a mechanism, such as a Heat
Pump [7] or a String [8], and produces simulations, or envi-
sionments, of the future behavior of the mechanism. QP has
not to our knowledge been used as the simulator in an evolu-
tionary design system.

2.2 Computer Graphics.

The work of Karl Sims [19], [20] was seminal in the fields of
evolutionary computation and artificial life. Following the
work of Ngo and Marks [16], Sims evolved virtual creatures
that have both physical architecture and control programs
created by an evolutionary computation process.

Despite their beautiful realism, Sims’ organisms are far
from real. His simulations do not consider the mechanical
feasibility of the articulations between different parts, which
in fact overlap each other at the joints, nor the existence of
real world mechanisms that could produce the forces respon-
sible for their movements.

fig. 1. Distribution of material for a piece that
optimizes weight and stiffness. From Chapman,
Saitou and Jakiela [3]. (Reproduced with
permission). This strange shape looks like a distant
relative of our evolved Lego objects.

2.3 Structural Mechanics/Structural Topology

The engineering field of structural mechanics is based on
methods, such as finite element modelling [23] to construct
computable models of continuous materials by approximat-
ing them with discrete networks. These tools are in broad use
in the engineering community, carefully supervised and ori-
ented towards particular product designs, and are often quite
computationally intensive. Applications of genetic algo-
rithms to structural topology optimization ([3], [18]) are

related to our work. This type of application uses genetic
algorithms as a search tool to optimize a shape under clearly
defined preconditions. The GA is required, for example, to
simultaneously maximize the stiffness and minimize the
weight of a piece subject to external loads (fig. 1.).

2.4 Evolutionary Design

Evolutionary Design, that is, the utilization of evolutionary
computation techniques for industrial design, is a new
research area where Peter Bentley’s Ph.D. Thesis [2] is
ground-breaking work. Bentley uses a GA to evolve shapes
for solid objects directed by multiple fitness measures. His
evolved designs include tables, prisms, even vehicle profiles.

Bentley’s search algorithms use combinations of fitness
measures (“Size”, “Mass”, “No Fragmentation”, “Flat Upper
Surface”, “Supportiveness”, etc.) that include some physical
constraints, like center of mass positioning or total weight.
Lacking a more complete physical model, he relies on spe-
cific measures to guide evolution in each case.

2.5 Evolutionary Robotics

Many researchers are working today on the evolution of con-
trol software for real robots. Evolutionary Robotics has
become a field on its own [15]. Some rely on carefully
designed simulations [4], while others apply evolution
directly in the real robot [6]. Hybrid techniques [13] are a
mixture of the two.

Lund, Hallam and Lee [11], [14] have evolved in simula-
tion both a robot control program and some parameters of its
physical body (sensor number and positioning, body size,
etc.). Their last paper [14] addresses the possibility of co-
evolving a robot controller and auditory morphology for the
task of (cricket) phonotaxis. They contemplate the possibil-
ity of designing a Lego robot simulator.

3 The Physical Model

The resistance of the plastic material (ABS-acrylonitrile
butadiene styrene) of Lego bricks far surpasses the force nec-
essary to either join two of them together or break their
unions. This makes it possible to design a model that ignores
the resistance of the material and evaluates the strain forces
over a group of bricks only at their union areas. If a Lego
structure fails, it will generally do so at the joints, but the
actual bricks will not be damaged.

This characteristic of Lego structures makes their discret-
ization for modelling an obvious step. Instead of imposing an
artificial mesh for simulation purposes only —as in finite ele-
ments, for example— these structures are already made of
relatively large discrete units.

3

3.1 Description of the model

Based on elementary statics of rigid bodies, our model con-
siders the union between two bricks as a rigid joint between
the centers of mass of each one, located at the center of the
actual area of contact between them (fig. 2.). This joint has a
measurable torque capacity. That is, more than a certain
amount of force applied at a certain distance from the joint
will break the two bricks apart. The fundamental assumption
of our model is this idealization of the union of two Lego
bricks together.

fig. 2. A support model for three Lego bricks.

fig. 3. The family of Lego bricks used in our
experiments: Sizes 1x4, 1x6, 1x8, 1x10, 1x12 and
1x16.

Only two-dimensional systems of forces have been con-
sidered so far. Using the family of Lego bricks of width 1
available in our lab (fig. 3.) we can consider complex 2-
dimensional combinations of bricks and model them as a
superimposed system of point masses joined together with a
network of rigid joints (fig. 9.).

We have measured the resistance of such joints to exter-
nal forces and torques and simplified the model to consider
only rotational forces being applied at the joint. The resis-
tance to forces other than torques is considered infinite. Our
measurements indicate that even the weakest type of joint

0(4)

1(16)

2(12)

5 5

can support a relatively big load when it is applied radially
only, with zero torque. Our next generation simulator will
probably incorporate these forces for an improved model.

Table 1. summarizes our measures of the torque capaci-
ties of the Lego joints we use.

These measures are relative: They vary from one brick to
another, and by undetermined factors such as temperature,
humidity, aging, etc. The table shown reflects an attempt at
taking a conservative measure: The number we need to use is
the minimum that any Lego union of certain characteristics is
guaranteed to support and not, for example, the average.

In our simulations we used the conservative figures
above and additionally set the gravitational constant to 1.2
times its actual value – thus allowing for an extra 20% error
margin.

Our model of ‘rigid’ joint means it will exert any reaction
torque necessary to avoid breaking, up to a certain limit. All
we are using is this concept of amaximum load. In a stable
system, the actual torque being exerted by certain body at
any given joint is underdetermined.

This means for example that if two bricks are supporting
the weight of a third one between them (fig. 2.), the load
could be considered to be distributed among each of the two
joints in any legal combination. Since only one joint is
enough in this case, we could consider that all the weight is
on the left joint, and none on the right one. This can be veri-
fied by removing the right supporting brick: The middle one
will not fall, because the union with the leftmost brick is
strong enough to support its weight.

Our model is thus based on the following principle:As
long as there is a way to distribute the weights among the
network of bricks such that no joint is stressed beyond its
maximum capacity, the structure will not break.

Joint
size(knobs)

Approximate torque
capacity

(N-m × 10-6)

1 10.4

2 50.2

3 89.6

4 157.3

5 281.6

6 339.2

7 364.5

Table 1. Estimated minimal torque capacities of the basic
types of joints

4

3.2 A Greedy Generalized Network Flow Algorithm

The algorithmic rendering of our model is still under devel-
opment. However, even in its initial state, it worked well
enough to use as a basis for fitness testing of structures which
were indeed buildable.

This algorithm must find whether or not there exists a
distribution of the combined gravitational forces generated
by the center of mass of each brick, such that no joint is
stressed beyond its maximum capacity.

For each given brick we consider the network of all the
joints in the structure as a flow network that will absorb this
weight and transmit it to the ground. Each joint can support a
certain fractionα of such a force, given by the formula

(1)

for each bodyb and joint j, where Kj is the maximum
capacity of the joint, dx(j,b) is the distance between the body
and the joint along the horizontal axis, and wb the weight of
the body.

If a given bodyb is fixed and each edge on the graph on
fig. 9. is labeled with the correspondingaj,b according to (1),

a network flow problem ([5], chapter 27) is obtained where a
net flow of 1.0 between a sourceb and the two sinks at (5,0)
and (20,0) represents a valid distribution of the weight ofb in
the structure.

The complete problem is not reducible, however, to a net-
work flow algorithm, due to the fact that there are multiple
forces to be applied at different points, and the capacity of
each joint relative to each body varies with the mass of the
body and thex-distance between body and joint.

Leaving aside the study of better algorithmic implemen-
tations, we are using a greedy algorithm: once a solution has
been found for the distribution of the first mass, it is fixed,
and a remaining capacity for each joint is computed that will
conform a reduced network that must support the weight of
the next body, and so on.

While there may in fact should be a single solution to the
weight distribution for a static Lego structure which might
have a simpler algorithm, our ultimate focus is to be able to
manage changes under stress loads, and dynamically predict
how legos will break. Any structure that is approved as
“gravitationally correct” by our simulation possesses a load
distribution that does not overstress any joint, and thus will
not fall under its own weight. Our evolutionary algorithm
might be limited by the simulation when it fails to approve a
structure that was physically valid, but still may succeed by
working only in the space of ‘provable’ solutions.

α
j b,

K
j

d
x

j b,() w
b

----------------------------=

3.3 Time complexity

A second compromise in our simulation will come from
the fact that our initial implementation of the simulation
algorithm does not scale well. Its worst case running time

would be O(3n), where n is the number of bricks. Fortu-
nately, in the actual examples, many bricks are connected
only to one or two others, thus reducing the number of com-
binations.

Again this combinatorial explosion problem will ulti-
mately constrain the search space. Only the solutions that
can be found by our algorithm in a reasonable time are useful
to our evolutionary runs.

We inserted anad hoc limiting parameter into our code to
cut off the simulation when it has failed to find a solution
after a certain maximum number of iterations.

4 Representation

Our initial representation to perform evolutionary computa-
tion over these structures borrows the standard tree mutation
and crossover operators from genetic programming [10]. We
have implemented a tree notation for two-dimensional Lego
structures. Each node on the tree represents a brick and has
one size parameter (either 4, 6, 8, 10, 12 or 16 for the avail-
able brick sizes) and four potential sons, each one represent-
ing a new brick linked at one of its four corners. When a
union is present, a joint size parameter determines the num-
ber of overlapping knobs in the union.

fig. 4. Example of genetic encoding of bricks

The diagram on fig. 4. represents a 10-brick with its 4
joint sites labeled 0, 1, 2, 3, that is linked to a 6-brick by two
overlapping knobs. The corresponding tree could be written
in pseudo-Lisp notation as

(10 nil (2 (6 nil nil nil)) nil nil) (2)

A problem with this representation, similar in origin to
the problem of valid function parameters in genetic program-
ming, is that it is underconstrained: Only some trees will
encode valid Lego structures. No more than one brick can be
at each corner, so every son node can have at most three

0 1

23

10

6

2

5

descendants, because one of its corners is already accounted
for. Joint sizes must also be compatible with each other and
in general, two bricks cannot overlap each other. The follow-
ing extension to (2), for example, is illegal because both 10-
bricks would share the same physical space

(10 nil (2 (6 nil nil nil (4 (10 nil nil nil)))) nil nil) (3)

4.1 Mutation and Crossover

There are two possible mutations:

1. Mutation of the joint and brick sizes at any random point

2. Addition of a single brick at a random empty joint

To implement mutation, a random joint in the tree (or the
root) is selected, and, if NIL, mutation 2 is applied, otherwise
mutation 1.

The basic crossover operator involves two parent trees
out of which random subtrees are selected. The offspring
generated has the first subtree removed and replaced by the
second.

After mutation or crossover operators are applied, a new,
possibly invalid specification tree is formed. The result is
expanded one node at a time and overlapping is checked.
Whenever an overlap is found the tree is truncated at that
site.

With this procedure, a maximum spatially valid subtree is
built as the result of crossover or mutation.

Once a valid tree has been obtained, the physical model is
constructed and the structure tested for gravitational correct-
ness. If approved, fitness is evaluated and the new individual
is added to the population.

4.2 Steady State GA with low evolutionary pres-
sure.

Our goal is not to optimize the evolutionary algorithm, but to
show that evolution is indeed possible and our models are
physically sound. We use a straightforward steady-state
genetic algorithm:

1. While maximum fitness < Target fitness
2. Do Randomly select mutation or crossover.
3. Select 1 (2 for crossover) random indi-

vidual(s) with fitness proportional
probability.

4. Apply mutation or crossover operator
5. Generate physical model and test for

gravitational load
6. If the new model will support its own

weight.
7. Then replace a random individual

with it.(chosen with inverse fitness
proportional probability)

We have set the population size to 1000 in all experi-
ments.

4.3 Parallel Asynchronous GA

We are using a parallel version of this algorithm that runs on
an SGI Onyx, a 16 processor MIMD machine. Our parallel
GA is asynchronous, that is, each processor iterates indepen-
dently over steps 1 through 7, without any synchronization
states.

Fitness evaluations are the interface between a learning
evolutionary algorithm and its environment. In complex,
dynamic scenarios, fitness evaluations are time consuming.
In many cases —imagine a GA having to generate a control
program for obstacle avoidance in a robot— a fitness evalua-
tion can be several orders of magnitude slower than the
underlaying GA. Algorithms are then required that may run
hundreds of parallel fitness assays independently, without
synchronizing before the next round.

fig. 5.Our parallel GA works as a population server,
under the assumption that fitness evaluations are
slow and asynchronous.

Our algorithm conceives the population as a genetic
server (fig. 5.) that feeds individuals to all available evalua-
tors and receives fitness values from them. This type of algo-
rithm can run on parallel MIMD machines as well as
computer networks where different machines evaluate data
for a central genetic engine.

5 Results

5.1 Fitness functions

For each experiment below we prepare a custom fitness func-
tion that will serve both as a measure for the evolutionary
selection process and as a tag that reflects our interest in a
computer generated structure. When our algorithm finds a

G
en

et
ic

 P
op

ul
at

io
n

S
er

ve
r

Individuals

Fitness
Evaluation

. . .

Evaluation

Evaluation

6

new maximum fitness, it saves this 'champion' and offers it
as a new and improved candidate solution for the problem.

Throughout the experiments reported in this paper, fitness
values have been a combination of three measures:

1. Length (in a certain direction). We use this fitness mea-
sure when the desired structure has to be as long or as
big as possible.

2. Normalized distance to a target point. To avoid an
inverse (the smaller the better) fitness, when the algo-
rithm is trying to reach a fixed point we use

(4)

(whered(S,T) is the distance between the structure and
the target andd(0,T)the distance between the target and
the origin) as a normalized measure in the range (0,1).

3. Supportiveness. To maximize the external weight that a
structure can support, we divide the maximum load sup-
ported by a candidate by the target supportiveness we
are trying to obtain. This is a fitness measure in the
interval (0,1)

We demonstrate the effectiveness of our evolutionary
structure and Lego simulator on a set of fitness cases result-
ing in useful computer designed structures.

5.2 The Bridge

The goal of our first experiment was to evolve a structure to
go over from one table to another in our lab.

fig. 6. Our ‘Lego Bridge’ is an evolutionary
algorithm that will attempt to create a self-
supporting Lego structure that, attached to a base
plate fixed at one table, reaches another table
without any support outside the plate.

Consider a big Lego square plate fixed to the edge of a
table in our lab. Our simulation will permit us to predict

Nd S T,() 1 d S T,()
d 0 T,()
-------------------–=

Lab Table

Lego Plate
Bridge

The other table Target

whether or not a linear structure made of our family of Lego
bricks, which starts at the edge of the table and projects itself
without any additional support towards the table on the
opposite side of the lab, will collapse under its own weight or
not.

Our fitness function was set to be the normalized distance
from the object to the target point, at Lego coordinates
(-150,0).

fig. 7. The ‘Lego bridge’ defined by the scheme of
fig. 8. is sitting on our lab table.

fig. 8. Brick Structure evolved for a Lego ‘bridge’
spanning 1.20m over the edge of the table. In all our
brick diagrams, the spacial coordinates x, y are
expressed in “Lego width units”, 1 lwu = 8 mm.
Note that thex scale is compressed at a variable rate
for visualization of the entire schematic. The
number on top is the fitness value.

Our initial results were encouraging. The genetic algo-
rithm reliably builds a structure that goes up and away from
the launching base and then has to lower the tip of the struc-

−160 −140 −120 −100 −80 −60 −40 −20 0 20 40
−2

0

2

4

6

8

10
0.962276

0(10)

1(16)

2(10)

3(10)

4(16)

3

5(10)

6(12)

6

7(8)
2

464
8(10)

9(16)

10(16)
6

4
11(16)

12(16)

13(12)

5

14(10)

6

4

15(10)

16(12)

17(6)

18(6)
1

3

1
19(12)

2

4
20(16)

21(16)

22(16)

23(12)

24(12)

25(16)

26(16)

27(4)

4

28(16)

29(12)

30(6)

31(12)

32(8)

33(10)

34(16)

4

1 3

5

3 5 3 5

35(16)

3

5

36(4)

37(10)
5

3

3 5

5

5 5

6

5

6

7

ture to get to the target point.
An example successful run is presented in fig. 8., fig. 9.

and the picture of the resulting built Lego bridge in fig. 7.
The target fitness of 0.96 was reached after 133,000 itera-
tions.

fig. 9. Physical model for the structure on fig. 8.
Centers of mass have been marked with circles.
Each star is a joint between two of them, and line
thickness is proportional to the capacity of each
joint.

5.3 Long Bridge

fig. 10. Scheme evolved for the ‘Long Bridge’
experiment.

Bouyed by our initial success, in our second experiment we
removed the 150 unit goal, and simply evolved as long a
bridge as possible.

The fitness measure for this experiment is just the length,
or stretch over the table measured along thex axis. We had to
use an iteration cutout to prevent overly complex designs

−160 −140 −120 −100 −80 −60 −40 −20 0 20 40
−2

0

2

4

6

8

10
0.962276

−250 −200 −150 −100 −50 0 50
0

5

10

15

20

25

30
0.700369

from slowing down our network flow algorithm. Our pro-
gram thus rejects potentially correct structures when the fit-
ness evaluation takes too long.

After 3,240,000 iterations the structure evolved was 1.67
meters long (207 Lego units), made out of 97 bricks.

fig. 11.Long Bridge

This experiment reveals one of the limitations of the
model. The structure shows an appreciable downwards bend-
ing that was not considered in it.

5.4 Scaffold

fig. 12.Scaffold.

After working with bridges, we decided we might need a
scaffold: evolve a structure growing along the y axis instead
of x, from the top of the table down to the floor.

8

The fitness measure was set to be the normalized distance
from the object to a target point in the floor, 0.76 m below the
table surface.

The answer was found very quickly; the structure has an
alien look but does the job. It evolved in 40,000 iterations.

5.5 Crane Arm

fig. 13.Crane with evolved crane arm.

In the ‘crane’ experiments we applied our evolutionary envi-
ronment to a practical problem: To build the arm of a crane
which could carry a load. This is our first experiment in
designing a structure which would withstand some dynamics
of Lego movement when actually built.

A general crane base was designed providing a motor and
a stand base for the arm. Two identical parallel arms are
needed to hold an axle at the tip from which the hook will
hang.

The algorithm should try to find an arm as strong as pos-
sible, given the imposed restrictions. To build the crane we
use two arms, with the added benefit of doubling the maxi-
mum load.

The fitness function was designed to reward having a
brick in the right place (.5 m from the base), and for carrying
as much weight at the tip before breaking:

(5)

A crane arm was found that supports a cargo of 148g.
Combining two arms we obtained a crane (fig. 13.) that sup-
ports a maximum weight of 295 grams at the tip.

The arm obtained here is optimal: it exploits the maxi-
mum torque provided by the base on which we wanted it to
attach.

F S()
Nd S T,() if Nd S T,() 1<

1 max load
0.5kg

----------------------+ otherwise

=

5.6 Rotating Crane Arm

fig. 14.Rotating crane from iteration 220000

In the same spirit as the previous experiment, we added a
degree of freedom making our first “3d” design. The rotating
crane also consists of a human design that provides the evo-
lutionary algorithm with a sufficient set of constraints so as
to guarantee that the evolved structure will be useful.

In this case we designed a rotating base with a motor to
pull from a hook. A diagonal arm has to be evolved, provid-
ing height and strength for lifting heavy loads.

The fitness measure used was a combination of the length
of the arm and the maximum load supported at the tip:

(6)

Restrictions were imposed to match the base we designed
and to force the arm to grow diagonally.

fig. 15.Rotating crane from iteration 390000.

F S() 1 length S()+=
max load
0.25kg

9

We obtained a crane that supports a weight of 500 grams
at a height of 19.2 cm. and a distance of 16 cm.

It was interesting to observe how a counterweight struc-
ture was evolved, but located at the top, not the base as in
real cranes. This is the structure built for the crane shown in
fig. 14. Subsequently a stronger and much bigger structure
was found in which the counterweight “touched down” and
attached itself to the base (fig. 15.).

The graph in fig. 16. shows maximum fitness values aver-
aged over 10 runs of this experiment. Error bars indicate
standard deviation.

fig. 16. Maximum fitness values over 10 runs of the
rotating crane experiment.

6 Future Work

The greedy algorithm that we are using to calculate our mod-
els does not find all possible solutions. The existence of a
global solution appears to be reducible to a generalized
multi-commodity network flow problem, which is treated
with approximation algorithms ([9], [12]). Both greedy and
approximation algorithms can be improved through the use
of heuristics.

The tree representation for Lego structures is a limiting
factor. An improved description will open the third dimen-
sion, consider a greater variety of block shapes, and bring
genotype and phenotype closer, providing a better ground for
evolution of objects of higher complexity. A better represen-
tation would also allow composite block structures —such as
the well-known bricklayers pattern which holds increased
stress —to be discovered and replicated as new basic compo-
nents [1].

By considering three-dimensional forces and torques —
and enhancing our modeling of the physical properties of
lego structures— a larger universe of buildable objects will
be possible. We believe that we can reach some understand-
ing of the dynamic stresses which would be involved in basic
Lego mechanisms driven by Lego motors. This would open

6

8

10

12

14

16

18

20

22

0 50 100 150 200 250 300

m
ax

. f
itn

es
s

(a
vg

)

iteration (thousands)

the field for evolving active pieces of machinery, including
vehicles.

Finally, our basic steady-state GA and our parallel model
are elementary approaches which do not take into account
many of the advances in the fields of evolutionary computa-
tion. An evolutionary algorithm properly tuned for this fam-
ily of problems can yield improved performance.

7 Conclusions

We have shown that under some constraints, a simulator for
objects can be used in an evolutionary computation, and then
the objects can be built. This is a little different from evolv-
ing controllers for existing robots, and is a step on the way to
the full co-evolution of morphology and behavior we believe
is necessary for the development of robots and brains of
higher complexity than humans can engineer.

Our belief is that in machine learning/evolving systems,
more interesting results, such as Sims’ creatures or expert
backgammon players ([21], [17]), are due more to features of
the learning environment than to any sophistication in the
learning algorithm itself. By keeping inductive biases andad
hoc ingredients to a minimum, we have also demonstrated
that interesting real-world behavior can come from a simple
virtual model of physics and a basic adaptive algorithm.

Finally, we have only scratched the surface of what is
achievable. If we can make a 3-D version of our simulator,
and also provide limited dynamics then, besides obvious
applications in educational software, we will open the door
to a new and fertile area of research in artificial life.

References

[1] Angeline, P. J. & Pollack, J. B. (1994). Coevolving
High-Level Representations. In C. Langton, (ed.)Pro-
ceedings of the Third Artificial Life Meeting.

[2] Bentley, P. J. (1996)Generic Evolutionary Design of
Solid Objects using a Genetic Algorithm.Ph.D. thesis,
Division of Computing and Control Systems, School
of Engineering, The University of Huddersfield.

[3] Chapman, C. D., Saitou, K. and Jakiela, M. J. (1993)
Genetic Algorithms as an Approach to Configuration
and Topology Design, inProceedings of the 1993
Design Automation Conference, DE-Vol. 65-1. Pub-
lished by the A.S.M.E., Albuquerque, New Mexico, p.
485-498.

[4] Cliff, D., Harvey, I., Husbands, P. (1996). Artificial
Evolution of Visual Control Systems for Robots. To
appear inFrom Living Eyes to Seeing Machines M.
Srinivisan and S. Venkatesh (eds.), Oxford University
Press.

10

[5] Cormen, T. H., Leiserson, C. E. and Rivest, R. L.
(1989). Introduction to Algorithms. MIT press -
McGraw Hill.

[6] Floreano, D. and Mondada, F. (1994). Automatic Cre-
ation of an Autonomous Agent: Genetic Evolution of a
Neural Network Driven Robot. In D. Cliff, P. Hus-
bands, J.-A. Meyer, and S. Wilson (Eds.),From Ani-
mals to Animats III, Cambridge, MA. MIT Press.

[7] Forbus, K. (1984). Qualitative process theory. InArti-
ficial Intelligence 24, 85-168.

[8] Gardin, F. and Meltzer, B. (1989). Analogical Repre-
sentations of Naive Physics.Artificial Life 38, pp 139-
159.

[9] Iusem, A. and Zenios, S. (1995). Interval Underre-
laxed Bregman’s method with an application. InOpti-
mization, vol. 35, iss. 3, p. 227.

[10] Koza, John R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press.

[11] Lee, W., Hallam, J. and Lund, H. (1996). A Hybrid
GP/GA Approach for Co-evolving Controllers and
Robot Bodies to Achieve Fitness-Specified Tasks. In
Proceedings of IEEE 3rd International Conference on
Evolutionary Computation. IEEE Press.

[12] Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tar-
dos, E. and Tragoudas, S. (1995). Fast Approximation
Algorithms for Muticommodity Flow Problems.Jour-
nal of Computer and Syst. Sciences 50. p. 228-243.

[13] Lund, H., (1995). Evolving Robot Control Systems. In
J. T. Alander (ed.) Proceedings of 1NWGA, University
of Vaasa, Vaasa.

[14] Lund, H., Hallam, J and Lee, W. (1997). Evolving
Robot Morphology. Invited paper inProceedings of
IEEE Fourth International Conference on Evolution-
ary Computation.IEEE Press, NJ.

[15] Mataric, M and Cliff, D. (1996). Challenges In Evolv-
ing Controllers for Physical Robots. InEvolutional
Robotics, special issue ofRobotics and Autonomous
Systems, Vol. 19, No. 1. pp 67-83.

[16] Ngo, J.T., and Marks, J. (1993). Spacetime Constraints
Revisited. InComputer Graphics, Annual Conference
Series. p. 335-342.

[17] Pollack, J. B., Blair, A. and Land, M.(1996). Coevolu-
tion of A Backgammon Player.Proceedings Artificial
Life V, C. Langton, (Ed), MIT Press.

[18] Shoenauer, M. (1996). Shape Representations and
Evolution Schemes. In L. J. Fogel, P. J. Angeline and
T. Back, Editors,Proceedings of the 5th Annual Con-
ference on Evolutionary Programming, MIT Press, to
appear.

[19] Sims, K. (1994) Evolving Virtual Creatures. InCom-
puter Graphics,Annual Conference Series.

[20] Sims, K. (1994) Evolving 3D Morphology and Behav-
ior by Competition. InArtificial Life IV Proceedings,
MIT Press.

[21] Tesauro, G. (1995) Temporal difference learning and
TD-Gammon.Communications of the ACM,38(3):
58-68.

[22] Webb, B. (1995). Using robots to model animals: a
cricket test.Robotics and Autonomous Systems, 16.

[23] Zienkiewicz, O.C. The Finite Element Method in
Engineering Science.McGraw-Hill, New York, 3rd
edition, 1977.

