
Evolution of Complexity in Real-World Domains

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Department of Computer Science

Jordan B. Pollack, Advisor

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Pablo Funes

May, 2001

This dissertation, directed and approved by Pablo Funes’s committee, has been accepted
and approved by the Graduate Faculty of Brandeis University
in partial fulfillment of the requirements for the degree of:

DOCTOR OF PHILOSOPHY

Dean of Arts and Sciences

Dissertation Committee:

Jordan B. Pollack, Dept. of Computer Science, Chair.

Martin Cohn, Dept. of Computer Science

Timothy J. Hickey, Dept. of Computer Science

Dario Floreano, ISR, École Polytechnique Fédérale de Lausanne

c
�

Copyright by

Pablo Funes

2001

in memoriam

Everé Santiago Funes (1913-2000)

vii

Acknowledgments

Elizabeth Sklar collaborated on the work on coevolving behavior with live creatures
(chapter 3).

Hugues Juillé collaborated with the Tron GP architecture (section 3.3.3) and the nov-
elty engine (section 3.3.7).

Louis Lapat collaborated on EvoCAD (section 2.9).

Thanks to Jordan Pollack for the continuing support and for being there when it really
matters.

Thanks to Betsy Sklar, my true American friend. And to Richard Watson for the love
and the focus on the real science. Also to all the people who contributed in one way
or another, in no particular order: José Castaño, Adriana Villella, Edwin De Jong, Barry
Werger, Ofer Melnik, Isabel Ennes, Sevan Ficici, Myrna Fox, Miguel Schneider, Maja
Mataric, Martin Cohn, Aroldo Kaplan, Otilia Vainstok.

And mainly to my family and friends, among them: María Argüello, Santiago Funes,
Soledad Funes, Carmen Argüello, María Josefa González, Faustino Jorge, Martín Leven-
son, Inés Armendariz, Enrique Pujals, Carlos Brody, Ernesto Dal Bo, Martín Galli, Marcelo
Oglietti.

ix

ABSTRACT

Evolution of Complexity in Real-World Domains

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Pablo Funes

Artificial Life research brings together methods from Artificial Intelligence (AI), philoso-
phy and biology, studying the problem of evolution of complexity from what we might call
a constructive point of view, trying to replicate adaptive phenomena using computers and
robots.

Here we wish to shed new light on the issue by showing how computer-simulated evolu-
tionary learning methods are capable of discovering complex emergent properties in com-
plex domains. Our stance is that in AI the most interesting results come from the interaction
between learning algorithms and real domains, leading to discovery of emergent properties,
rather than from the algorithms themselves.

The theory of natural selection postulates that generate-test-regenerate dynamics, exem-
plified by life on earth, when coupled with the kinds of environments found in the natural
world, have lead to the appearance of complex forms. But artificial evolution methods,
based on this hypothesis, have only begun to be put in contact with real-world environ-
ments.

In the present thesis we explore two aspects of real-world environments as they interact
with an evolutionary algorithm. In our first experimental domain (chapter 2) we show
how structures can be evolved under gravitational and geometrical constraints, employing
simulated physics. Structures evolve that exploit features of the interaction between brick-
based structures and the physics of gravitational forces.

In a second experimental domain (chapter 3) we study how a virtual world gives rise
to co-adaptation between human and agent species. In this case we look at the competitive
interaction between two adaptive species. The purely reactive nature of artificial agents in
this domain implies that the high level features observed cannot be explicit in the genotype
but rather, they emerge from the interaction between genetic information and a changing
domain.

Emergent properties, not obvious from the lower level description, amount to what
we humans call complexity, but the idea stands on concepts which resist formalization —
such as difficulty or complicatedness. We show how simulated evolution, exploring reality,
finds features of this kind which are preserved by selection, leading to complex forms and
behaviors. But it does so without creating new levels of abstraction — thus the question of
evolution of modularity remains open.

xi

Contents

Acknowledgments ix

Abstract xi

1 Introduction 1
1.1 Artificial Life and Evolution of Complexity 1

1.1.1 How does complex organization arise? 1
1.1.2 Measuring Complexity . 2
1.1.3 Artificial Life . 4
1.1.4 Our Stance . 5

1.2 Interfacing an evolving agent with the Real World 5
1.2.1 Evolutionary Robotics . 6
1.2.2 Reconfigurable Hardware . 6
1.2.3 Virtual Worlds . 7
1.2.4 Simulated Reality . 7

1.3 Summary: Contributions of this Thesis . 8

2 Evolution of Adaptive Morphology 11
2.1 Introduction and Related Work . 11

2.1.1 Adaptive Morphology . 11
2.1.2 ALife and Morphology . 12
2.1.3 Nouvelle AI . 13
2.1.4 Artificial Design . 13

2.2 Simulating Bricks Structures . 14
2.2.1 Background . 14
2.2.2 Lego Bricks . 14
2.2.3 Joints in two dimensions . 15
2.2.4 From 2- to 3-dimensional joints 16
2.2.5 Networks of Torque Propagation 18
2.2.6 NTP Equations . 20
2.2.7 NTP Algorithms . 22
2.2.8 A Step-By-Step Example . 25

xiii

2.3 Evolving Brick structures . 30
2.3.1 Coding for 2D and 3D structures 30
2.3.2 Mutation and Crossover . 32
2.3.3 Evolutionary Algorithm . 32

2.4 Initial Experiments . 33
2.4.1 Reaching a target point: Bridges and Scaffolds 33
2.4.2 Evolving three-dimensional Lego structures: Table experiment . . . 34

2.5 Smooth Mutations and the Role of Recombination 37
2.6 Artificial Evolution Re-Discovers Building Principles 39

2.6.1 The Long Bridge: Cantilevering 39
2.6.2 Exaptations, or ‘change of function’ 42
2.6.3 The Crane: Triangle . 43

2.7 Optimization . 47
2.8 Symmetry, Branching, Modularity: Lego Tree 48

2.8.1 Recombination Example . 50
2.9 Discovery is creativity: EvoCAD . 50

2.9.1 Evolutionary Algorithm . 53
2.9.2 Brick Problem Description Language 54
2.9.3 Target Points and Target Loads 54
2.9.4 Fitness Function . 54
2.9.5 Results . 56

2.10 Discussion . 56
2.10.1 Modeling and the Reality Gap . 56
2.10.2 Modular and Reconfigurable Robotics 57
2.10.3 Movement Planning as Evolution? 57
2.10.4 Cellular and Modularity-Sensitive Representations 58
2.10.5 Surprise in Design . 60
2.10.6 Conclusions . 61

3 Coevolving Behavior with Live Creatures 63
3.1 Introduction . 63
3.2 Background and Related Work . 64

3.2.1 Coevolution . 64
3.2.2 Too Many Fitness Evaluations . 64
3.2.3 Learning to Play Games . 65
3.2.4 Intelligence on the Web . 66

3.3 Experimental Model . 67
3.3.1 Tron Light Cycles . 67
3.3.2 System Architecture . 68
3.3.3 Tron Agents . 68
3.3.4 Java Applet . 71
3.3.5 Evolving Agents: The Tron Server 72

xiv

3.3.6 Fitness Function . 73
3.3.7 Novelty Engine . 73

3.4 Results . 76
3.4.1 Win Rate (WR) . 78
3.4.2 Statistical Relative Strength (RS) 79
3.4.3 Analysis of Results . 81
3.4.4 Distribution of Players . 83
3.4.5 Are New Generations Better? . 84

3.5 Learning . 85
3.5.1 Evolution as Learning . 85
3.5.2 Human Behavior . 86

3.6 Measuring Progress in Coevolution . 91
3.6.1 New Fitness Measure for the Main Population 95

3.7 Evolving Agents Without Human Intervention: A Control Experiment . . . 97
3.7.1 Experimental Setup . 97
3.7.2 Results . 101
3.7.3 Tuning up the Novelty Engine . 102
3.7.4 Test Against Humans . 103
3.7.5 The Huge Round-Robin Agent Tournament 104

3.8 Emergent Behaviors . 106
3.8.1 Standard Complexity Measures 106
3.8.2 Analysis of sample robots . 107
3.8.3 An Advanced Agent . 107
3.8.4 Emergent Behaviors . 109
3.8.5 Quantitative Analysis of Behaviors 119
3.8.6 Differences Between Human and Agent Behaviors 124
3.8.7 Maze Navigation . 132

3.9 Discussion . 133
3.9.1 Adapting to the Real Problem . 133
3.9.2 Evolution as Mixture of Experts 134
3.9.3 Human-Machine Coevolution . 134
3.9.4 Human Motivations . 135

4 Conclusions 137
4.1 Discovery in AI . 137
4.2 From Discovery to Abstraction . 138
4.3 The Humans in the Loop . 139
4.4 The Reality Effect . 140

xv

Chapter 1

Introduction

1.1 Artificial Life and Evolution of Complexity

1.1.1 How does complex organization arise?

The present state of the universe lies somewhere between two extremes of uniformity: per-
fect order, or zero entropy, which might have happened at the beginning of time (big bang),
and total disorder, infinite entropy, which could be its final destiny (heat death). Somehow
from these homogeneous extremes, diversity arises in the form of galaxies, planets, heavy
atoms, life.

Analogous scenarios of emergence of organization exist within the scope of different
sciences (e.g. formation of ecological niches, of human language, of macromolecules, of
the genetic code, etc.). The study of evolution of complexity bears on these disciplines and
aims at understanding the general features of such phenomena of “complexification”: what
is complexity, and what kinds of processes lead to it? [64, 77].

Biology in particular strives to explain the evolution of complex life forms starting from
a random “primitive soup”. Darwin’s theory of natural selection is the fundamental theory
that explains the changing characteristics of life in our planet, but contemporary Darwin-
ism is far from complete, having only begun to address questions such as specialization,
diversification and complexification.

Some theories of natural evolution argue that complexity is nothing but statistical er-
ror [57], whereas others propose that increasing complexity is a necessary consequence
of evolution [63, 122]. The point of view of universal Darwinism [29] is that the same
characteristics of life on earth that make it susceptible to evolutionary change by natu-
ral selection, can also be found on other systems, which themselves undergo evolutionary
change. Plotkin [106] proposes the g-t-r heuristics1 as the fundamental characteristic of
evolutionary process. Three phases are involved:

1. g — Generation of variants
1An extension of the “generate-and-test” concept [102], with the additional token of iterated generation

(regeneration) based on the previous ones.

1

2 Chapter 1. Introduction

2. t — Test and selection

3. r — Regeneration of variants, based on the previous ones

Some examples of systems subject to this kind of g-t-r dynamics are: life on earth, the
mammal immune system (random mutation and selection of antigens), brain development
(selection of neurons and synapses) and human language (selection of words and gram-
mars) [28, 106].

1.1.2 Measuring Complexity

One of the problems with studying the mechanisms and history of complex systems is the
lack of a working definition of complexity. We have intuitive notions that often lead to
contradictions. There have been numerous attempts to define the complexity of a given
system or phenomenon, usually by means of a complexity measure — a numerical scale to
compare the complexity of different problems, but all of them fall short of expectations.

The notion of Algorithmic Information Content (AIC) is a keystone in the problem.
The AIC or Kolmogorov complexity of a binary string is defined as the length of the shortest
program for a Universal Turing Machine (UTM) whose output is the given string [19, 79,
127].

Intuitively, the simplest strings can be generated with a few instructions, e.g. “a string
of 100 zeros”; whereas the highly complex ones require a program slightly longer than the
string itself, e.g. “the string 0010111100101110000010100001000111100110”. However,
the minimal program depends on the encoding or “programming language” chosen; the
difference between two different encodings being bound by a constant. Moreover, AIC is
uncomputable. Shannon’s entropy [121] is a closely related measure (it is an upper bound
to AIC [80, 136]).

Further research on the matter of complexity measures stems from the notion that the
most difficult, the most interesting systems are not necessarily those most complex accord-
ing to algorithmic complexity and related measures. Just as there is no organization in a
universe with infinite entropy, there is little to be understood, or compressed, on maximally
complex strings in the Kolmogorov sense. The quest for mathematical definitions of com-
plexity whose maximums lie somewhere between zero and maximal AIC [10, 53, 58, 82]
has yet to produce satisfactory results. Bruce Edmonds’ recent PhD thesis on the measure-
ment of complexity [33] concludes that none of the measures that have been proposed so
far manages to capture the problem, but points out several important elements:

1. Complexity depends on the observer.

The complexity of natural phenomena per se can not be defined in a useful manner,
because natural phenomena have infinite detail. Thus one cannot define the absolute

1.1. Artificial Life and Evolution of Complexity 3

or inherent complexity of “earth” for example. Only when observations are made,
as produced by an acquisition model, is when the question of complexity becomes
relevant: after the observer’s model is incorporated.

2. “Emergent” levels of complexity

Often the interactions at a lower level of organization (e.g. subatomic particles) result
in higher levels with aggregate rules of their own (e.g. formation of molecules).
A defining characteristic of complexity is a hierarchy of description levels, where
the characteristics of a superior level emerge from those below it. The condition of
emergence is relative to the observer; emergent properties are those that come from
unexpected, aggregate interactions between components of the system.

A mathematical system is a good example. The set of axioms determines the whole
system, but demonstrable statements receive different names like “lemma”, “prop-
erty”, “corollary” or “theorem” depending on their relative role within the corpus.
“Theorem” is reserved for those that are difficult to proof and constitute foundations
for new branches of the theory — they are “emergent” properties.

A theorem simplifies a group of phenomena and creates a higher lever language. This
type of re-definition of languages is typical of the way we do science. As Toulmin
puts it, “The heart of all major discoveries in the physical sciences is the discovery
of novel methods of representation, and so of fresh techniques by which inferences
can be drawn” [135, p. 34].

3. Modularization with Interdependencies

Complex systems are partially decomposable, their modules dependent on each other.
In this sense, Edmonds concludes that among the most satisfactory measures of com-
plexity is the cyclomatic number [33, p. 107] [129], which is the number of indepen-
dent closed loops on a minimal graph.
The cyclomatic number measures the complexity of an expression, represented as a
tree. Expressions with either all identical nodes or with all different nodes are the
extremes in an “entropy” scale, for they are either trivial or impossible to compress.
The more complex ones in the cyclomatic sense are those whose branches are differ-
ent, yet some subtrees are reused across branches. Such a graph can be reduced (fig.
1.1) so that reused subexpressions appear only once. Doing so reveals a network of
entangled cross-references. The count of loops in the reduced graph is the cyclomatic
number of the expression.

4 Chapter 1. Introduction

(c)(b)(a)

A AA A

A

A B

C

A B

CC

A DB C

A DB C

Figure 1.1: Cyclomatic complexity of expressions: (a) and (b) have cyclomatic number zero (no
irreducible loops), although (a) is completely reducible and (b) completely irreducible. (c) has
cyclomatic number one, because of the reuse of node C.

1.1.3 Artificial Life

Artificial Life (ALife) is a growing field that brings together research from several areas.
Its subject is defined loosely as the study of “life as it could be” [87] as opposed to “life as
it is” — which is the the subject of biology.

Work in ALife includes robots that emulate animal behaviors, agents that survive in
virtual worlds, artificial evolution, reinforcement learning, autonomous robotics and so on.
There is a continuing debate on this field regarding what the definition, methods and goals
of Artificial Life are.

We propose that one of the fundamental goals of ALife research is to be a construc-
tive approach to the problem of emergence of complexity. Not satisfied with a global
description which describes the process through abstract elements, ALife should consider
the question settled only when those elements have been formalized up to the point where
they can be laid down in the form of a computer program and shown to work by running it.

Whereas evolutionary biology looks at the fossil record and tries to describe the evolu-
tion of life as a result of the g-t-r dynamics, Artificial Life research should aim at writing
g-t-r programs that show how in fact artificial agents increase in complexity through the
process, thus proving that natural complexity can be generated by this formal process.

1.2. Interfacing an evolving agent with the Real World 5

1.1.4 Our Stance

The goal of this thesis is to show how the dynamics of computer-simulated evolution can
lead to the emergence of complex properties, when combined with a suitable environment.
We propose that one way to do this is to put evolutionary algorithms in contact with the real
world, precisely because it was in this context that natural evolution led to the sophisticated
entities conforming the biosphere.

Even though the characteristics that define “suitable environment” for evolution are
unknown, we should be able to verify the theoretical predictions of the evolutionary hy-
pothesis by placing artificial agents in the same kinds of contexts that produce complex
natural agents.

The difficulty of measuring complexity makes it hard to study an evolutionary system
acting on a purely symbolic domain, such as the Tierra experiments [112, 113]. Evolving
real-world agents instead makes it easier to recognize solutions to difficult problems which
are familiar to us, and at the same time creates an applied discipline, dealing with real
problems.

We are deliberately staying away from a discussion about the different flavors of evolu-
tionary algorithms (Genetic Algorithms, Genetic Programming, Multi-objective optimiza-
tion and so on): all of them capture the fundamental ideas of the g-t-r model. Our aim is
to reproduce the dynamics of natural evolution of complexity by situating artificial evolu-
tion within complex, reality-based domains. We are driven by the intuition that the most
interesting results in our field have come not from great sophistication in the algorithm,
but rather from the dynamics between g-t-r and interesting environments. Exciting results
using coevolution [65, 109, 123, 131] for example, suggest that the landscape created by
another adaptive unit is richer than a fixed fitness function.

Previous work in Artificial Life has already shown promising examples of evolving in
real worlds. Here we implement two new approaches: the first one is evolving morphology
under simulated physical laws, with simulated elements that are compliant to those found in
reality, so as to make the results buildable. The second approach is to employ the concept of
virtual reality to bring living animals into contact with simulated agents, in order to evolve
situated agents whose domain, albeit simulated, contains natural life forms.

1.2 Interfacing an evolving agent with the Real World

Efforts to interface an adaptive agent with reality have created several subfields which study
the problem from different perspectives.

6 Chapter 1. Introduction

1.2.1 Evolutionary Robotics

The field of Evolutionary Robotics (ER) starts with a fixed robot platform which has a
computer brain connected to sensors and effectors. Different control programs or “brains”
are tested by downloading them into the robot and evaluating its performance, either in the
real robot or a simulated version [22, 37, 39, 67, 72].

Among the difficulties ER faces are,

� The robot is bounded by its physicality

Evolution is limited by the pace and physicality of the robot. Making copies of a
hardware robot is costly because they are not mass-produced. Also, the pace of time
cannot be sped up.

� Design is costly

The robot itself is designed by human engineers who engage in a costly process of
designing, building, testing and repairing the robot. Commercial robots are available
for research on a limited basis.

� Robotic Platform is fixed

With a robot “body” whose morphology can not change, ER is limited to evolving
control programs for the fixed platform. This represents a strong limitation, as we ar-
gue below, when compared to biological evolution where all behaviors are supported
by morphology.

1.2.2 Reconfigurable Hardware

Reconfigurable hardware is a new field that evolves the hardware configurations of recon-
figurable chips (FPGAs). The idea that an evolutionary algorithm can generate and test
hundreds of hardware configurations very quickly is powerful and has produced exciting
results [133, 134].

So far this type of work is limited to chips and thus can not be used to generate life-like
creatures. The problems dealt with by evolved FPGA chips are electrical problems such as
frequency filters, and occasionally brains to control robotic behaviors.

Interest is growing on the design of self-reconfigurable robots that can change morphol-
ogy under program control [42, 76, 83, 139, 140]. This is a promising field that holds the
exciting perspective of putting together features of both the reconfigurable hardware and
evolutionary morphology fields.

1.2. Interfacing an evolving agent with the Real World 7

Figure 1.2: “Virtual Creatures” by K. Sims [123] have evolved morphology and behaviors. They
behave according to some physical laws (inertia, action-reaction) but lack other reality constraints:
blocks can overlap each other, movements are not generated by motors, etc.

1.2.3 Virtual Worlds

Virtual worlds are simulated environments with internal rules inspired at least in part by
real physics laws. This type of environment has been fruitful for ALife research, for it
allows quick implementation of reality-inspired behavior that can be visualized as computer
animations [81, 101, 114, 123, 124].

The surreal beauty of some artificial agents in virtual worlds has had a profound im-
pact in the field, most famously Karl Sims’ virtual creatures, made of rectangular prisms,
evolved life-like behaviors and motion under a careful physical simulation (fig. 1.2).

1.2.4 Simulated Reality

Simulating reality puts together Evolutionary Robotics and Virtual Worlds: at the same
time one is dealing with the full complexity of physical reality, while not bounded by the
laws of conservation of matter or the fixed pace of time. However, writing a full-fledged
simulator is an impossibility, for reality has endless detail.

A heated discussion separates pro- and anti- simulation ALife research; the detractors
of simulations [98,133] argue that reality simply cannot be imitated, and that virtual agents

8 Chapter 1. Introduction

adapted to simulated reality will evolve slower than real-time, fail to be transferable, or
both. Advocates of simulation claim that by simulating only some aspects of reality one
can evolve and transfer [71, 72].

1.3 Summary: Contributions of this Thesis

Here we investigate the reality effect, of which previous works in the field (Sims’ virtual
creatures, Thompson’s FPGA’s) are examples: evolution interacting with reality discovers
emergent properties of its domain, builds complexity and creates original solutions, resem-
bling what happens in natural evolution.

We investigate two complementary scenarios (a simulation that brings a computer brain
out into the real world, and a video game which brings a multitude of natural brains into a
virtual world) with two experimental environments:

1. Evolution of structures made of toy bricks (chapter 2). These are the main points
discussed:

� Evolutionary morphology is a promising new domain for ALife.
� Adaptive designs can be evolved that are buildable and behave as predicted.
� Principles of architectural and natural design such as cantilevering, counterbal-

ancing, branching and symmetry are (re)discovered by evolution.
� Recombination between partial solutions and change of use (exaptation) are

mechanisms that create novelty and lead to the emergence of hierarchical levels
of organization.

� Originality results from an artificial design method that is not based upon pre-
defined rules for task decomposition.

� The potential for expanding human expertise is shown with an application —
EvoCAD, a system where human and computer have active, creative roles.

2. Evolution of artificial players for a video-game (chapter 3). Main issues are:

� Evolution against live humans can be done with a hybrid evolutionary scheme
that combines agent-agent games with human-agent games.

� The Internet has the potential of creating niches for mixed agent/human inter-
actions that host phenomena of mutual adaptation.

� Basic as well as complex navigation behaviors are developed as survival strate-
gies.

1.3. Summary: Contributions of this Thesis 9

� Coevolving in the real world is stronger than coevolving in an agent-only do-
main, which in turn is stronger than evolving against a fixed training set.

� Statistical methods are employed in order to analyze the results.
� Agents adapted to complex environments can exhibit elaborate behaviors using

a simple reactive architecture.
� Human learning arises and can be studied from the interactions with an adaptive

agent.
� An evolving population acts as one emergent intelligence, in an automated ver-

sion of a mixture of experts architecture.

We conclude with a discussion on AI and the role of discovery and of interaction between
learning algorithms, people and physical reality in the light of these results (chapter 4).

Altogether, we are elaborating on a new perspective of Artificial Life, conceived as
one of the pieces on the question of evolution of complexity. The evolutionary paradigm
explains complexification up to a certain point at least, but also shows that we are still far
from a complete understanding of this phenomenon.

10 Chapter 1. Introduction

Chapter 2

Evolution of Adaptive Morphology

2.1 Introduction and Related Work

This chapter describes our work in evolution of buildable structural designs. Designs evolve
by means of interaction with reality, mediated by a simulation that knows about the prop-
erties of their modular components: commercial off-the-shelf building blocks.

This is the first example of reality-constrained evolutionary morphology: entities that
evolve under space and gravitational constraints imposed by the physical world, but are free
to organize in any way. We do not consider movement; our aim is to show how complete
structural organization, a fundamental concept for ALife, may begin to be addressed.

The resulting artifacts, induced by various manually specified fitness functions, are built
and shown to behave correctly in the real world. They are not based in building heuristics or
rules such as a human would use. We show how these artifacts are founded upon emergent
rules discovered and exploited by the dynamic interaction of recombination and selection
under reality constraints.

Weak search methods such as simulated evolution have great potential for exploring
spaces of designs and artifacts beyond the limits of what people usually do. We present a
prototype CAD tool that incorporates evolution as a creative component that creates new
designs in collaboration with a human user.

Parts of this research have been reported on the following publications: [45–49, 110,
111].

2.1.1 Adaptive Morphology

Morphology is a fundamental means of adaptation in life forms. Shape determines function
and behavior, from the molecular level, where the shape of a protein determines its enzy-
matic activity, to the organism level, where plants and animals adapt to specific niches by

11

12 Chapter 2. Evolution of Adaptive Morphology

morphological changes, up to the collective level where organisms modify the environment
to adapt it to their own needs.

In order to evolve adaptive physical structures we imitate nature by introducing a ge-
netic coding that allows for both local modifications, with global effects (i.e. enlarging one
component has only a local effect but may also result in shifting an entire subpart of the
structure) and recombination, which spreads useful subparts of different sizes.

Even though the plasticity of life forms is far superior to a limited computer model such
as ours, we are still able to see how the dynamic “evolutionary game” among a genetically-
regulated family of organisms whose fitness comes from interaction with a complex envi-
ronment, results in evolution of complexity and diversity leading to higher levels of orga-
nization.

2.1.2 ALife and Morphology

A deep chasm separates Artificial Life work that uses robotics models [22,36,37,95] from
the one in virtual worlds [81,101,114,123,124]. Robots today lack plasticity in their design;
they need to be built by hand, molded using expensive methods. The number of generations
and the number of configurations tested is several orders of magnitude smaller than those
that can be reached with simulated environments. Evolutionary Robotics does not address
morphology, although the idea was around from the beginning [23]. Experiments generally
focus on evolving behaviors within a fixed morphology — a robotic “platform”. Occasion-
ally we see shape variables, but limited to a few parameters, such as wheel diameter or
sensor orientation [26, 88, 96].

Evolution in Virtual Worlds on the other hand, is often morphological [81,123]. Virtual
worlds are constrained neither by the fixed “speed” of real time, nor by physical laws such
as conservation of mass. The drawback is in the level of detail and the complexity of reality:
simulating everything would require an infinite amount of computation.

The Evolution of Buildable Structures project aims at bridging the reality gap between
virtual worlds and robotics by evolving agents in simulation under adequate constraints,
and then transferring the results, constructing the “reality equivalent” of the agent.

Lego1 bricks are popular construction blocks, commonly used for educational, recre-
ation and research purposes. We chose these commercially available bricks because they
have proven to be adequate for so many uses, suggesting that they have an appropriate
combination of size, tightness, resistance, modularity and price. These characteristics led
us to expect to be able to evolve interesting, complex structures that can be built, used and
recycled.

1Lego is a registered trademark of the Lego group.

2.1. Introduction and Related Work 13

2.1.3 Nouvelle AI

One important contribution of the nouvelle AI revolution in the eighties was to deconstruct
the traditional notion of reasoning in isolation. Brooks [15, 16] fought against the divi-
sion of cognition in layers (perception – recognition – planning – execution – actuation)
and instead proposed the notions of reactivity and situatedness: the phenomenon we call
intelligence stems from a tight coupling between sensing and actuation.

In the same spirit of doing without layered approaches, we reject the notion of param-
eterizing the functional parts of a robotic artifact. The different parts of a body — torso,
extremities, head — are not interesting if we establish them manually. By giving the evo-
lutionary code full access to the substrate, the search procedure does without conventional
human biases, discovering its own ways to decompose the problem — which are not nec-
essarily those that human engineers would come up with.

Human cognition, as pointed out by Harvey [62] lacks the ability to design complex
systems as a whole. Instead, we usually proceed by complexity reduction (the “divide and
conquer” method). This is why the classic AI work took the layered approach that Brooks
rejected so strongly. Perhaps the greatest strength of ALife methods such as artificial evo-
lution is their ability to develop the organization and subparts together as a whole.

2.1.4 Artificial Design

The science of design usually conceives of AI as a set of tools for structuring the process, or
planning, or optimizing [13,20,105]. Rarely does the computer explore a space of designs,
and in doing so, it is generally following a set of precise rules, so the machine is doing little
else than repeating a series of mechanical steps, faster than a human could. Creativity is
usually considered to lay outside the realm of what computers can do.

Evolutionary Design (ED), the creation of designs by computers using evolutionary
methods [11] is a new research area with an enormous potential. Examples of ED work
are evolution of abstract shapes [12] or optimization of one part or component [20, 120].
The present work is different, for we are proposing to let the evolutionary process take
care of the entire design process by means of recombination of available components and
interaction with a physics simulation.

Inasmuch as Artificial Intelligence is an elusive concept— it seems that every new
challenge that computers solve, becomes non-intelligent by definition2, so is “artificial
creativity”. We claim that the present work is in fact a form of artificial creativity, albeit
restricted, whose designs are unexpected, surprising, amusing — and they work.

2AI is “the study of how to make computers do things which, at the moment, people do better” [115, p. 3]

14 Chapter 2. Evolution of Adaptive Morphology

2.2 Simulating Bricks Structures

This section discusses our approach to the simulation of structures made of weakly joined
bricks.

2.2.1 Background

Two kinds of simulation, Finite Elements from engineering and Qualitative Physics from
computer science, have inspired our simulator of Lego brick structures.

Finite Element Modeling (FEM) is a structural mechanics technique for discretizing an
object in order to analyze its behavior in the presence of stresses and holds [141]. The
principle is to construct a network or “mesh” to model the piece as a discrete network and
have the nodes communicate with their neighbors in order to cancel out all forces.

Qualitative Physics (QP) is a subfield of AI which deals with mechanical and physical
knowledge representation. It starts with a logical representation of a mechanism, such as a
heat pump [41] or a string [52], and produces simulations, or envisionments, of the future
behavior of the mechanism.

QP simulations have not been used for evolutionary design, but they express an idea
of great potential for reality-grounded evolution: not all aspects of the world need to be
simulated to their fullest detail. Sometimes one can create an approximate model using ad
hoc qualitative rules instead of the more complex equations of Newtonian physics.

2.2.2 Lego Bricks

The resistance of the plastic material (ABS - acrylonitrile butadiene styrene) of Lego bricks
far surpasses the force necessary to either join two of them together or break their unions.
This makes it possible to conceive a model that ignores the resistance of the material and
evaluates the stress forces over a group of bricks only at their union areas. If a Lego
structure fails, it will generally do so at the joints, but the actual bricks will not be damaged.

This characteristic of bricks structures makes their discretization for modeling an ob-
vious step. Instead of imposing an artificial mesh for simulation purposes only (as FEM
does), these structures are already made of relatively large discrete units. A first simplifica-
tion is thus to ignore the physical characteristics of the bricks and study only those of their
unions.

Our second simplification is to ignore bending effects. In standard structural analysis,
the effects of stress are observed as deformation of the original shape of a body. Here strain
deformations are ignored altogether.

2.2. Simulating Bricks Structures 15

Figure 2.1: Fulcrum effect: a 2 � 1 union resists more than twice the load of a 1 � 1 because the
second knob is farther away from the axis of rotation.

Joint size (ω) Approximate torque capacity (κω)
knobs N-m � 10 � 3

1 12.7
2 61.5
3 109.8
4 192.7
5 345.0
6 424.0

Table 2.1: Estimated minimal torque capacities of the basic types of joints. Note: these values
correct the ones on [48, table 1].

2.2.3 Joints in two dimensions

We began considering two-dimensional structures, assuming that all the bricks are of width
1, assembled in a plane. A fulcrum effect, which is the angular torque exerted over two
joined bricks, constitutes the principal cause for the breakage of a stressed structure of
Lego bricks. We designed our model around this idea, describing the system of static
forces inside a complex structure of Lego bricks as a network of rotational joints located at
each union between brick pairs and subject to loads (fig. 2.2).

Bricks joined by just one knob resist only a small amount of torque; bigger unions
are stronger. The resistance of the joint depends on the number of knobs involved. We
measured the minimum amount of stress that different linear (1 � 1, 2 � 1, 3 � 1, etc.)
unions of brick pairs support (table 2.1).

16 Chapter 2. Evolution of Adaptive Morphology

From a structure formed by a combination of bricks, our model builds a network with
joints of different capacities, according to the table. Each idealized joint is placed at the
center of the area of contact between every pair of bricks. A margin of safety, set to 20% in
our experiments, is discounted from the resistances of all joints in the structure, to ensure
robustness in the model’s predictions.

All forces acting in the structure have to be in equilibrium for it to be static. Each brick
generates, by its weight, a gravitational force acting downwards. There may be other forces
generated by external loads.

Each force has a site of application in one brick — each brick’s weight is a force ap-
plied to itself; external forces also “enter” the structure through one brick — and has to
be canceled by one or more reaction forces for that brick to be stable. Reaction forces can
come from any of the joints that connect it to neighbor bricks. But the brick exerting a
reaction force becomes unstable and has to be stabilized in turn by a reaction from a third
brick. The load seems to “flow” from one brick to the other. Thus by the action-reaction
principle, a load is propagated through the network until finally absorbed by a fixed body,
the “ground”.

The principle of propagation of forces described, combined with the limitations im-
posed to each individual joint, generates a set of equations (section 2.2.6). A solution
means that there is a way to distribute all the forces along the structure. This is the princi-
ple of our simulator: as long as there is a way to distribute the weights among the network
of bricks such that no joint is stressed beyond its maximum capacity, the structure will not
break.

2.2.4 From 2- to 3-dimensional joints

In two dimensions, all brick unions can be described with one integer quantity — the
number of knobs that join two bricks. Table 2.1 gives all the information needed to describe
2D brick joints. In the three dimensional case, brick unions are n-by-m rectangles. Two
2 � 4 bricks for example can be stuck together in 8 different types of joints:1 � 1, 1 � 2,
1 � 3, 1 � 4, 2 � 1, 2 � 3, 2 � 4.

We know already, from the 2D case, how n � 1 unions respond to forces acting along
the x axis alone. A 2 � 1 union supports more than double the torque admitted by a 1 � 1,
the reason being that the brick itself acts as a fulcrum (fig. 2.1). The distance from the
border to the first knob is shorter than the distance to the second knob, resulting in a lower
multiplication of the force for the second knob. This fulcrum effect does not happen when
the force is orthogonal to the line of knobs. A 1 � 2 union can be considered as two 1 � 1
unions, or as one joint with double the strength of a 1 � 1 (fig. 2.3).

In other words, when torque is applied along a sequence of stuck knobs, the fulcrum
effect will expand the resistance of the joint beyond linearity (as in table 2.1). But when

2.2. Simulating Bricks Structures 17

−160 −140 −120 −100 −80 −60 −40 −20 0 20 40
−2

0

2

4

6

8

10

Figure 2.2: Model of a 2D Lego structure showing the brick outlines (rectangles), centers of mass
(circles), joints (diagonal lines, with axis located at the star), and “ground” where the structure is
attached (shaded area). The thickness of the joint’s lines is proportional to the strength of the joint.
A distribution of forces was calculated: highly stressed joints are shown in light color, whereas
those more relaxed are darker. Note that the x and y axis are in different scales.

18 Chapter 2. Evolution of Adaptive Morphology

B

J x

y

A

Figure 2.3: Two-dimensional brick joint. Bricks A and B overlap in a 4 � 2 joint J. Along x the joint
is a double 4 � 1 joint. Along the y axis it is a quadruple 2 � 1-joint.

the torque arm is perpendicular instead, knob actions are independent and expansion is just
linear.

We thus state the following dimensional independence assumption: Two bricks united
by n � m overlapping knobs will form a joint with a capacity Kx along the x axis equal to m
times the capacity of one n-joint and Ky along the y axis equal to n times the capacity of an
m-joint.

To test the resistance of a composite joint to any spatial force f we separate it into its
two components, fx on the xz plane and fy on the yz plane. These components induce two
torques τx, τy. To break the joint either τx must be larger than Kx or τy larger than Ky.

If the dimensional independence hypothesis was not true, a force exerted along one
axis could weaken or strengthen the resistance in the orthogonal dimension, but our mea-
surements suggest that the presence of stress along one axis does not modify the resistance
along the other. It is probably the case that the rectangular shape of the joint actually makes
it stronger for diagonal forces, implying that dimensional independence is a conservative
assumption. In any case, separating the components of the force has been a sufficient ap-
proximation for the scope of our experiments.

2.2.5 Networks of Torque Propagation

Our model for a 2D structure of bricks generates a network, called a Network of Torque
Propagation (NTP) consisting of nodes, joints and loads.

� Each node represents a brick and its located at the brick’s center of mass (circles in
our figures).

2.2. Simulating Bricks Structures 19

−5

0

5

10 −6
−4

−2
0

2
4

6

0

2

4

6

8

10

12

123.739929

Figure 2.4: 3D Lego structure generated by our evolutionary process. The underlying physical
model is shown.

20 Chapter 2. Evolution of Adaptive Morphology

� An additional node represents the ground.

� Each pair of locked bricks gives raise to a joint. The joint has an origin node, a
destination node, an axis of rotation (located at the center of the area of contact
between the bricks) and a maximum torque capacity (depending on the number of
knobs involved). Joints are represented by lines in our figures, their axis of rotation
by stars.

� Loads represent the forces acting on the network. Each has magnitude, direction,
point of application, and entry node. For each brick, a force corresponding to its
weight originates at the center of mass, is applied at the corresponding node, and
points downwards. External forces may have any direction and their point of appli-
cation is not necessarily the center of the brick.

Each force, either the weight of one of the bricks or an external load, has to be absorbed
by the joints in the structure and transmitted to the ground. The magnitude of the torque
exerted by each joint j must lie in the interval [-K j, K j], where K j represents its maximum
capacity as deduced from table 2.1.

By separating each 3D joint into two orthogonal and independent 2D joints, which
receive the x and y components of each force, we can project an entire 3D network model
of a brick structure into two orthogonal planes, xz and yz, generating two 2D NTP’s that
can be solved separately (figs. 2.4 and 2.5). Thus the problem of solving a 3D network is
reduced to that of solving 2D networks.

2.2.6 NTP Equations

From our initial idea that forces propagate along a structure producing stresses in the form
of torques, we have built an NTP, a network that has all the information needed to compute
the possible paths along which the loads could “flow” and the torques they would generate
along the way.

For each force F we consider the network of all the joints in the structure as a flow
network that will transmit it to the ground. Each joint j can support a certain fraction α of
such a force, given by the formula

α j � F � max

�
1 ������

K j

δ � j � F �	�
�F �
� ����

�
(2.1)

where K j is the maximum capacity of the joint, δ � j � F � the distance between the line
generated by the force vector and the joint, and �
�F �
� the magnitude of the force. Thus if the
torque generated is less than the joint maximum K, then α � 1 (the joint fully supports F);
otherwise α is K divided by the torque. The arm of the torque δ � j � F � can have a positive
or negative sign depending on whether it acts clockwise or counterclockwise.

2.2. Simulating Bricks Structures 21

−4 −3 −2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12
123.739929

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12
123.739929

Figure 2.5: Projecting the 3D structure of fig. 2.4 to the xz and yz planes, two 2D networks are
obtained that can be solved independently.

If one given force F is fixed and each joint on the graph is labeled with the correspond-
ing α j � F according to eq. 2.1, a network flow problem (NFP) [27] is obtained where the
source is the node to which the force is applied and the sink is the ground. Each joint links
two nodes in the network and has a capacity equal to α j � F . A net flow �φF � � 1 represents
a valid distribution of the force F throughout the structure: F can be supported by the
structure if there is a solution to the NFP with a net flow of 1.

With more than one force, a solution for the entire network can be described as a set�
φF � of flows, one for each force, all valued one. But as multiple forces acting on one joint

are added, the capacity constraint needs to be enforced globally instead of locally, that is,
the combined torques must be equal to or less than the capacity of the joint:

�����
∑
F

φF � j � δ � j � F ��� F � �����
�

K j (2.2)

This problem is not solvable by standard NFP algorithms, due to the multiplicity of
the flow (one flow per force) and the magnification of magnitudes due to the torque arm
δ (so the capacity of a joint is different for each load). Equation 2.2 is equivalent to a
multicommodity network flow problem [2, ch. 17].

22 Chapter 2. Evolution of Adaptive Morphology

2.2.7 NTP Algorithms

Whereas the standard maximum network flow problem (single commodity) has well known
polynomial-time solutions [27], multicommodity problems are much harder, and fall into
the general category of linear programming. There is a fair amount of research on the
multicommodity problem [3,59,68,89] but the algorithms, based on Linear Programming,
are exponential on the worst case.

Greedy Solver

Our initial approach for solving NTP problems was a greedy algorithm: Forces are ana-
lyzed one at a time. The push-relabel algorithm PRF by Cherkassky and Goldberg [21] is
used to find a valid flow. Once a flow has been found it is fixed, and a remaining capacity
for each joint (eq. 2.3) is computed that will produce a reduced network that must support
the next force. A maximum flow is found for the second force with respect to the reduced
network and so on for all forces.

K �j
� K j � φF � j � δ � j � F �	�
�F �
� (2.3)

This simple algorithm misses solutions, yet is quick, and thus we preferred it for time
reasons to the more sophisticated solvers. With the greedy model, some solutions might
be missed; but the ones found are good — so the structures evolve within the space of
provable solutions, that is, those for which a greedy solution is found. This algorithm was
particularly useful in the crane cases (sections 2.4, 2.6.3), where there is one special force,
several orders of magnitude larger than the others. All experiments detailed here use this
approach, except for the tree experiment (section 2.8) and EvoCAD (2.9), which employ
the “embedded solver” explained below.

Multicommodity Solver

A second version of our Lego structure simulator incorporated a state-of-the-art multicom-
modity algorithm, by Castro and Nabona [18]. A special case of Linear Programming,
these solvers have exponential order in the worst case, although with some luck they are
faster on practical cases. We found this algorithm to be slower than the greedy version by
a factor of 10 or more. The gain in accuracy did not compensate the loss in speed.

Embedded Solver

A third approach to the NTP problem was to incorporate the network flow into the repre-
sentation of the structure. Thus structures and solutions evolve together: instead of using a

2.2. Simulating Bricks Structures 23

network flow algorithm to find a flow, the flow is uniquely encoded in the genetic code of
the structure, and is allowed to evolve along with it.

With a few modifications we extended the genotype to represent not only the position
of the bricks, but also a unique flow for each force into a sink. With this, a structure can
evolve along with the flows that represent a solution to the NTP problem.

As seen in the previous sections, a set
�
φF � of flows, one for each force, determines the

total torque demanded from each joint in the structure (eq. 2.2). With the embedded solver,
the evolutionary algorithm searches both the space of structure layouts and the space of
flows at the same time. If the torques generated by the distribution of forces specified by
the genotype exceed the joints’ capacities, the structure is considered invalid.

Our representation for bricks structures (see section 2.3) is a tree graph whose nodes
represent bricks. All descendants of a node are bricks which are physically in contact with
the parent. In a structure there may be multiple paths from a brick to the ground, but
genetically, there is a unique branch from each brick to the root. The root node is always
a brick that rests on the ground, so all paths that follow the tree structure terminate on the
ground. The following extensions to the genotype allowed us to evolve a structure along
with the solution to the NTP problem:

1. Load flows only from descendant to ancestor

Loads flow only down from descendants to parents. This defines the positive or
negative sign of φF � j � for each joint and force. For the previous algorithms we had
an undirected graph. Now the graph is strictly directed: for each brick pair a � b either
joint j � a � b � exists or j � b � a � , but not both.

2. Multiple trees rooted at grounds

Instead of only one root, there can be multiple roots now situated at the grounds of
the problem. Each load now has at least one possible path to flow to a sink, although
it may or may not violate the joint’s constraints.

3. “Adoptive” parents may also bear weight

When two bricks happen to be physically linked, but neither of them is a descendant
of the other, the first one3 will become an “adoptive” parent, so the joint created flows
from the lower-order brick to the higher-order.

4. Flow determined by joint size and weight vector.

A weight parameter w j was added to the representation of the joints. When a joint
is created, w j is initialized to 1, but then it may change by random mutation or by

3The tree is traversed in depth-first order. The descendants of a node are represented as a list, which
determines the order of expansion, so there is a well-defined order in which bricks are laid down.

24 Chapter 2. Evolution of Adaptive Morphology

recombination. The flow φF � j � for each force and joint is determined by the joint
size (number of knobs) and the flow weight, as follows:

Let x be a brick in the path of force F . The flow of F into x must equal its flow out
of x � thus

Fx
� ∑

a
φF � a � x � � ∑

b

φF � x � b � (2.4)

The outgoing flow is uniquely determined by Fx and the proportion λ � x � b � that goes
to each parent b of x (either “adoptive” or “original”).

For each brick b that is a parent of x, let ω � x � b � be the size (in knobs) of the joint
j � x � b � and w � x � b � the encoded weight of the joint. Let Ω � ∑ j

�
x � b � ω � x � b � and W �

∑ j
�
x � b � w � x � b � . For each joint now we define the proportion of total flow that follows

each outgoing path as:

λ � x � b � � ω � x � b � w � x � b �
ΩW

(2.5)

which defines the behavior of all flows going through x:

φF � x � b � � Fxλ � x � b � (2.6)

With this configuration, the flow of a force through brick x is by default proportional
to the size of the joint — stronger joints are asked to support proportionally more
weight. But the genotype encodes weights w � x � b � for each joint so the flow of the
force can be redistributed.

5. Additional Mutations

Two mutation operators were added to allow the structures to explore the space of
possible flows:

(a) Jump: A brick and its subtree of descendants is cut off from the original par-
ent and becomes a descendant of one of its “adoptive” parents. This does not
change the positions of any brick, but the directions of flow may change as
bricks which were ancestors become descendants.

(b) Redistribute Weight: A random joint’s weight w j is multiplied by a random
number between zero and one resulting in a change of flow magnitudes.

This genotype extension was used for the tree experiments (section 2.8) and for EvoCAD
(section 2.9). It does without any network problem solver and thus is much faster (by ten-
fold, approximately) at the cost of failing to approve many valid structures. In all, there
was a speed benefit but changes of function were unlikely to happen (see section 2.6.2),

2.2. Simulating Bricks Structures 25

������ ���������� ������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

b3

b4

b1

b2

ground

Figure 2.6: Sample structure with four bricks b1 	�
�
�
�	 b4 and a ground.

���� ������ ���
���
���
���

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

b3

b4
b2

b1
F1

F2

F3

F4

ground

j1 j4

j5

j2

x

y

j3

Figure 2.7: Loads and joints have been identified on the structure of fig. 2.6.

meaning that some of the richness of the dynamics between evolving agent and complex
environment was lost when we embedded more of the environment inside the agent.

2.2.8 A Step-By-Step Example

In this section we build the NTP model for a sample brick structure in detail. We study a
simple structure with four bricks and a ground (fig. 2.6).

In order to build the physical model, first we find the center of mass of all bricks (circles)
and the center of the areas of contact between bricks (crosses), as shown on fig. 2.7. Each
brick generates a force (F1 ��������� F4) and each area of contact, a joint (j1 ��������� j5). Adding an
axis of reference, lists of loads (forces) and joints are generated (tables 2.2 and 2.3). For
the sake of simplicity the x and y axis are in “Lego units”: the width of a Lego unit is lw =
8 mm and the height, lh = 9.6 mm.

From the layout we generate a graph that represents the connectivity of the structure
(fig. 2.8). Bricks and ground generate nodes on the graph and joints generate edges.

We consider initially what the situation is for the first load alone (F1). This force is

26 Chapter 2. Evolution of Adaptive Morphology

n position direction source magnitude

F1 (4,4.5) (0,-1) b1 6 βG
F2 (7,3.5) (0,-1) b2 4 βG
F3 (10,4.5) (0,-1) b3 4 βG
F4 (13,3.5) (0,-1) b4 2 βG

Table 2.2: Loads obtained from fig. 2.7. β = weight of a Lego brick unit (0.4 g). G = gravitational
constant.

n nodes position knobs max. torque K

j1 � b1 � b2 � (6,4) 2 κ2

j2 � b2 � b3 � (8,4) 2 κ2

j3 � b2 � G � (8,3) 1 κ1

j4 � b3 � b4 � (12.5,4) 1 κ1

j5 � b4 � G � (12.5,3) 1 κ1

Table 2.3: Joints generated from fig. 2.7. The torque resistances κ1, κ2 are listed on table 2.1.

j1
b1

b3

b4

G

b2

j2

j5

j3

j4

Figure 2.8: Graph generated by the structure of fig. 2.7.

2.2. Simulating Bricks Structures 27

Joint Force arm length (δ � relative capacity (α � sign

j1 F1 2 lw κ2
2 � 6 lwβG -1

j2 F1 4 lw κ2
4 � 6 lwβG -1

j3 F1 4.5 lw κ1
4 � 5 � 6 lwβG -1

j4 F1 8.5 lw κ1
8 � 5 � 6 lwβG -1

j5 F1 8.5 lw κ1
8 � 5 � 6 lwβG -1

Table 2.4: Capacities of the example network with respect to load F1. Each joint can support a
fraction of the load equal to the torque capacity of the joint divided by the torque exerted by that
particular force at that joint, which in turn is the arm length multiplied by the magnitude of the
force. lw = width of a Lego brick = 0.8 mm.

Joint Force Flow φF1 � j � torque (lwβG) residual capacity(*)

j1 F1 1.0 � 1 � 0 � 2 � 6 �
� 33 � 57 �

j2 F1 0.3 � 0 � 3 � 4 � 6 �
� 37 � 8 � 52 � 2]

j3 F1 0.7 � 0 � 7 � 4 � 5 � 6 �
� 1 � 1 � 38 � 9 �

j4 F1 0.3 � 0 � 3 � 8 � 5 � 6 �
� 4 � 7 � 35 � 3 �

j5 F1 0.3 � 0 � 3 � 8 � 5 � 6 �
� 4 � 7 � 35 � 3 �

Table 2.5: Greedy solver: Residual joint capacities for the sample structure, after force F1 has been
distributed according to fig. 2.9. (*) Assuming κ2 � 45 	 κ1 � 20.

originated by the mass of brick number one, and so it points downwards, its magnitude
being equal to the weight of a Lego brick of width six (� 6 βG, where β = 0.4 g is the
per-unit weight of our Lego bricks, and G the earth’s gravitational constant). According to
equation 2.1, the capacity of each joint with respect to this particular load is the magnitude
of the load, multiplied by the torque’s arm and divided by the capacity of the joint (table
2.4). The value of the sign is 1 if the rotation is clockwise and -1 if counterclockwise.

With the true values4 for κ1 and κ2, the capacities of all joints in the example are far
greater than the light forces generated by this small structure. To illustrate distribution of
force we use fictitious values for the constants. Assuming κ1

� 20lwβG and κ2
� 45lwβG,

the capacities of joints j1 � ����� � j5 relative to load F1 are respectively 1, 1, 20
27 , 20

51 and 20
51 ,

leading to the network flow problem (and solution) on fig. 2.9. Each edge was labelled
with the capacity and (parenthesized) a solution.

The solution to this flow problem could have been obtained by a maximum flow algo-
rithm. A greedy solver would reduce now the network, computing a “remaining capacity”
for each joint (table 2.5). The stress on joint j2 for example, is equal to � 0 � 3 � 4 � 6 lwβG

4According to table 2.1, and assuming G � 9 	 8m
 s2, the values of κ1 � 	�	�	 � κ6 are respectively: 405, 1960,
3500, 6144, 11000 and 13520 lwβG.

28 Chapter 2. Evolution of Adaptive Morphology

b1

b3

b4

G

b2
1 (1)

1 (0.3)1 0.39 (0.3)

0.39 (0.3)0.74 (0.7)

Figure 2.9: Network flow problem generated by the weight of brick b 1 on the sample structure of
fig. 2.7, assuming κ1 � 20 and κ2 � 45 lwβG. The source is b1 and the sink G. Each node is
labelled with a capacity, and (in parenthesis) a valid flow is shown: φ 1

�
1 � 2 � � 1, φ1

�
2 � 3 � � 0 � 3,

φ1
�
3 � 4 � � 0 � 3, φ1

�
4 � G � � 0 � 3 � φ1

�
2 � G � � 0 � 7.

joint force arm length magnitude sign capacity (w.r.t. F2)
(lw) (lwβG) (see table 2.9)

j1 F2 1 4 1 1
j2 F2 1 4 -1 1
j3 F2 1.5 6 -1 1 � 1

6
j4 F2 5.5 22 -1 4 � 7

22
j5 F2 5.5 22 -1 4 � 7

22

Table 2.6: Greedy solver: capacities of the joints in the sample structure, with respect to force F2,
after the loads resulting from F1 have been subtracted.

(counterclockwise). If the initial capacity of j2 was ��� κ2 � κ2 	�
 ��� 45 � 45 	 , the reduced ca-
pacity (according to eq. 2.3) would be ��� 37 � 8 � 52 � 2 	 . So when a flow network for F2 is
generated, the reduced capacities of joints are used, incorporating the effects of the previ-
ous load. (table 2.6 and figure 2.10). In this example, there is no solution, so in fact the
structure could not be proved stable.

For the multicommodity solver, all forces are considered simultaneously. The capacities
of each joint become boundary conditions on a multicommodity network flow problem. For
example, we can write down the equation for joint number two by generating a table of all
forces and their relative weights for this particular joint (table 2.7).According to the table,
and per equation 2.2, if φ1 ��������� φ4 are the flow functions of forces F1 ��������� F4, the boundary
condition for joint two is:

� � 24 φ1 2 � 3 ��� 4 φ2 2 � 3 ��� 12 φ3 3 � 2 ��� 10 φ4 3 � 2 � ��� κ2 (2.7)

a solution to this problem is a set of four flows φ1 ������� φ4, each one transporting a magni-
tude of one from the origin of each force (Fi originates at bi in our example) into the sink G,

2.2. Simulating Bricks Structures 29

b1

b3

b4

G

b2

2

1

1

0.18 0.21

0.21

Figure 2.10: Greedy solver: NFP problem for the second force.

joint force arm length (lw) magnitude (lwβG) sign

j2 F1 4 6 � 4 -1
j2 F2 1 4 � 1 -1
j2 F3 2 6 � 2 1
j2 F4 5 2 � 5 1

Table 2.7: Relative weights of the forces from fig. 2.7 as they act on joint number two.

that also satisfies five boundary equations, analogous to eq. 2.7, one per joint. A multicom-
modity flow algorithm searches the space of all possible flows, using linear programming
techniques, looking for such a solution.

Finally, using the embedded solver would mean that the genotype pre-specifies a unique
direction of flow, and a weight for all joints, as in table 2.8 for example. Figure 2.11 shows
the resulting DAG which determines all four flows (table 2.9) and thus the total torque for
all the joints. Whereas in the greedy example we had the weight F1 of brick b1 flowing in
part via b2 � G (30%) and in part via b2 � b3 � b4 � G (70%), in this embedded solver
example, the only route allowed for the genotype is F1 is via b2 � G. Again, with the

b1

b3

b4

G

b2

0.75 0.25

Figure 2.11: DAG determined by the genotype of a structure using the embedded solver approach.

30 Chapter 2. Evolution of Adaptive Morphology

joint direction weight (w) knobs (ω) ωw

j1 b1 � b2 1 2 2
j2 b3 � b2 1.5 2 3
j3 b2 � G 0.75 1 0.75
j4 b3 � b4 1 1 1
j5 b4 � G 2 1 2

Table 2.8: Embedded solver: the genotype specifies direction of flow and a random weight for each
joint. Together with the number of knobs of in the joint, these specify the percentage of flow in each
direction. In this example, brick b3 has two outgoing joints, to bricks b2 and b4, with ωw values of
3 and 1, respectively. This means that 75% of any loads going through b3 will pass on to b2 and the
remaining 25% will rest on b4.

flow value

φ1 b1 � b2 � G
φ2 b2 � G
φ3

3
4b3 � b2 � G � 1

4b3 � b4 � G
φ4 b4 � G

Table 2.9: Flows generated by the embedded solution.

values for κ1, κ2 used in this example, the weight on joint j3 is excessive so the structure
is not stable.

2.3 Evolving Brick structures

Our representation to evolve Lego structures borrows the tree mutation and crossover op-
erators from genetic programming (GP) [85]. We implemented tree representations of 2D
and 3D Lego structures. Each node of the tree represents a brick and has a size parameter,
indicating the size of the brick, and a list of descendants, which are new bricks physically
attached to the parent. Each descendant node has positional parameters that specify the
position of the new brick relative to the parent.

2.3.1 Coding for 2D and 3D structures

In the first, 2D version of this work [46], each brick node had a size type parameter (4, 6,
8, 10, 12 or 16, corresponding to the Lego bricks of size 1 � 4 through 1 � 16) and four
potential descendants, each one representing a new brick linked at one of its four corners
(lower left, lower right, upper right, upper left). Each non-nil descendant had a ‘joint size’
parameter indicating the number of overlapping knobs in the union.

2.3. Evolving Brick structures 31

10

60 1

23

2

Figure 2.12: Example of 2D genetic encoding of bricks (eq. 2.8).

0
1

2
3

4
5 0

1
2

0.5

1

1.5

2

2.5

(0,0,1) 90° 1x2 (0,0,1) 270° 1x2

1x4

(3,0,1) 90° 1x2

Figure 2.13: Model and tree representation for a few Lego bricks (eq. 2.9).

Fig. 2.12 represents a 10-brick with its 4 joint sites labeled 0, 1, 2, 3, that is linked to
a 6-brick by two overlapping knobs. The corresponding tree could be written in Lisp-like
notation as

(10 nil (2 (6 nil nil nil)) nil nil) (2.8)

For 3D structures we added more size types to incorporate bricks other than 1 � n (the
table experiment in section 2.4.2 had sizes 1 � 2, 1 � 4, 1 � 6, 1 � 10, 1 � 12, 1 � 16, 2 � 2
and 2 � 4), and used a list of descendants, each one representing a new brick to be plugged
into the parent. Each descendant brick has 3 parameters: The (x, y, z) coordinates of the new
brick (relative to its parent, so for a descendant of an n � m brick, 0

�
x � n, 0

�
y � m and

z � {-1,1}); a rotation parameter that specifies the orientation of the descendant relative
to the parent (0o

� 90o
� 180o or 270o), and the size of the descendant. As an example, the

structure in fig. 2.13 can be codified as

 1 � 4 3 � 0 � 1 � 90o 1 � 2 0 � 0 � 1 � 90o 1 � 2nil � 1 � 0 � 1 � 270o 1 � 2nil � � � � � � � � � (2.9)

32 Chapter 2. Evolution of Adaptive Morphology

2.3.2 Mutation and Crossover

Mutation operates by either random modification of a brick’s parameters (size, position,
orientation) or addition of a random brick.

The crossover operator involves two parent trees out of which random subtrees are
selected. As in GP, the offspring generated has the first subtree removed and replaced by
the second.

After mutation or crossover operators are applied, a new, possibly invalid specification
tree is obtained. The result is expanded one node at a time and overlapping is checked.
Whenever an overlap is found the tree is pruned at that site. With this procedure, a maxi-
mum spatially valid subtree is built from a crossover or mutation. Branches that could not
be expanded are discarded.

The following mutation of 2.9, for example, is illegal because two bricks would share
the same physical space (z = -1 after the second brick means that the third one goes below
it, but the first brick is already there).

� 1 � 4 � � � 3 � 0 � 1 � 90o � 1 � 2 � � � 0 � 0 � � 1 � 90o � 1 � 2nil � � � � 1 � 0 � 1 � 270o � 1 � 2nil � � � � � � � � �
(2.10)

The tree will be pruned then at the site, yielding just three bricks

� 1 � 4 � � � 3 � 0 � 1 � 90o � 1 � 2 � � � 1 � 0 � 1 � 270o � 1 � 2nil � � � � � � � � � (2.11)

Once a valid tree has been obtained, the simulator is called to test for stability. Fitness
is evaluated and the new individual is added to the population.

2.3.3 Evolutionary Algorithm

We use a plain steady-state genetic algorithm, initialized with a population of one single
brick. Through mutation and crossover, a population of 1000 individuals is generated and
then evolved:

1. While maximum fitness < Target fitness

2. Do

(a) Randomly select mutation or crossover.

(b) Select 1 (for mutation) or 2 (for crossover) random individual(s)
with fitness proportional probability.

(c) Apply mutation or crossover operator

2.4. Initial Experiments 33

Lego plate

Table

EVOLVED
STRUCTURE

target point

Figure 2.14: Lego bridge experimental setup: The structure starts on a Lego plate affixed to a table
and has to reach a target point supporting its own weight.

(d) Generate physical model and test for gravitational load

(e) If the new model will support its own weight

i. Then replace a random individual with it (chosen with inverse
fitness proportional probability).

2.4 Initial Experiments

2.4.1 Reaching a target point: Bridges and Scaffolds

In our first experiments we conceived a Lego plate affixed to a table (fig. 2.14) and evolved
2D structures to reach a target point, using as fitness function a normalized distance to the
target point,

Nd � S � T � � 1 �
d � S � T �
d � 0 � T � (2.12)

(where S is the structure, T the target point and d the euclidean distance).
With a target point T located horizontally and away from the plate we generated a Lego

bridge (figs. 2.2 and 2.15). Moving T to a remote position we obtained the “long bridge”
(fig. 2.20), and putting T below we generated a descending structure, a “scaffold” (fig.
2.16).

External Loads: Horizontal crane arm

With a two-step fitness function that gives one point for reaching a target point as in eq.
2.12 and, if reached, additional points for supporting an external weight hanging from the

34 Chapter 2. Evolution of Adaptive Morphology

Figure 2.15: The Lego bridge defined by the scheme of fig. 2.2, built on our lab table.

last brick, we evolved a crane arm, fig. 2.17. The diagonal crane arm discussed in section
2.6.3 carries a fixed load as far as possible, rather than keeping it at a fixed place.

2.4.2 Evolving three-dimensional Lego structures: Table experiment

To evolve a Lego table we started with a fixed plate as in fig. 2.14, and wanted to obtain a
table 10 bricks tall, with a support surface of 9 � 9 and capable of supporting a weight of
50 g located anywhere over this surface. There were four objectives to fulfill:

1. The height of the structure must be as required.

2. The surface most cover the target area.

3. The desired weight has to be supported all over the surface.

4. All other conditions met, a minimal number of bricks should be used.

To cover all the objectives we wrote a step fitness function giving between 1 and 2 points
for the first objective partially fulfilled, between 2 and 3 for the first objective completed
and partial satisfaction of the second, and so on. With this setup, the algorithm built up-
ward first, then broadened to cover the surface, later secured that all points of the surface
supported a load of 50g and finally tried to reduce the number of bricks to a minimum.

One of the solutions we obtained is shown in figs. 2.4 and 2.5; fig 2.18 is a photo of the
finished table.

2.4. Initial Experiments 35

Figure 2.16: Scaffold.

36 Chapter 2. Evolution of Adaptive Morphology

Figure 2.17: Crane with evolved horizontal crane arm.

Figure 2.18: Lego table as specified by the diagram of fig. 2.4, holding a 50g weight.

2.5. Smooth Mutations and the Role of Recombination 37

Problems defining the fitness function

A first attempt to evolve a table failed to satisfy objective 2 (covering the entire surface).
One problem with our representation is that the distance between genotype and phenotype
is big: mutations are likely to produce large changes on the structure, so detailed optimiza-
tion is hard to obtain. Also, not having 1 � 1 bricks complicates matters (our set of Lego did
not include those at the time). Finally, there was little selective pressure as fitness values
between 1.9 and 2.0 where nearly identically selected. In the final run we expanded the raw
fitness exponentially in order to add pressure (so for example the fitness value of 123.74 in
fig. 2.4 corresponds to a raw fitness of 4 � 8 � ln � 123 � 74 �), but this did not solve the prob-
lem of full coverage. For the successful run pictured above, objective 2 was redefined as
“covering at least 96% of the target area”.

The use of stepped fitness functions is not ideal; Pareto front techniques [55, ch. 5]
should improve performance in multiobjective problems such as this one.

2.5 Smooth Mutations and the Role of Recombination

A second version of the mutation operators introduced “smooth” mutations, which have
better probabilities of producing small changes in the structure. The original mutation
was simply “replace a randomly selected brick with a random single brick”. The smooth
mutations are of four kinds:

1. Brick Grow

A randomly selected brick is enlarged, either to the left or right, to the nearest valid
brick size.

2. Brick Shrink

A randomly selected brick is shrunk, either from the left or the right, to the next
smaller valid brick size.

3. Brick Shift/Brick Shift & Push

A randomly selected brick shifts position, either to the left or right, by one knob. Any
descendant bricks will either be “pushed” along in the same direction, or remain in
their original positions.

4. Brick Add

A brick is randomly selected. A random knob is chosen within that brick, above or
below, and a new random brick is added at that point.

38 Chapter 2. Evolution of Adaptive Morphology

0 20 40 60 80 100 120 140 160
2

4

6

8

10

12

14

16

18

20

fit
ne

ss
 (

m
ax

)

iteration x 1000

raw/xov
raw/noxov
smo/xov
smo/noxov

raw/xov raw/noxov smo/xov smo/noxov
0

2

4

6

8

10

12

14

16

18

20

fit
ne

ss
 a

t t
he

 e
nd

 o
f r

un

Figure 2.19: Comparison of two mutation strategies (“raw” and “smooth”), with or without use of
crossover: Not using crossover results in a dramatic performance loss. Plots show maximum fitness
reached (averaged over 10 runs) throughout the experiment (left) and at the end (right). Error bars
show the standard error of the mean.

Results

To compare both types of mutation, we ran 10 iterations of the crane experiment (section
2.6.3) with four different mutation/crossover strategies.

1. Original (brittle) mutation + crossover

2. New (smooth) mutation + crossover

3. Original (brittle) mutation, no crossover

4. New (smooth) mutation, no crossover

The result was unexpected (fig. 2.19). We obtained slightly better performance with the im-
proved mutation procedure. But the loss of performance when crossover is turned off was
extremely large. As illustrated by the figure, after 150,000 iterations, the fitness reached,
averaged over 10 runs, is 16.8 or 20.5 (depending on the mutation strategy) whereas without
crossover the figures fall to 12.9 and 10, respectively.

This result suggests that recombination plays a key role, that of reusing useful subparts.
Recombination, we posit, is responsible for the self similarity observed between different
parts of evolved structures, and thus for the appearance of higher levels of organization
than just the individual bricks.

2.6. Artificial Evolution Re-Discovers Building Principles 39

Figure 2.20: Long Bridge.

2.6 Artificial Evolution Re-Discovers Building Principles

In one experiment after another, our evolutionary setup for Lego structures came out with
solutions that employ known principles of construction without really “knowing” about
them. The recombination and mutation mechanisms are capable of finding construction
principles due to the reuse of relevant subparts and their changes of roles.

2.6.1 The Long Bridge: Cantilevering

The “Long Bridge” experiment used an straightforward setup: A “base” of up to 40 knobs
and a distant “target point” at (-300,0) (table 2.10).

We left the experiment run for a long time, until it ceased producing further improve-
ments. The idea was to see how long a beam structure we could design. The resulting
structure was larger than we had imagined was possible (figs. 2.20 and 2.21). The general
principle discovered by this structure is that of cantilevering. A cantilevered beam is a well
known architectural design problem, solved here by founding a thin, long, light beam on a
strong base; counter-balancing it reduces stress (fig. 2.22).

40 Chapter 2. Evolution of Adaptive Morphology

Bricks {4,6,8,10,12,16}
Max Bricks 127

Base (0,-1)–(-39,-1)
x Range (-310,41)
y Range (-2, 80)

Initial Brick 6-brick at (0,0)
Target Point T (-300,0)

Fitness(S) 1 �
d

�
S � T �

d
�
0 � T �

Table 2.10: Long bridge problem specification (x,y Lego units = 8mm � 9.6 mm.)

−200 −150 −100 −50 0
0

5

10

15

20

0.700369

cm

cm

Figure 2.21: Long Bridge Scheme. The network represents the distribution of loads as assigned by
our simulator; thicker lines correspond to stronger links several knobs wide. Light links are stressed
to the limits, whereas dark ones are cool.

2.6. Artificial Evolution Re-Discovers Building Principles 41

−250 −200 −150 −100 −50 0 50
0

5

10

15

20

25

30

Figure 2.22: Long bridge organization: base (dark grey), cantilevered beam (white) and counterbal-
ance (light grey).

Several hierarchical levels of organization are present in this structure:

� Level zero: Individual bricks.

� Level 1: Useful brick arrangements. Four-brick “boxes” (fig. 2.23) are an example.

� Level 2: Diagonal columns (the base is made up of layered columns).

� Level 3: Functional parts: base, beam, cantilever.

� Level 4: The entire structure.

Level 1 of complexity is interesting. Due to the widespread use of recombination, sub-
solutions such as the “brick box” are evolutionarily stable. They are used throughout the
structure, be it beam, base or counterbalance, and give the structure a modular quality.

A random recombination has a higher chance of surviving if the bricks replaced are
laid out in a similar pattern, thus evolutionary runs such as this one will favor recombinable
structures.

42 Chapter 2. Evolution of Adaptive Morphology

−70 −60 −50 −40 −30

10

11

12

13

cm

Figure 2.23: Four bricks in a “box” arrangement. This composite building block is used many times
for the solution to the long bridge problem.

2.6.2 Exaptations, or ‘change of function’

Evolutionary biologists have coined the term exaptation to describe a commonplace occur-
rence in the evolution of life: a limb or organ evolves originally for a particular function, but
later on is recruited to fulfill a new function [56]. When experimenting with our “embedded
solver”, that encodes the simulation within the structure (section 2.2.7), we stumbled upon
the role that this change of use fulfills in the long bridge experiment.

The idea of “encoding the simulation in the representation” is to save time by not letting
the simulator search through the space of all possible paths on the support network. Instead,
only one path is allowed, as encoded in the representation.

Figure 2.24 shows the detail from one run of the long bridge experiment using this new
variant simulator. In fig. 2.21 every joint has a virtual axis of rotation (stars) which links
two bricks by two edges. But with the compact simulator, only one direction is allowed,
and consequently each joint has only one edge, and loads are allowed to flow in just one
direction.

Fig. 2.24 is a close-up of an evolved bridge which has no ‘base’ part. The familiar
cantilevered bar and counterbalance exist, but the base does not evolve. Why? Suppose a
mutation or recombination creates a new brick at the point marked with X. A brick at such
location would reinforce the base of the bridge, absorbing some of the weight of the can-
tilevered beam. This requires, however, a change of function of brick 2 above it. Currently,
this brick rests over brick 1, balancing the beam. A base works in the opposite direction,

2.6. Artificial Evolution Re-Discovers Building Principles 43

−100 −80 −60 −40 −20 0 20 40

−2

0

2

4

6

8

10

0

1

2

3

4

5

6

7

8

9

10

23

24

25

26

27

28

29

30

31

32

33

49

50 51

0(40)

1(40)

0.555782

cm

X

Figure 2.24: A run which encodes the simulation in the representation fails to change the use of
counterbalancing bricks.

transferring load from 1 to 2 to X then to 5 and finally to the ground. The rest of the
counterbalance would act at brick 2 instead of 1. With the simulation-in-the-representation
scheme, this is unlikely to happen, for it requires the chaining of four mutations. In the
meantime, the long beam cannot be supported and thus the entire structure collapses. Af-
ter a long beam evolves that relies on a counterbalance, the change of function does not
happen.

We conclude that in this case, the use of a realistic simulator allowed a change of
use (from counterbalance to support) that cannot happen with a more limited simulator.
Encoding the part together with its use resulted in an impoverished relationship between
agent and reality.

2.6.3 The Crane: Triangle

The diagonal crane arm experiment had a slightly more complicated fitness function than
the previous bridge experiment. Here the aim was to evolve a structure capable of holding
a 250g payload up and away from a fixed base. The size of the external load is fixed but
not its position (fig. 2.26).

We built by hand a crane base with motors for rotating the arm and pulling the hook.
The evolved crane arm needed to attach to this base, so the experimental setup had 5 “fixed

44 Chapter 2. Evolution of Adaptive Morphology

Figure 2.25: Crane with a diagonal crane arm: intermediate (top) and final (bottom) stages.

2.6. Artificial Evolution Re-Discovers Building Principles 45

��

��
��
��
	�	�	�	�		�	�	�	�		�	�	�	�	
�
�
�
�

�
�
�
�

�
�
�
�
��

0

250g

Evolving
Object

x

y

x length

Limits

Predefined Bricks

Figure 2.26: Crane arm experiment

bricks” where the rest of the structure was allowed to attach. The fitness value is the
horizontal length x of the arm, but if the maximum load M supported at the tip is less than
250 g then x is multiplied by M

250, thus reducing the fitness (table 2.11). The arm has to

go up and away at the same time, because the space is restricted to the diagonal semiplane
� x � y.

We observed a curious phenomenon about the way a triangular solution appeared. Soon
the crane evolved a counterbalance, located at the top, to act against the massive external
load. This counterbalance took the shape of a bar going back from the tip of the crane —
where the load is located, with a pile of bricks at the other end to act against the weight.
This counter-weight could not be too heavy, for the crane is required to support its own
weight before adding the external load (fig.2.27).

With the tendency to reuse useful parts that had already been observed in the long bridge
experiment, the counterbalance at the tip, with its “J” shape, reappeared at a lower position,
creating an arm counterbalanced at two points. The fact that these two counterbalances
ended up connecting to each other and touching down at the base was a fortuitous event
that created a new stronger synthesis: a triangular shape which supports more weight than
the original counterbalancing bar, by tensioning the vertical column. At the same time the
triangle supports all this counterbalancing apparatus (by compression) when the crane is
not lifting a load. This is a change of use, as discussed in section 2.6.2, only in a much
larger scale.

46 Chapter 2. Evolution of Adaptive Morphology

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

35

17.000000

cm

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

35

18.100000

cm

−15 −10 −5 0 5 10 15

5

10

15

20

25

30

35

19.900000

cm

Figure 2.27: Three stages on the evolution of the diagonal crane arm: counterbalance, closer to
triangle, closed triangle.

2.7. Optimization 47

Bricks {4,6,8,10,12,16}
Max Bricks 127

Base (0,-1)–(-16,-1)
x Range (-50,22)
y Range (-1,40)

xy Restriction y > -x
Fixed Bricks 6 at (6,0)

4 at (12,0)
4 at (12,1)
4 at (12,2)
4 at (12,3)

Fitness 1 � � � x � α
x = position of the tip

α = fraction of 250g supported

Table 2.11: Setup of the diagonal crane arm experiment.

2.7 Optimization

A comment that we often receive is that our final structures are not optimized: they contain
redundant bricks that do not serve any apparent purpose. Of course, these irregularities are
useful during the search process. Since we are not rewarding nor punishing for the number
of bricks used, the evolutionary search freely generates variations with different numbers
of bricks. All of them are potentially useful in the process of finding new combinations
with higher fitness.

In a new run of the diagonal crane arm experiment, we added a little reward for light-
ness, inversely proportional to the number of bricks, but three orders of magnitude smaller
than the raw fitness function. Fig. 2.28 shows two solutions for a crane arm the same length
(a fitness value of 24). The structure on the right has a bigger premium, so we will prefer
it.

Since we are willing to sacrifice everything else for the length of the arm, the fitness
weight of the ‘simplicity’ factor has to be very small compared with the raw fitness measure
(arm length). Among cranes of the same size and resistance, however, we prefer those with
a smaller number of bricks. The evolutionary process is not biased against heavier versions
of the crane; it just detects the simpler ones. In the example shown in fig. 2.28, fitness
values of 24.0029 and 24.0040 have nearly identical chances of being selected in a fitness
proportional selection scheme. But among otherwise identical cranes, the premium for
implies that the cleanest one makes the final cut.

48 Chapter 2. Evolution of Adaptive Morphology

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
24.002913

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
24.004095

Figure 2.28: Optimization: Among several structures found with a raw fitness of 24, a small pre-
mium in the fitness function allows us to choose the one that uses less bricks (right). The tall vertical
column (on the optimized version) cannot be eliminated because it acts as a counterbalance for the
load that will be placed at the left tip of the crane.

2.8 Symmetry, Branching, Modularity: Lego Tree

The tree experiment was designed to test out whether some characteristics of natural trees
(branching, symmetry) could evolve as a consequence of the environment. The design of a
tree in nature is a product of conflicting objectives: maximizing the exposure to light while
keeping internal stability.

The experimental design for the tree has a narrow attachment base: Only three knobs.
This provides very little sustentation for cantilevering, so the structure will have to be
balanced to reach out. A “light” resource, coming from directions up, left and right, has
one value per column or row. Light is “absorbed” by the first brick it touches — and the
fitness points given are equal to the distance from the absorption point to the x or y axis.
The highest fitness would be a structure reaching out to completely cover the left, right and
top borders (see fig. 2.29 and table 2.12).

There were no symmetry-oriented operators in our experiments, as could be, for ex-
ample a “reverse” recombination operator that switched the orientation of a subpart. This
means that symmetry is not encouraged by representational biases. Instead, the problem
setup requires balancing the total weight of both sides. The tree did evolve, however, with
a central symmetry with branches reaching out, by evolving the same type of solution sep-
arately on both sides.

The general layout of the evolved tree has several similarities with that of a real tree:
there is a (somewhat twisted) trunk, with branches that become thinner as they reach out,
and “leaves”, bulky formations that maximize the surface at the end of the branch.

The tree is, among all our experiments, the one that most clearly illustrates the emer-

2.8. Symmetry, Branching, Modularity: Lego Tree 49

Light

0

Object

x

Evolving

y

Base

Figure 2.29: Tree experiment

Bricks {1,2,4,6,8,10,12,16}
Max Bricks 127

Base (0,-1)–(2,-1)
x Range (-50,52)
y Range (0,45)
Fitness fL � fR � fT

where
fL

� ∑45
j � 0 max � 0 � � min

�
x : � x � j � � S � �

fR
� ∑45

j � 0 max � 0 � max
�
x : � x � j � � S � �

fT
� ∑52

i � � 50 max � 0 � max
�
y : � i � y � � S � �

S = structure

Table 2.12: Setup of the tree experiment.

50 Chapter 2. Evolution of Adaptive Morphology

gence of nested levels of organization, key indicator of what we call complex organization

� Level zero: individual bricks.

� Level 1: diagonal stacks and horizontal stacks of long bricks (on the branches), stacks
of small bricks (at the tips),

� Level 2: trunk, U shaped branches, T structure at the top.

� Level 3: two tridents on top of each other, and a roof.

� Level 4: the entire structure.

2.8.1 Recombination Example

An interesting observation that illustrates the role of mutations is that the observed organi-
zation we have called “level 3” occurred as a result of one single crossover operation. In
this lucky event (fig. 2.31), the bottom half part was reused to create also the top half part,
discarding all the previous evolution of a top half that did not create a branching structure.

The “branches” organization proved to be evolutionarily more robust than the “fork”
organization found initially, as it survived until the end of the run. The reuse of subparts
and submodules is fundamental to generate these type of discrete transition.

2.9 Discovery is creativity: EvoCAD

Today’s commercial CAD systems may add a mechanical simulator to the usual 3D manip-
ulation tools5. But the new field of Evolutionary Design (ED) [11] has the potential to add
a third leg to computer-aided design: A creative role. Not only designs can be drawn (as in
CAD), or drawn and simulated (as in CAD+simulation), but also designed by the computer
following guidelines given by the operator. Thus we envision future Evolutionary CAD
systems, “EvoCADs.”

An EvoCAD system has the human designer in the main role: the designer has an idea
or concept for a required object. Some of the requirements can be added to the 3D canvas,
creating evolutionary targets that an ED engine uses for evolving a possible design. The
output of this evolutionary engine can be modified, tested and re-evolved as many times as
desired (figure 2.32).

To demonstrate our conception of EvoCAD, we have built a mini-CAD system to design
2D Lego structures. This Lego EvoCAD allows the user to manipulate Lego structures, and

5PTC’s Pro/Engineer software, whose CAD tool can generate output for the mechanical simulator,
Pro/Mechanica, is an example.

2.9. Discovery is creativity: EvoCAD 51

−40 −20 0 20 40

0

10

20

30

40

0.836721

cm

Figure 2.30: Evolved Tree (internal model and built structure)

52 Chapter 2. Evolution of Adaptive Morphology

−40 −20 0 20 40
0

10

20

30

40

0.770050

cm
−40 −20 0 20 40

0

10

20

30

40

0.769917

cm

−40 −20 0 20 40
0

10

20

30

40

0.785030

cm

Figure 2.31: Recombination. An interesting example of a recombination at the highest level, that
creates a recursive structure. The two parents (top) are close relatives, very similar. The root parent
(top left) got the crossover point in the trunk of the structure; bricks colored white were discarded
by the operation. The secondary parent (top right) had its insertion point at the root. The resulting
structure is shown at the bottom. Besides the bricks lost by the root parent’s replacement of a
subtree, other bricks were lost during the development process: the secondary parent lost all its top
bricks (colored white) because they became out-of-bounds, and the central-left branch of the root
parent lost three bricks because the maximum bricks limit (127) was reached. The final version of
the tree (fig. 2.30) evolved from this individual.

2.9. Discovery is creativity: EvoCAD 53

Design-In-Progress evolution

human
designer

Evolutionary Targets
Design

Concept

simulation

Figure 2.32: A conceptual EvoCAD system has two “creative minds”, the human designer and the
ED software. The human designer is in control, and calls upon the remaining elements as tools.
A problem description language (PDL) allows CAD, evolutionary and simulation components to
communicate with each other (bold arrows).

test their gravitational resistance using the same structural simulator we have been using
to do ED with Lego bricks. It also interfaces to an evolutionary algorithm that combines
user-defined goals with simulation to evolve candidate solutions for the design problems.
The results of evolution are sent back to the CAD front-end to allow for further re-design
until a satisfactory solution is obtained.

2.9.1 Evolutionary Algorithm

Instead of initializing the population with a single brick, as in previous experiments, here
we want the current design to be used as a starting point.

To begin an evolutionary run, a starting structure is received by the ED engine, consist-
ing of one or more bricks, and needs to be “reverse-compiled” into a genetic representation
in order to seed the population.

Mutation and crossover operators are applied iteratively to grow and evolve a popula-
tion of structures. The simulator is run on each new structure to test for stability and load
support, and compute a fitness value. Evolution stops when all objectives are satisfied or
when a timeout occurs.

54 Chapter 2. Evolution of Adaptive Morphology

Object type Parameters Comments

brick x, y, size Bricks will compose the initial seed of
the evolving population.

fixed brick x, y, size Bricks that are not modifiable by evolution.
ground x, y, size At least one needed.

One or more grounds support the structure.
load x, y, magnitude Loads that must be supported by the structure.

target point x, y Points that must be touched by the structure.
restriction x, y Points that are unusable.

canvas limits min x, max x, Describes canvas size to evolutionary engine,
min y, max y establishing boundaries for the simulator.

Table 2.13: Brick problem description language (BPDL) symbols are used to send problems and
solutions between evolving engine, CAD screen and simulator

2.9.2 Brick Problem Description Language

We designed a Brick Problem Description Language (BPDL), as an interface between
the evolutionary algorithm, simulator, and the CAD front-end. When the user clicks the
“evolve” button, a BPDL description is sent over the Internet to an evolution server which
evolves a solution for the problem. The result of the evolution is sent back to the CAD us-
ing the same language. The simulator receives BPDL-encoded structures for testing, both
from the CAD (when the human wants to test a structure) and from the evolutionary engine,
which tests every mutated or recombined structure .

2.9.3 Target Points and Target Loads

The goals for the ED engine are deduced from user-defined Restrictions, Target Points and
Target Loads. A structure will be fully satisfactory if it touches all the target points and
target load points, whereas avoiding all the restricted points, and supports all the specified
loads at each target load point.

2.9.4 Fitness Function

All previous experiments used handwritten fitness functions to guide the search For Evo-
CAD we need instead to compute a generic fitness value for any BPDL structure. Although
optimized fitness functions will require further study, the fitness of a structure S has been

2.9. Discovery is creativity: EvoCAD 55

(a) (b)

(c) (d)

Figure 2.33: Sample working session with the EvoCAD program: (a) The user has defined two
grounds and several evolutionary hints: restrictions (x), target (dot) and load (arrow). An initial
brick was laid down. (b) Evolution designed a structure that fulfills all requirements. (c) The user
made cosmetic corrections (d) The structure has been built with Lego bricks.

56 Chapter 2. Evolution of Adaptive Morphology

defined as:

∑
t � targets

1
1 � d � S � t � � ∑

l � loads

1
1 � d � S � l � � ∑

l � loads
d � S � l � � 0

supp � S � l � (2.13)

(where d computes the distance between a point and the nearest brick in the structure,
and supp uses the simulator to compute the fraction of a certain load that the structure
supports)

2.9.5 Results

Our Lego EvoCAD system (figure 2.33) demonstrates how a new kind of application could
employ ED techniques to let the computer not only be a canvas and a simulation tool, but
also create its own designs following the users’ specifications. Our system allows human
and computer to create a design collaboratively, greatly reducing the human effort needed
to craft and optimize a design.

2.10 Discussion

2.10.1 Modeling and the Reality Gap

The properties of bricks are variable. Differences in construction, age, dirt, temperature,
humidity and other unpredictable factors produce seemingly random variations when their
behavior is measured. These factors had to be considered in order to have buildable results.
We have accounted for this problem using a safety margin: our model assigns 20% less
resistance to all the joints involved.

The simplistic simulator described is far from modeling physics to its full detail, yet any
model for modular structures, no matter how accurate, has to compensate for the random
variability in the generic properties of the average brick, using similar methods. The value
of 20% was set intuitively and may require further study, especially as our structures scale
up in size and complexity.

Engineers have been using safety margins for a long time, to deal with all the factors
that cannot be calculated ahead of time. In ALife, evolutionary roboticists have found
unpredictabilities when attempting to simulate the environment for a real robot [72, 98].
One simple technique used in ER is to add random noise to the simulated sensors in order
to generate robust behaviors suitable to be transferred to the real world.

Noise and safety margins are variations on a fundamental principle of conservativeness.
The so-called “reality gap”, which is the difference between the model and the final artifact,

2.10. Discussion 57

does not mean that modeling is useless. But it must be taken into account in order to achieve
successful transfer from simulation to reality. ALife research has addressed the reality gap
problem in different ways, such as:

� Using safety margins, as exemplified by the present work.

� Evolving directly in reality, as in evolution in FPGA’s [133] or robot behaviors [37].

� Evolving adaptable entities, as proposed by Di Paolo [32].

� Use a hybrid model, first evolving in simulation, then transfer to reality to do a final
round of adaptation, has been proposed by our group [110] and implemented (for a
game) in the two-layer evolutionary architecture of Tron (chapter 3).

We agree with Jakobi [70, 71] in going for simulation at the right level, aiming at the as-
pects of reality that insure robust, transferable behaviors. We also think that the method of
simulated evolution has inherent advantages in lieu of the reality gap problem: the dynam-
ics of reproduction and selection subject to mutation lead evolving populations to explore
fuzzy regions — clouds within the solution space.

Those organisms that, when mutated, are likely to be successful, have a reproductive
advantage: their offspring is more likely to survive. This means that inasmuch as geno-
typical and phenotypical variation are linked, evolved solutions will have a tendency to
being robust, in the sense that small variations in their constitution will not incapacitate
them (more likely, they give rise to successful mutants). If this phenomenon is true, then
solutions obtained by evolution implement “by default” a conservative principle based on
kinship. This is an open research question.

2.10.2 Modular and Reconfigurable Robotics

In our 1998 article [48] we proposed that this type of technique should be applied in ER to
evolve the body and brain of a robot simultaneously. We thought that the modular approach
should fit well with the research in modular robots, such as proposed by Yim [139] or
Pamecha [104].

However, the first realization of fully coevolved body and behavior came two years later
with Lipson and Pollack’s crawlers [94]. Instead of a modular parts approach, they use a
continuously deformable architecture, employing a rapid-prototyping machine to build the
evolved components on-the-fly (fig. 2.34).

2.10.3 Movement Planning as Evolution?

Evolutionary algorithms solve a problem by maintaining a population of variant partial so-
lutions and applying recombination operators to them. Those operators can be considered

58 Chapter 2. Evolution of Adaptive Morphology

Figure 2.34: Walking robot evolved by Lipson and Pollack builds further on our paradigm of evolu-
tion of structure under buildability constraints, adding movement and control.

valid, or available operations in a space of configurations. Our brick structures algorithms
are solving problems of spatial arrangement, subject to buildability restrictions, starting
from a known initial configuration and advancing, one step at a time, by legal transforma-
tions. The simulation enforces that each step is physically correct.

The implication is that the succession of genetic transformations that yield to a final
stage can be considered a plan. Problems of planning for spatial arrangement are classic in
AI [35]. One plausible future application of structural evolutionary algorithms is to adapt
the recombination operations to reflect valid reconfigurations of a modular metamorphic
robot. Problems of robot locomotion for example could be solved by evolving a plan for
the desired final configuration from the starting one.

We ran an exploratory experiment which evolves an imaginary amoeba-like creature
made of Lego bricks (fig. 2.35). Once a goal state is obtained, the “family tree” from the
initial to final configurations represents a sequence of valid transformations.

The mutation operations are interpreted as the “valid actions” of the creature (i.e., ex-
tending, retracting or displacing limbs) and recombinations amount to macro operators,
chaining a sequence of actions.

2.10.4 Cellular and Modularity-Sensitive Representations

The problem of neural network representations for evolution of recurrent networks is sim-
ilar to our problem of encoding brick structures. From early naive representations the

2.10. Discussion 59

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0 20 40 60 80 100 120 140 160
0

5

10

cm

Figure 2.35: An imaginary Lego creature evolves a plan to locomote between islands by expanding
and contracting its body in “amoeba” fashion. Each step involves adding, deleting or sliding a limb,
as induced by mutations. Recombination works as macro operator.

60 Chapter 2. Evolution of Adaptive Morphology

concept of ‘developmental’ or ‘cellular’ grammatical encodings emerged [9, 60, 78]. They
increase the efficiency of the GA by reducing the search space, eliminating redundancies
and meaningless codes, and providing meaningful recombination operators.

There is a developmental stage in our experiments, because the genotype builds a phe-
notype by laying down bricks one at at time, and fails whenever the position indicated is
invalid, either because a previous brick is occupying that position already, is out of bounds,
or the maximum numbers of bricks has been reached (see eqs. 2.10, 2.11 and fig. 2.31).
Each failed brick results in the deletion of a subtree.

An interesting alternative, never tested, would have been to delete illegal bricks from
the phenotype but not the genotype, thus allowing for ghost limbs that could reappear later
on. In any case, our representation has no means to represent subroutines or iterations other
than interchanging genetic material via recombination.

There have been studies of modularity in recurrent neural net representations [5, 61],
aiming to improve the GA with automatic creation of libraries of reusable subcomponents.
Structural representations should ultimately aim at the same objective: Finding useful com-
plex blocks and incorporating them in the making of large structures with inherent modu-
larities. Recent work by Hornby, et. al [66] utilizes an L-system generative representation
to evolve walking virtual creatures.

2.10.5 Surprise in Design

Instead of devising an expert system with rules about how to divide a task into subtasks, and
how to carry along with each of those, a system like ours relies on more basic assumptions.
The rules of physics, unlike the rules of design, are not an artificial creation, and this
leads to original designs, because the evolutionary algorithm explores design space in ways
which are not so strongly pre-determined by our culture.

This is the reason why our evolved structures have an alien look, which prompted
Ronald and Sipper to observe that they exemplify “surprising surprise, where we are to-
tally and utterly taken aback” [116, p. 525]. According to them, these Lego artifacts lack
the familiar look that helps us trust and use a structure produced by classic engineering.
However, we see their comments as a strong encouragement, for among the most ambitious
goals of AI is that of expanding the human mind by introducing new ways of thinking. We
believe that useful inventions, no matter how weird they might look in the beginning, are
eventually incorporated into the culture if they are useful. Just as today we trust our lives
to an airplane (which at first glance seems utterly incapable of flight), tomorrow we may
walk over bridges designed by ALife.

2.10. Discussion 61

2.10.6 Conclusions

In machine learning and artificial evolution systems, the more interesting results, such as
Sims’ creatures or expert Backgammon players, are due more to elements of the learn-
ing environment than to any sophistication in the learning algorithm itself [108, 132]. By
keeping inductive biases and ad hoc ingredients to a minimum, we have demonstrated that
interesting real-world behavior can come from a simple virtual model of physics and a
basic adaptive algorithm.

The use of modular building elements with predictable — within an error margin —
properties allows evolutionary algorithms to manipulate physical entities in simulation in
ways similar to what we have seen, for example, in the case of robot control software. The
bits in our artificial chromosomes are not limited to codifying just bits; they are capable of
representing the building blocks of an entire physical structure.

We believe to have only scratched the surface of what is achievable. Combined with
suitable simulators, the recombination of modular components guided by an artificial selec-
tion algorithm is a powerful framework capable of designing complete architectures ready
to be built and used, discovering and exploiting complex properties of the substrate which
are not identical to those explored by human engineers and designers.

62 Chapter 2. Evolution of Adaptive Morphology

Chapter 3

Coevolving Behavior with Live
Creatures

3.1 Introduction

In the 1966 movie classic Fantastic Voyage [1], a group of humans were shrunk and inserted
inside a human body to cure a disease. Sixteen years later, Tron [137] shrunk film heroes
into a new fantastic domain: the world inside the computer. This new pop icon sprang
up from the massive impact that the 8-bit microprocessor had in our culture, bringing us
personal computers and an explosion of arcade video games.

Virtual worlds as studied by Artificial Life are inhabited by creatures that reproduce,
learn and evolve — with varying degrees of physical realism — without human participa-
tion. For the virtual worlds of video games, instead, humans are invited but the emphasis is
on the visual appeal: artificial opponents are present but they rely on access to the internal
variables of the game more than artificial adaptation — they are not artificial life beings.

Robots interact with physical reality and live creatures: they are embodied. But robotics
research is difficult because the real world brings with it limitations of space, budget, engi-
neering and speed. A video-game instead, is a simulated world where human intelligence
can meet artificial adaptation, through the immersive experience of virtual reality.

Here we posit that the science of Artificial Life should employ the metaphors of virtual
realities and video games to attain knowledge about adaptive behavior, putting artificial
agents in contact with live creatures, by introducing them into a simulated world. Virtual
worlds could enable ALife researchers to study how artificial and natural intelligence coe-
volve, adapting to each other. Moreover, with the revolution of the Internet, these worlds
can reach thousands of human subjects and artificial learning can arise from the combined
contributions of many individuals.

We present the first work that evolves agents by having them play against humans. The

63

64 Chapter 3. Coevolving Behavior with Live Creatures

recreational nature of a simple video game attracts people and creates a niche for mutual
adaptation between people and agents, providing the substrate for the first experience in
learning a game through the massive training by thousands of human subjects.

The physical features of our model are limited to the simulation of a two-dimensional
space with walls; but they are sufficient to observe the emergence of navigational behaviors
such as wall following and obstacle avoidance.

Parts of this research have been reported on the following publications: [44,50,51,125].

3.2 Background and Related Work

3.2.1 Coevolution

In nature, organisms and species coexist in an ecosystem; each species has its own place or
niche in the system. The environment contains a limited number and amount of resources,
and the various species must compete for access to those resources. Through these inter-
actions, species grow and change, each influencing the others’ evolutionary development.
This process of reciprocal adaptation is known as coevolution.

In evolutionary computation, the term “coevolution” has been used to describe any
iterated adaptation involving “arms races”, either between learning species or between a
learner and its learning environment. Examples of coevolutionary learning include the
pioneering work by Hillis on sorting networks [65], Backgammon learning [107,108,131],
predator/prey games [25, 101, 114] and spatial distribution problems [74, 75]. The present
work extends the coevolution paradigm to include the case where the changing environment
results from the adaptive behavior of a heterogeneous population of human beings.

3.2.2 Too Many Fitness Evaluations

The need to evaluate the fitness of a large number of individuals is a critical factor that
restricts the range of application of GA’s. In many domains, a computer can do these
evaluations very fast; but in others, the time spent by this process may render the GA
solution impractical. Examples of the latter case include a computer playing a game with
people and trying to learn from experience or a robot attempting to complete a task in the
physical world.

Robots that are reliable enough can run repeated trials of the same experiment over
a long time in order to learn using evolutionary computation techniques. Floreano and
Mondada [37, 38] run their robots for several days in order to evolve controllers for basic
tasks. Most evolutionary roboticists have preferred to rely on computer simulations to
provide them with faster evaluations, but the crafting of appropriate simulators is also very
difficult [98].

3.2. Background and Related Work 65

Evolution through interaction with humans faces similar difficulties. “Blind watch-
maker” systems, where the user ranks every generation manually, have been successfully
used to evolve shapes [30, 86]; even with the extreme limitations imposed by the need to
evaluate each individual manually (minimal population sizes, small number of generations)
those results prove the great potential of evolution in a human-generated landscape.

But with a human in the loop, it is impossible to attain the large numbers of generations
and evaluations employed in evolutionary experiments. Humans — unlike robots — get
tired of repetitive tasks. Moreover, humans act irregularly; they may react differently each
time when faced with the same situation more than once. If users provide fitness evalua-
tions, adaptive software would need to be able to filter out such sources of “noise” provided
naturally by human users.

We believe that the Internet, with millions of human users, could be fertile ground
for the evolution of interactive adaptive software. Instead of relying on a few selected
testers, the whole community of users together constitutes a viable gauge of fitness for an
evolutionary algorithm that is searching to optimize its behavior.

3.2.3 Learning to Play Games

Self-Play or Play against People?

A machine that learns by playing games may acquire knowledge either from external ex-
pertise (playing with a human or human-programmed trainer), or by engaging in self-play.

Tesauro [131] was able to obtain strong Backgammon players, having one neural net-
work play itself and adjusting the weights with a variant of Sutton’s TD algorithm [128].
Although it worked for Backgammon, self-play has failed on other domains. Our group
obtained similar results to those of Tesauro using hill-climbing, a much simpler algo-
rithm [109]. This demonstrated that elements unique to Backgammon, more than the TD
method, enable learning to succeed. Self-play remains an attractive idea because no exter-
nal experience is required. In most cases, however, the learning agent explores a narrow
portion of the problem domain and fails to generalize to the game as humans perceive it.

Attaining knowledge from human experience has proven to be difficult as well. To-
day’s algorithms would require millions of games, hence rendering training against a live
human impossible in practice. Programmed trainers have also led to the exploration of
an insufficient subset of the game space: Tesauro [130] tried to learn Backgammon using
human knowledge through a database of human expert examples, but self-play yielded bet-
ter results. Angeline and Pollack [4] showed how a genetic program that learned to play
tic-tac-toe against several fixed heuristic players was outperformed by the winner in a self-
playing population. Most of today’s expert computer players are programmed by humans;
some employ no learning at all [103] and some use it during a final stage to fine-tune a few
internal parameters [7]. A recent exception is Fogel’s checkers player [40], which achieved

66 Chapter 3. Coevolving Behavior with Live Creatures

a “Class A” rating by coevolutionary self-play alone.
Real-time, interactive games (e.g. video games) have distinctive features that differen-

tiate them from board games. Koza [84] and others [117] evolved players for the game of
Pacman. There has been important research in pursuer-evader games [25,101,114] as well
as contests in simulated physics environments [123]. But these games do not have human
participants, as their environments are either provided by the game itself, or emerge from
coevolutionary interactions inside a population of agents.

3.2.4 Intelligence on the Web

A space where agents can thrive and evolve

It has been suggested that intelligence should be present on Internet sites in the form of
intelligent agents. According to this hypothesis, such environments will contain software
agents that interact with human users and adapt according to the behavior displayed in
those interactions [93].

With Tron we are exploring the hypothesis that one of the forms in which this idea
may be realized is through the presence of species of agents evolving through their inter-
actions with the rest of the web. From this perspective, the Internet is seen as a complex
environment with virtual niches inhabited by adaptive agents.

Here we propose that learning complex behaviors can be achieved in a coevolutionary
environment where one population consists of the human users of an interactive software
tool and the “opposing” population is artificial, generated by a coevolutionary learning
engine. A niche must be created in order for the arms race phenomenon to take place,
requiring that:

1. A sufficiently large number of potential human users must exist.

2. The artificial population must provide a useful environment for the human users, even
when — in the early stages — many instances perform poorly.

3. An evaluation of the performance of the artificial population must be measurable
from its interaction with the human users.

The experimental learning environment we created for the game Tron met these require-
ments. First, the game is played in a Java applet window on our web site. As Tron was
being launched, Java was a new thing and there was a great interest on any applications,
particularly games. So by advertising our site in Java games lists we were able to attract
visitors. Second, our earlier experiments with Tron had shown us that, by self-play, we
could produce players that were not entirely uninteresting when faced by humans. And
third, each round of Tron results in a performance measure: a win, a loss or (rarely) a tie.

3.3. Experimental Model 67

Figure 3.1: Light Cycles. Still from the movie Tron.

3.3 Experimental Model

3.3.1 Tron Light Cycles

Tron is a popular video game that has been implemented in arcades and PC’s with different
rule variations. It is based upon a segment of the movie Tron [137], where the characters
rode Light Cycles, futuristic motorcycles that leave a solid trail behind them (fig. 3.1).

The Tron-Light Cycles game is a contest between opponents who move at constant,
identical speeds, erecting walls wherever they pass and turning only at right angles. As
the game advances, the 2D game arena progressively fills with walls and eventually one
opponent crashes, losing the game.

Tron requires quick reactions and spatial-topological reasoning at the same time. In our
version, the two players (one human, one agent) start in the middle region of the screen,
moving in the same direction. The edges are not considered “walls”; players move past
them and reappear on the opposite side, thus creating a toroidal game arena. The size of
the arena is 256 � 256 pixels.

Fig. 3.2 shows the Java version of our Tron game, running inside an Internet browser
application. A Java agent is constrained by the Java Virtual Machine of the browser, an
environment very limited in speed and resources. At the time when our experiment was

68 Chapter 3. Coevolving Behavior with Live Creatures

conceived, Java was a new technology and only small, simple programs would run reliably
on commercial web browsers. The minimalistic memory, CPU and graphics requirements
of Tron made it an ideal choice for the experiment.

Initial Experiment

In exploratory experiments [43], we used a Genetic Algorithm to learn the weights of a
perceptron network that played Tron. We found that simple agents played interestingly, but
also that coevolution may not always lead to robust strategies. Collusion [107] was likely
to appear in the form of “live and let live” strategies such as the one shown in figure 3.3,
where agents avoid confrontation and “agree” to tie, splitting the point.

3.3.2 System Architecture

Tron is implemented as a client/sever application with three main components (fig. 3.4),

� Java Front End. A Java applet that runs on web browsers, playing Tron between a
human and an agent.

� Main (Foreground) Server. An Internet web server and SQL database that hosts
a population of Tron agents, evolving it against humanity. This server records all
games played, computes fitness and decides which agents live and die.

� Novelty (Background) Engine. An application that evolves Tron agents by self-play.
It sends new agents to the Foreground Server whenever they are needed, and receives
veteran champions to be used as fitness measures and/or seeds for a new population.

3.3.3 Tron Agents

Tron agents perceive the world through sensors that evaluate the distance in pixels from the
current position to the nearest obstacle in eight relative directions: front, back, left, right,
front left, front right, back left and back right. Every sensor returns a maximum value of 1
for an immediate obstacle, a lower number for an obstacle further away, and 0 when there
are no walls in sight (figs. 3.5 and 3.2).

Each agent or “robot” is a small program, representing one Tron strategy, coded as
a Genetic Programming (GP) s-expression [84], with terminals {A, B, ����� , H (the eight
sensors) and ℜ (random constants between 0 and 1)}, functions {+, -, * (arithmetic opera-
tions),% (safe division), IFLTE (if less or equal-then-else), RIGHT (turn right) and LEFT
(turn left)}, maximum depth of 7 and maximum size of 512 tokens. An agent reads its

3.3. Experimental Model 69

Figure 3.2: The Tron page: Tron runs as an applet inside an Internet browser. Arrows have been
added to indicate direction of movement, and dotted lines to show the sensors of an artificial agent.

70 Chapter 3. Coevolving Behavior with Live Creatures

Figure 3.3: Live and let live: Two artificial Tron players make tight spirals in order to stay as far
from the opponent as possible. This form of collusion is a frequent suboptimal equilibrium that
complicates artificial learning through self-play.

Java
Applet

User

keyboard internet local
network

PC

results Agent
Population

Creation
of New
Agents

agents

new agents

SERVER NOVELTY
ENGINE

agent−agent gameshuman−agent games

Figure 3.4: Scheme of information flow. Agents travel to users’ computers to play games. Those
with poorest performances are eliminated. A novelty engine creates new players. The better ones
are added to the population, filling the empty slots.

3.3. Experimental Model 71

A

B

C

DEF

G

H

Figure 3.5: A Tron agent perceives the environment through eight distance sensors.

sensors and evaluates its s-expression every third time step: if a RIGHT or LEFT function
is output, the agent makes the corresponding turn; otherwise, it will keep going straight.

The simple sensory capabilities imply that an agent’s view of the game is quite re-
stricted: the position of the opponent is unknown, and so is the complete view of the game
situation.

Tron agents have no state variables, so the behavior of the agent is purely reactive,
based solely on 7 distance sensors1. Whereas humans may base their game decisions on
topological considerations (e.g. “is this region open or closed?”), or follow plans, the
complexities of a robot’s behavior must emerge from the interaction with the opponent
along the game.

3.3.4 Java Applet

When a visitor opens the Tron web page2 , her browser loads and starts a Java applet. The
applet (fig. 3.2) receives the GP code for an agent from our web server and uses it to play
one game with the human user. The human moves by pressing the arrow keys and the agent,
by evaluating its s-expression. When the game ends, the applet reports the result (win or

1Sensor “E”, which point backwards, sees the agent’s own trace as an immediate obstacle, so it always
returns 1.0.

2http://www.demo.cs.brandeis.edu/tron

72 Chapter 3. Coevolving Behavior with Live Creatures

loss) to the server, and receives a new agent for the next game. This cycle continues until
the human stops playing.

Our Java Tron application consists of three modules: the Arena updates players posi-
tion and direction, and their traces, updating the display; the Human Player module lis-
tens to keystrokes and changes the Human’s orientation accordingly; a GP Player module
computes sensor values and feeds them to a GP interpreter that evaluates an agent’s s-
expression. This module contacts the server over the web, receiving GP code and sending
back game results.

3.3.5 Evolving Agents: The Tron Server

The Tron system maintains a population of 100 “live” agents on the foreground server. For
each game, an agent is drawn at random from it. The game results are stored in a database.
A generation lasts until all 100 agents have played a minimum number of games: new
agents play at least 10 games, while veterans from previous generations play only 5 games.

With a proportion of 90 veteran agents and 10 rookies on the population, a generation
consists of approximately 450 games by veterans and 100 by novices, thus untested agents
play about 18% of all games.

When all agents have completed their minimum number of games, the current genera-
tion finishes: agents are sorted by fitness; the worst 10 are eliminated and replaced by 10
fresh ones, supplied by a the novelty engine. A new generation begins (fig. 3.4).

Pseudocode of the foreground Tron server

1. Start with an agent population A of 100 robots.

2. For each a � A let ca � 0

3. (Loop)
While min

�
ca 	 a � A ��� 10, wait for events:

(a) On event that a Java applet requests a game over the Internet,
Select an agent a � A with probability

P � a � � w � a �
∑w � x � 	 x � A 	 w � a � � max

�
1 	 10 � ca �

and send it to the applet.

(b) On event that an applet reports the results of a game between human h
and agent a,
Save in database:
Game result (win, tie, or lose); human id, agent id, time stamp, and

3.3. Experimental Model 73

list of moves.
If a � A then let ca � ca � 1

4. Sort A according to fitness, A � a1 	�
�
�
�	 a100 	 and let V � a1 	�
�
�
�	 a90

5. Fetch 10 new agents from novelty engine and call them R

6. For each a � V let ca � 5

For each a � R let ca � 0
Let A � V � R

7. Go to (Loop)

3.3.6 Fitness Function

Defining an appropriate fitness measure to rank our agents has proven difficult. In principle
we defined a variant of fitness sharing [8] by giving points for doing better than average
against a human player, and negative points for doing worse than average. The fitness of
agent a was defined as:

F � a � � ∑�
h:p

�
h � a ��� 0 �

�
s � h � a �
p � h � a � �

s � h �
p � h ���
	 1 � e

p � h �
10 (3.1)

where s(h,a) is the number of games lost minus the number of games won (score) by a
human opponent h against a; p(h,a) is the total number of games between the two; s(h) is
the total score of h; and p(h) is the number of games that h has played. All games played

are counted, not just those that belong to the current generation. The factor 	 1 � e
p � h �
10 is

a confidence measure that devalues the average scores obtained against humans who have
played only a small number of games.

A second part of the experiment assayed a new definition of fitness, based on our sta-
tistical analysis of players’ strengths. This problem is discussed in detail in section 3.6.

3.3.7 Novelty Engine

Evolutionary algorithms create new entities and evaluate their fitness, introducing varia-
tions on the existing population through the use of crossover and mutation operators. Such
recombinations often yield uninteresting individuals, identical to or worse than their par-
ents. Typically, evaluations are rapid and unfit children are quickly filtered out. However,
in our case, this approach would be wasteful since evaluation is obtained from a sparse
resource — precious interactions between agents and humans.

74 Chapter 3. Coevolving Behavior with Live Creatures

The Tron architecture uses a separate novelty engine as the source of new individuals.
This module coevolves a population of 1000 agents by playing them against each other. The
best robots are chosen to be incorporated into the main population. Even though self-play
does not provide enough information to know which strategies will perform best against
people, this method is much better than blind recombination for creating interesting new
agents.

The novelty engine is a continuously running generational GA with 50% elitism. Every
agent in the population plays against a training set T of t � 25 robots. Fitness is evaluated,
and the bottom half of the population is replaced by random mating with crossover of the
best half. The fitness function is defined as follows:

FT � a � � ∑�
a � � T :pt

�
a � a � ��� 0 � pt � a � a � �

l � a � � (3.2)

where T is the training set, pt(a, a’) = {0 if a loses against a’, 0.5 if they tie and 1 if a
wins} and l(a’) is the number of games lost by a’. Thus we give more points for defeating
good players than bad players.

The training set consists of two parts. There are f fixed members which come from
the foreground process. The remaining t � f members of the training set are replaced each
generation with a fitness sharing criteria. The new training set T’ is initialized to the empty
set and then new members are added one at a time, choosing the highest according to the
following shared fitness function:

FT � T � � a � � ∑
a � � T

pt � a � a � �
� 1 � ∑a � � � T pt � a � � � a � (3.3)

This selection function, adapted from Rosin [118], decreases the relevance of a case
that has already been “covered”, that is, when there is already a player in the training set
that beats it.

At the end of a generation, the bottom half of the population is dropped, and so is the
(changing) part of the training set. 500 new agents are created by (uniform) random mating
(crossover), with a mutation rate of 0.04 (a parent’s subexpression has a 4% chance of
being replaced by a random new expression instead).

Feedback from Main Population to Novelty Engine

With the main population/novelty engine setup, the idle time — while the system is pa-
tiently waiting for human games to come in3 — is devoted to the fabrication of the best

3Averaging 100 thousand games per year (0.2 per minute), the pace of human-agent interaction is between
3 and 4 orders of magnitude slower than our C code, capable of playing about 1000 games per minute.

3.3. Experimental Model 75

opponents we can come up with.
It is expected that an evolutionary algorithm should increase the quality of the new

entities with every each generation. If there was no feedback from the front end back to the
novelty engine, the latter would remain oblivious to the information being collected by the
selective process acting on the foreground. We have proposed and implemented two ways
for surviving agents to come back and reproduce in the novelty engine.

1. Using them as trainers. A reasonable setting for coevolving Tron agents by self-play
alone would have f � 0 � By setting f � 15, some of the champions-against-people
come back to the novelty engine to act as trainers. The hope is that, by transference,
new agents are favored which are themselves good against people.

2. Reintroducing them in the population. Successful agents can be simply reintroduced
in the population to let them compete with the other coevolving robots and reproduce,
provided they are successful against their peers.

Tunable Parameters

The novelty engine has three parameters that have changed at different points in the exper-
iment.

� MAXGEN. Every time the foreground server ends a generation, it fetches ten new
rookies, the current champions-vs.-robots, to become part of the main population.
To avoid the effects of convergence, which could lead to the same agents being sent
repeatedly, the background population is restarted every once in a while. The nov-
elty engine checks the number of generations g that the present population has been
evolving for. If g > MAXGEN, then the present population is killed and evolution
starts with a fresh random population.

� f. When the novelty engine restarts, it fetches f new agents from the foreground that
become the fixed part of the training set.

� SEED. This is a boolean parameter. Upon restart of the coevolutionary run, either
1000 new random agents are created or, if SEED is true, the current 100 champions-
against-people are reintroduced along with 900 random ones — the foreground pop-
ulation is used as a seed for the background.

Pseudocode of the Novelty Engine

1. (Reset)
Create a population P � � p1 	�
�
�
�	 p1000 � of random robots
and a random training set T2 of t � f agents.

76 Chapter 3. Coevolving Behavior with Live Creatures

2. (Seed)
If option SEED is true,

(a) fetch 100 best from main population

(b) replace
�

p901 	�
�
�
�	 p1000 � with them

3. (Refetch)
Fetch f best agents from the main server
and call this group T1

4. Let g � 0

5. Repeat forever

(a) Let T � T1 � T2

(b) Play each a � P against each a
� � T

(c) Sort P � � p1 	�
�
�
�	 p1000 � according to eq. (3.2)

(d) For i � 1 to 500
Select random a1 	 a2 �

�
p1 	�
�
�
�	 p500 � and

replace pi � 500 with a random crossover of a1 and a2

(e) Let T
� � �

, then for i � 1 to t � f
add a new agent to T

�
by eq. (3.3).

Let T2 � T
�

(f) Let g � g � 1

(g) If the main population has finished a new generation, then

i. Send
�

p1 	�
�
�
�	 p10 � to main population as next group of rookies

ii. If g � MAXGEN then go to (Reset) else goto (Refetch)

3.4 Results

Our server has been operational since September 1997; we have collected the results of all
games between agents and humans; the system is still running. The results presented in
this section are based on the first 525 days of data (204,093 games). A total 4037 human
players and 3512 agent players have participated, each of them having faced just some of all
potential opponents (fig. 3.6). The “aftermath” section (3.6) discusses a new configuration
of the system and the results obtained with it.

3.4. Results 77

Figure 3.6: Who has played whom: A dot marks every human-robot pair who have played each
other at least once. Both populations are sorted by the date of their first appearance. The long
vertical lines correspond to robots that have been part of the population for a long time, and thus
have played against most newcomers.

78 Chapter 3. Coevolving Behavior with Live Creatures

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game no. x 1000

C
om

pu
te

r
w

in
s

/ t
ot

al
 g

am
es

Figure 3.7: Evolution of the win rate: WR sampled in groups of 1000 games.

3.4.1 Win Rate (WR)

An intuitive performance measure is the win rate (WR), which is the fraction of games that
the artificial players win;

WR � games won
games played

(3.4)

The average win rate over the total number of games played is 0.55, meaning that 55%
of all games completed resulted in agent victories.

The WR has been changing over time (fig. 3.7), in an oscillating fashion. This noisy
behavior is a natural phenomenon in a coevolutionary environment, and occurs here more
noticeably since one of the evolving populations consists of random human players. Each
of the 4037 persons sampled here has a different level of expertise and has played a different
number of games (another variable factor is the speed of the game on the user’s machine,
which may have a slower pace when the Java environment is too slow4).

There is a visible trend toward improvement. Whereas at the beginning of our experi-
ment, the Tron system won about 30% of its games, by the end of the period it wins about
80% of its games. This is a strong indication of the improvement of the system’s perfor-

4Our Java Tron uses a millisecond sleep instruction to pace the game, but different implementations of the
Java Virtual Engine, on different browsers, seem to interpret it with dissimilar accuracies. The effect is more
noticeable on machines with slow CPUs and old browsers.

3.4. Results 79

mance.
An increasing WR could be hiding other phenomena besides improvement in the quality

of game of the Tron system. Humans could be playing worse now than before, for example,
for whatever the reasons; or novices could be dominating the human population and playing
the bulk of games. In the next section we describe a statistical technique that yields a much
finer measure, avoiding the pitfalls of WR.

3.4.2 Statistical Relative Strength (RS)

To further analyze performance and learning within the Tron system, we employ a paired-
comparisons maximum likelihood model.

Paired comparisons models are statistical methods that estimate the relative strengths
or preferences of a group of participants. The “Elo ratings” for Chess, conceived by A.
Elo [34] are one example of such method. Chess poses some problems akin to ours, as
one would like to ask, say, “was Capablanca better than Fisher?” Even if the two players
did play each other, one might not have been at the peak of his abilities at the time. All
the information from opponents they played in common, and how well they performed,
should be put together. We have followed the maximum likelihood approach described by
Joe [73], applied by the author to the Chess problem among others.

Elo’s model — used today for many other games, including the so-called “game lad-
ders” — assigns a low ranking to a novice, who can slowly climb up as she wins games
against other ranked players. Maximum likelihood statistics such as Joe’s are better suited
to our problem because they compute the most feasible ranking for all players, without
presuming that young ones are bad.

Paired Comparisons Analysis

The goal of paired comparison statistics is to deduce a ranking from an uneven matrix
of observed results, from which the contestants can be sorted from best to worst. In the
knowledge that crushing all the complexities of the situation into just one number is a large
simplification, one wishes to have the best one-dimensional explanation of the data.

Each game between two players (Pi, P j) can be thought of as a random experiment
where there is a probability pi j that Pi will win. Games actually observed are thus instances
of a binomial distribution experiment: Any sample of n games between Pi and P j occurs
with a probability of

P � sample � � p
wi j
i j � 1 � pi j � n � wi j (3.5)

where wi j is the number of wins by player Pi.
We wish to assign a relative strength (RS) parameter λi to each of the players involved

in a tournament, where λi � λ j implies that player Pi is better than player P j.

80 Chapter 3. Coevolving Behavior with Live Creatures

A probability function F such that F � 0 � � 0 � 5 and F � x � � 1 � F � � x � (for all x � ℜ) is
chosen arbitrarily; following [73] we use the logistic function

F � x � � 1
1 � e � x (3.6)

The model describes the probabilities pi j as a function of the RS parameter λi for each
player:

pi j
� F � λi � λ j � (3.7)

so the outcome of a game is a probabilistic function of the difference between both oppo-
nent’s strengths. The conditions imposed on F imply that players with equal strength are
estimated to be equally likely to win or lose, and that the probability of Pi winning is equal
to that of Pj losing.

The observed data is a long sequence of games between opponent pairs, each one a
either a win or a loss. According to eq. 3.7, the probability of that particular sequence was

P � ∏
i � j F � λi � λ j � wi j � 1 � F � λi � λ j ��� ni j � wi j (3.8)

for any choice of λi’s.The set of λi’s that best explains the observations is thus the one
that maximizes this probability. The well known method of maximum likelihood can be
applied to find the maximum for eq. 3.8, generating a large set of implicit simultaneous
equations on λ1 � ����� λM that are solved by the Newton-Raphson algorithm.

An important consideration is, the λi’s are not the true indeterminates, for the equations
involve only paired differences, λi � λ j. One point has to be chosen arbitrarily to be the
zero of the RS scale.

A similar method permits assigning a rating to the performance of any smaller sample
of observations (one player for example): fixing all the λi’s on equation (3.8), except one,
we obtain

wins � ∑
i

F � λ � λi � (3.9)

where λ is the only unknown — all the other values are known. The single indetermi-
nate can be found with identical procedure.

A player’s history of games is a vector � x1 � ����� xN � of win/loss results, obtained against
opponents with known RS’s λi1 � ����� � λiN , respectively. Eq. (3.9) can be solved iteratively,
using a “sliding window” of size n � N, to obtain strength estimates for � x1 � ����� xn � , then
for � x2 � ����� xn � 1 � , and so on. Each successive value of λ estimates the strength with respect
to the games contained in the window only.

With this window method we can do two important things: analyze the changing per-
formance of a single player over time, and, putting the games of a group of players together

3.4. Results 81

into a single indeterminate, observe their combined ranking as it changes over time.
Altogether, the paired comparisons model yields:

� A performance scale that we have called Relative Strength (RS). The zero of the
scale is set arbitrarily (to the one of a fixed sample player: agent 460003).

� An ordering of the entire set of players in terms of proficiency at the game, as given
by the RS’s.

� An estimation, for each possible game between two arbitrary players, of the win-lose
probability (eq. 3.7). With it, an estimation of exactly how much better or worse one
is, as compared to the other.

� A way to measure performance of individuals or groups over time.

� A possible fitness measure: the better ranked players can be chosen to survive.

Paired comparisons statistics are an open research area. Desirable improvements include:
better accuracy, lower computational costs, estimation of error, and time sensitivity. New
models such as Glickman’s [54] may offer improvements on those areas.

3.4.3 Analysis of Results

In an effort to track the Red Queen (see section 3.6), without having to play games outside
those involved in the coevolutionary situation, we can think of each player as a relative
reference. In Tron, each agent has a fixed strategy and thus constitutes a marker that gives
a small amount of evaluation information. A single human, as defined by their login name
and password, should also be relatively stable, in the short term at least. The paired com-
parisons model described above is a powerful tool that uses the information of all the in-
terwoven relationships of a matrix of games (fig. 3.6) at the same time. Every player, with
his/her/its wins and loses, contributes useful bits of information to evaluate all the rest.

There are degenerate situations where the present model would give no answer. If one
has knowledge of games between players A and B for example, and also between C and
D, but nor A nor B have ever played C or D, there is no connectivity, and consequently
no solution to equation 3.8. In the Tron case, connectivity is maintained throughout the
experiment by the multitude of players who come and go, coexisting for a while with other
players who are also staying for a limited time. The whole matrix is connected, and the
global solution propagates those relative references throughout the data set.

An increasing WR (section 3.4.1) is not a whole proof that our system was evolving
towards better agents. It could be the case, for example, that humans became increasingly
sloppy, losing more and more of their games while agents stayed more or less the same.

82 Chapter 3. Coevolving Behavior with Live Creatures

(a) Best Players
Strength Player ID

1. 3.55 887
2. 1.60 1964
3. 1.26 388
4. 1.14 155
5. 1.07 1636
6. 1.05 2961
7. 0.89 3010008
8. 0.89 3100001
9. 0.84 1754
10. 0.81 2770006
11. 0.81 3130004
12. 0.76 2980001
13. 0.70 1860
14. 0.66 2910002
15. 0.62 3130003

(b) Worst Players
Strength Player ID

1. -4.64 2407
2. -3.98 2068
3. -3.95 3982
4. -3.88 32
5. -3.75 1986
6. -3.73 33
7. -3.69 3491
8. -3.41 2146
9. -3.39 2711

10. -3.36 3140
11. -3.31 1702
12. -3.31 1922
13. -3.30 2865
14. -3.27 2697
15. -3.22 2441

Table 3.1: Best players and worst players lists. Only players with 100 games or more are been
considered (244 humans, 391 robots). ID numbers greater than 10000 correspond to artificial agents.

Applying the paired comparisons model gave us more reliable information. We com-
puted the RS for every computer and human player5. For the first time we were able to
compare agents and humans with each other: fig. 3.1 lists the 15 best (a) and worst (b)
players. Each human and robot is labelled with a unique ID number: humans were num-
bered consecutively by their first appearance, and robots have id numbers all greater than
10,000 (the first 3 digits encode the generation number).

The top players table (fig. 3.1a) has 6 humans at the top, the best agent so far being
seventh. The best player is a human, far better than all others: according to eq. 3.7, an
estimated 87% chance of beating the second best!. This person must be a genius.6

The difference between the top group of human players (RS around 1.1) and the top
agent players (RS’s around 0.7) is about 60%. Seven out of the best 15 players are agents.
The best agent, R. 301008, is estimated to be better than 97.5% of the human population.

5Players who have either lost or won all their games cannot be rated, for they would have to be considered
infinitely good or bad. Such players convey no information whatsoever to rank the others. Losing against a
perfect player, for example, is trivial and has no information contents. Perfect winners/losers have occurred
only on players with very little experience. There is one human (no. 228) who won all 37 games he/she
played. Should we consider him/her the all-time champion? Perhaps. The present model does not compre-
hend the possibility of a perfect player. To eliminate noise, we only consider players with 100 games or more.
All “unrated” players are below this threshold.

6Or perhaps, a user with an old computer, running the applet below its normal speed.

3.4. Results 83

−6 −5 −4 −3 −2 −1 0 1 2 3 4
0

100

200

300

400

500

600

700

800

Relative strength

F
re

qu
en

cy
agents
Humans

Figure 3.8: Strength distribution curves for agents and humans.

The worst players table (fig. 3.1b) is composed of all humans. This does not indicate
that all agents are good but rather, that most bad agents are eliminated before reaching 100
games.

3.4.4 Distribution of Players

The global comparative performance of all players can be seen on the distribution curves
(fig. 3.8). Here we have plotted all rated players, including those with just a few games. The
fact that some agents curve have large RS values indicates that the coevolutionary engine
that produces new Tron players, has managed to produce some players that are good against
people. But at the same time, the wide spread of agent levels, from very bad to very good,
shows us that there is a reality gap between playing against other robots and playing against
humans: all agents that ever played against humans on the website were selected among
the best from an agent-agent coevolutionary experiment that has been running for a large
number of generations: our novelty engine. If being good against agents was to guarantee
that one is also good against people, robots would not cover a wide range of capacities:
they would all be nearly as good as possible, and so would fall within a narrow range of
abilities.

84 Chapter 3. Coevolving Behavior with Live Creatures

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

4

R
el

at
iv

e
st

re
ng

th

Human player no.

(a)

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

4

R
el

at
iv

e
st

re
ng

th

Robot player no.

(b)

Figure 3.9: New humans (a) are about as good as earlier ones on average. New robots (b) may
be born better, on average, as time passes, benefiting from feedback from agent-human games and
improvements on the configuration of the novelty engine.

3.4.5 Are New Generations Better?

It seems reasonable to expect that new humans joining the system should be no better, nor
worse, on average, than those who came earlier. This is indeed the case, according to the
data on fig. 3.9a: both good and not-so good people keep joining the system. Tron agents
(fig. 3.9b) do show differences.

Our attempt for progressively increasing the quality of new agents produced by the
novelty engine, by having them train against those best against humans, was partially suc-
cessful: graph 3.9b shows a marginal improvement on the average strength of new players,
first to 2500-th. But noticeable better agents beginning at 2800 come to confirm the previ-
ous findings of other researchers [4, 130] in the sense that the coevolving population used
as fitness yields more robust results than playing against fixed trainers who can be fooled
by tricks that have no general application. This point is discussed in detail in section 3.7.

3.5. Learning 85

0 200 400 600 800 1000 1200 1400
−2

0

2
W

in
 s

iz
e=

20

0 200 400 600 800 1000 1200 1400 1600
−2

0

2

W
in

 s
iz

e=
50

0 200 400 600 800 1000 1200 1400 1600
−2

0

2

W
in

 s
iz

e=
10

0

0 200 400 600 800 1000 1200 1400 1600
−2

0

2

W
in

 s
iz

e=
20

0

Game no.

Figure 3.10: Performance of robot 460003 — which was arbitrarily chosen as the zero of the
strength scale — observed along its nearly 1600 games, using increasingly bigger window sizes.

3.5 Learning

We wish to study how the performance of the different players and species on this exper-
iment has changed over time. Fig. 3.10 shows the sliding window method applied to one
robot. It reveals how inexact or “noisy” the RS estimates are when too few games are put
together. It is apparent that 100 games or more are needed to obtain an accurate measure.

Since each individual agent embodies a single, unchanging strategy for the game of
Tron, the model should estimate approximately the same strength value for the same agent
at different points in history. This is indeed the case, as seen for example on figs. 3.10
(bottom) and 3.11a.The situation with humans is very different: people change their game,
improving in most cases (fig. 3.11b).

3.5.1 Evolution as Learning

The Tron system was intended to function as one intelligent, learning opponent to challenge
humanity. The strategy of this virtual agent is generated by the random mixture of Tron
robots in the evolving population; 18% of the games being played by new, untested agents,
exploring new strategy space. The remaining games are played by those agents considered
the best so far — survivors from previous generations, exploiting previous knowledge. In

86 Chapter 3. Coevolving Behavior with Live Creatures

0 500 1000 1500
−4

−3

−2

−1

0

1

2

Game no.

R
el

at
iv

e
st

re
ng

th
 (

w
in

do
w

 s
iz

e=
40

0)

(a)

460003
510006
320005
100008

200 400 600 800 1000 1200 1400 1600 1800
−4

−3

−2

−1

0

1

2

Game no.

R
el

at
iv

e
st

re
ng

th
 (

w
in

do
w

 s
iz

e=
40

0)

(b)

1754
1989
2961
2645
 155
1687

Figure 3.11: (a) Robot’s strengths, as expected, don’t change much over time. Humans, on the other
hand, are variable: usually they improve (b).

terms of traditional AI, the idea is to utilize the dynamics of evolution by selection of the
fittest as a way to create a mixture of experts that create one increasingly robust Tron player.

Solving equation (3.9) for all of the computer’s games put together yields the perfor-
mance history of the whole system considered as a single playing entity. Fig. 3.12 shows
that the system has been learning throughout the experiment, at the beginning performing
at a RS rate below –2.0, and at the end around 0.

But the RS is an arbitrary scale: what does it mean in human terms? The next graph
re-scales the RS values in terms of the percent of humans below each value. Beginning as
a player in the lower 30 percent, as compared to humans, the Tron system has improved
dramatically: by the end of the period it is a top 5% player (fig. 3.13).

3.5.2 Human Behavior

Why would humans want to continue playing Tron? One mechanism we devised for at-
tracting “web surfers” and enticing them to keep coming back is our “Hall of Fame” (fig.
3.14). The hall of fame, or ranking, is a form of bringing up competition between humans
into a game that otherwise is played in isolation.

Figure 3.15 shows that we have consistently attracted groups of veteran players along

3.5. Learning 87

20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

Game no. x 1000

R
el

at
iv

e
st

re
ng

th

Figure 3.12: Relative strength of the Tron species increases over time, showing artificial learning.

with a steady stream of new participants. The presence of seasoned humans helps us get
an accurate evaluation of agents, but novices were necessary, at least in the beginning,
to discriminate between agents who could have lost all games against an expert. Figure
3.6 shows horizontal lines which represent some of the veterans, coming back again and
again over long time spans. The more such players are present, the more accurate is the
computation of RS indexes.

Is the human species getting better as well? No. Redoing the same exercise of figure
3.12, but now tracing the strength level of all human players considered as one entity,
we obtain a wavy line that does not seem to be going up nor down (fig. 3.16). This
shows that, although individual humans improve, new novices keep arising, and the overall
performance of the species has not changed over the period that Tron has been on-line.

An altogether different image emerges when we consider humans on an individual ba-
sis. Although a large number of games are needed to observe significant learning, there
is an important group of users who have played 400 games or more. On average, these
humans raise from a performance of –2.4 on their first game, to –0.8 on their 400th game,
improving approximately 1.5 points over 400 games (fig. 3.17). The learning rate is dra-
matically faster for humans, compared to the approximately 100,000 games (against peo-
ple) that our system needed to achieve the same feat (fig. 3.12).

On fig. 3.18 we have plotted the learning curves of the 12 most frequent players. Many

88 Chapter 3. Coevolving Behavior with Live Creatures

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game no. x 1000

%
 o

f h
um

an
s

be
lo

w
 s

tr
en

gt
h

Figure 3.13: Strength values for the Tron system, plotted as percent of humans below. In the be-
ginning our system performed worse than 70% of all human players. Now it is within the best
5%.

3.5. Learning 89

Figure 3.14: Snapshot of the Tron “Hall of Fame” web page (9/4/00). Players win a point for every
game won, and lose one per game lost. We encouraged achieving immortality by playing more
games, and winning, rather than having the best winning rate.

90 Chapter 3. Coevolving Behavior with Live Creatures

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
0

10

20

30

40

50

60

70

80

90

100

%
 o

f g
am

es

Game no. x 1000

1
2
3
4

Figure 3.15: Composition of human participants. Human players were divided in four groups:
novices, who have played up to 10 games (1); beginners, 11 to 100 (2); seasoned, 101 to 1000
(3); and veterans, more than 1000 (4). From the beginning of the experiment all four groups repre-
sent large parts of the totality of games.

3.6. Measuring Progress in Coevolution 91

20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

2

Game no. x 1000

R
el

at
iv

e
st

re
ng

th

Figure 3.16: Performance of the human species, considered as one player, varies strongly, compli-
cating things for a learning opponent, but does not present overall trends (compare to fig. 3.12).

of them keep learning after 1000 games and more, but some plateau or become worse after
some time.

3.6 Measuring Progress in Coevolution

From the Red Queen Effect to Statistical Fitness

Evolution, as trial-and-error based learning methods, usually relies on the repeatability of
an experience: Different behavioral alternatives are tested and compared with each other.
But agents acting on real environments may not be able to choose which experience to live.
Instead, the environment provides varying initial conditions for each trial.

In competitive games for example, it is difficult to compare players with each other if
they are not able to choose their opponents. The analysis methodology we adopted for the
Tron experiment (section 3.4.2) is a statistics-based approach to solving this problem.

In a coevolutionary environment, the Red Queen Effect [24] makes it difficult to evalu-
ate progress, since the criterion for evaluation of one species is the other, and vice versa. A
higher number of wins does not necessarily imply better performance.

Similar problems arise when one tries to compare the performances of past and present

92 Chapter 3. Coevolving Behavior with Live Creatures

0 50 100 150 200 250 300 350 400
−4

−3

−2

−1

0

1

2

Human game no.

R
el

at
iv

e
st

re
ng

th

Figure 3.17: Average human learning: RS of players’ n-th games up to 400. A first-timer has an
estimated RS strength of -2.4; after a practice of 400 games he is expected to play at a -0.8 level.
Only users with a history of 400 games or more were considered (N=78).

3.6. Measuring Progress in Coevolution 93

−4

−3

−2

−1

0

1

2

Games played (tick mark = 1000 games)

R
el

at
iv

e
st

re
ng

ht

Figure 3.18: Individual learning: strength curves for the 12 most frequent human players (curves
start at different x values to avoid overlapping). All users change; nearly all improve in the begin-
ning, but later some of them plateau or descend whereas others continue learning.

94 Chapter 3. Coevolving Behavior with Live Creatures

players. A well-known strategy for evaluating coevolutionary progress in presence of the
Red Queen effect is to take a sample set, an advanced generation for example, and use them
to evaluate all players [24, 109]. This is impossible here: we cannot recreate the behavior
of humans who played in the past.

Some fixed agents could conceivably be kept in the population for evaluation purposes,
but even if one or a few agents were to be present in all generations, most people would
play against them only a few times, yielding a measure of low confidence. At the onset of
the experiment, we were not willing to sacrifice performance, nor slow down the evolution-
ary pace by keeping fixed losers inside the population (if they were winners, they would
not have to be kept alive artificially, but without an oracle we could not choose them in
advance).

Evaluating fitness in coevolution is a closely related problem. The most basic way
to assign fitness to players in a competitive/coevolutionary environment is to sum up all
wins [4,6,65]. More advanced is the use of fitness sharing strategies [8,75,118]. Different
researchers have tried to reduce the number of games to be played in each generation:
large savings can be obtained by matching players against a sample instead of the whole
population, “finding opponents worth beating” [119, 123]. The assumption, however, that
one can choose the opponents, could not be upheld in our case, where human opponents
come and go at will, and an entirely different approach to scoring was needed as well.

The Tron experiment assayed a fitness sharing-inspired fitness function (eq. 3.1 on
page 73). We knew that different agents would play against some of the same and some
different humans, so simply adding up all wins would not suffice. Instead we compared
winning ratios: according to this equation, agents get positive points when they do better
than average against a human, and negative points for doing worse than average. The more
experienced the human is, the more valuable those points are.

This function was relatively successful in finding good Tron agents, but had problems
that we did not foresee. Over time, a strong group of agents formed that were reliably better
than average, thus surviving for many generations. As these agents had seen hundreds of
humans over their history, and were better than average, even though not necessarily the
best, they had too many points to be challenged by newer ones.

The need for a more accurate evaluation of performance in coevolution was thus twofold:
not only did we wish to study the evolution of the experiments, comparing today’s and yes-
terday’s humans and robots; we were also looking for a better measure to further evolve
the artificial population in the future. After two years of Tron we had new insights that
prompted us to reconfigure the system:

� Thanks to the “control experiment” (section 3.7) we had what was believed to be a
stronger configuration for the novelty engine, with parameters MAXGEN=500 and
f � 1.

� We began to suspect that our fitness function was failing to select the strongest agents.

3.6. Measuring Progress in Coevolution 95

There seemed to be a group of robots surviving for many generations, contradicting
the intuition that better agents should appear regularly.

� We had a stronger method for evaluating agents, given by the statistical RS measure.

The original definition of fitness (eq. 3.1) failed because players who had been around for a
long time had encountered more different humans than other robots. If better than average,
even slightly, such an agent would collect many fitness points from a large number of
sources. A more inexperienced agent, even winning all of its games, might not gain enough
points to be ranked above such a veteran. This is an error in our measurement strategy: how
could we discard an agent who has not lost even a single game?

Some of these long-term survivors with high fitness are visible on fig. 3.6 as long
vertical lines. Fig. 3.19 shows the relationship between fitness and RS strength. Agents’
RS are plotted in the y axis, their fitness on the x axis. Graph (b) shows that there is a main
cloud of points with an approximate linear correlation between fitness and strength; there is
however (graph a) an important group of agents which deviate from the “main sequence”,
with higher fitness than they should. Graph (c) on this figure has a column showing the RS
values of the top 100 agents with respect to fitness and the top 100 agents strength-wise.
We conclude that with the paired comparisons method we have found a better algorithm
for choosing our top players.

3.6.1 New Fitness Measure for the Main Population

The logical next step was to implement a new fitness function based on our improved
performance measurement. We decided to compute the RS strength of all robots (not just
those currently “active” on the population) at the end of each generation. Agents who had
won all their games would be assigned an RS of � ∞, so they would always be selected.

Beginning at generation 397 (which corresponds to game no. 233,877) the main Tron
server computes RS for all players and chooses the top 90 to be passed on to the next
generation. So step 4 of the main Tron loop (page 73) is replaced with

4’ Let A � � a1 	�
�
�
�	 aN � be the set all agents,
past and present, sorted by RS.
Let V � a1 	�
�
�
�	 a90

thus the paired comparisons model became our fitness function.
The present section analyzes results of nearly a year of the new configuration, spanning

up to game no. 366,018. These results include the new configuration of the novelty engine,
which produced better new rookies (starting at game no. 144,747) , and the upgraded fitness
function — based on paired comparison statistics (starting at game no. 233,877).

96 Chapter 3. Coevolving Behavior with Live Creatures

0 50 100 150
−4

−3

−2

−1

0

1

2

R
el

at
iv

e
st

re
ng

th

Fitness function value

(a)

−5 0 5
−4

−3

−2

−1

0

1

2

R
el

at
iv

e
st

re
ng

th

Fitness function value

(b)

Best fit Best RS
−4

−3

−2

−1

0

1

2

re
la

tiv
e

st
re

ng
th

(c)

Figure 3.19: Original fitness function vs. statistical strength. (a) fitness value vs. RS for all agents.
A group of agents has reached extremely high fitness values even though they are not so special in
terms of performance. (b) zooming in on the graph the “main sequence” is apparent. RS and fitness
are correlated. (c) the top 100 players according to the fitness formula are different from the top 100
according to the RS.

3.7. Evolving Agents Without Human Intervention: A Control Experiment 97

Fig. 3.20 briefly shows that the system continued learning; both the winning ratio (WR)
and the relative strength (RS) went up, whereas the combined human performance stayed
about the same.

Fig. 3.21 shows that new humans kept coming with varying strengths, whereas new
agents are better since the change of regime on the novelty engine. But there is also a
curious flat “ceiling” to the agent’s strength graph. In fact this is produced by the selec-
tion mechanism: Any agent evaluated above that cutoff will be selected to be in the main
population, and kept playing until reevaluation puts it below the top 90.

The main result of this new setup is showing that we have restored a good selection
mechanism. This is visible in fig. 3.22: In this graph we have plotted the performance of
the system-as-a-whole along with the average strength of new robots being produced at the
same time.

The difference between both curves demonstrates the effects of the survival of the fittest
brought up by the main Tron server: the system as a whole performs better than the
average agent.

There is an important increase on the quality of those rookies after game 170,000, with
the elimination of the fixed training set and the raise in the number of generations of the
novelty engine. At this point, the deficiencies of the original fitness function are evident;
between game no. 170,000 and 220,000 there is no performance increase due to selection.

Finally, beginning at game 220,000, selection based on relative strength pushed up once
more the performance of the system.

It is too soon to tell whether or not the performance of the Tron system will continue to
improve beyond the current state. We feel that we might have reached the limits of agent
quality imposed by the representation used.

3.7 Evolving Agents Without Human Intervention: A Con-
trol Experiment

We have shown a system that finds good Tron players by coevolving them against humanity.
But, were the humans really necessary? In a control experiment, with similar setup but
without human intervention, we wish to show that the results are not the same — without
selection against humans, we would have failed to produce agents who are so good against
humans.

3.7.1 Experimental Setup

We ran coevolution between Tron agents and measured the results by using a set of 90
agents, the survivors from generation no. 240. Different settings for the evolutionary pa-

98 Chapter 3. Coevolving Behavior with Live Creatures

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game no. x 1000

C
om

pu
te

r
w

in
s

/ t
ot

al
 g

am
es

50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

Game no. x 1000

R
el

at
iv

e
st

re
ng

th

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game no. x 1000

%
 o

f h
um

an
s

be
lo

w
 s

tr
en

gt
h

50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

Game no. x 1000

R
el

at
iv

e
st

re
ng

th

Figure 3.20: Results obtained with the new fitness configuration (beginning at game 234,000) show
that the system continued learning. From left to right, top to bottom: Win Rate of the system, RS
of the system, RS of the system as compared with humans below, and RS of human population.
Compare with figs. 3.7, 3.12, 3.13 and 3.16, respectively.

3.7. Evolving Agents Without Human Intervention: A Control Experiment 99

0 1000 2000 3000 4000 5000 6000
−6

−4

−2

0

2

4

R
el

at
iv

e
st

re
ng

th

Human player no.

(a)

0 1000 2000 3000 4000 5000 6000
−6

−4

−2

0

2

R
el

at
iv

e
st

re
ng

th

Robot player no.

(b)

Figure 3.21: Performance of new humans and new agents along time (compare to fig. 3.9) The
new configuration of the novelty engine starts producing better robots beginning at robot no. 2500.
The flat ceiling of agent’s strengths is produced because we are using the same tool for fitness and
measurement.

100 Chapter 3. Coevolving Behavior with Live Creatures

50 100 150 200 250 300 350
−4

−3

−2

−1

0

1

2

Game no. x 1000

R
el

at
iv

e
st

re
ng

th

System performance
Average strength of new robots

Figure 3.22: Performance of novice robots vs. performance of system as a whole. The robot pro-
duction engine (broken line) has three stages corresponding to three evolutionary setups. During the
first 40,000 games, novices are being produced in short evolutionary runs (20 generations on aver-
age). Between 40,000 and 148,000, evolutionary runs are longer (100 generations) and tournaments
use 15 fixed champions and 10 evolving champions. From 148,000 and onwards, 24 evolving cham-
pions are used for coevolutionary fitness. The increased performance of the system as a whole (solid
line) is higher than the average new robots as a results of the selection process. The system stag-
nated between 148,000 and 220,000 games, when the older fitness function failed to select the better
agents. The new statistical fitness function restores the proper behavior (games 220,000-366,000).

3.7. Evolving Agents Without Human Intervention: A Control Experiment 101

0 100 200 300 400 500 600
10

20

30

40

50

60

70

80

generation

%
 w

in
s

vs
. t

es
t s

et

15/10
25
100

Figure 3.23: Control Experiments. Agents were evolved for 500 generations, using self play alone.
The performance measure is a set of 90 champions-vs-people (survivors at generation 240). Three
different configurations are shown: A with training set size t � 25 and full replacement (f � 0 (thick
line); B with t � 100 and f � 0 (black line) and C with f � 15 and t � 25, so 15 out of 25 members
of the training set are fixed (grey line). The latter is the configuration originally used by the novelty
engine, which was shown here to be suboptimal with respect to the others. This result suggested
changing the setup of the novelty engine to the current setting of f � 1.

rameters (section 3.3.7) were tested:

� Different training set sizes

� Presence or not of a fixed set of champions

3.7.2 Results

The graph on fig. 3.23 summarizes our findings. Three groups were evolved for 500
generations each: group A with a training set of 25 agents replaced on every generation
(as per formula 3.3 on page 74); group B with a larger training set size of 100; and group
C with identical settings as the novelty engine: a training set of 25 out of which just 10
are replaced on every generation whereas the remaining 15 remain fixed throughout the
experiment, being the 15 best against humans as per equation 3.1.

102 Chapter 3. Coevolving Behavior with Live Creatures

The results showed group C, with similar setup as the novelty engine, approaching an
average 50% score after one or two hundred generations. This is the expected result, since
the setup reproduces exactly the conditions over which the evaluation group was produced.

But groups A and B unexpectedly performed much better. Both peak at at perfor-
mance of 65% percent, which means that they are consistently better than the evaluation
set. This finding supports previous results by Angeline and Pollack [4] with Tic-Tac-Toe:
evolving against fixed experts is outperformed by coevolution. In the Tron domain, evolv-
ing specialists is a bad idea: they will learn subtle maneuvers that work specifically with
the prefixed opponents; but the environment of a changing training set, a moving target,
is much broader. In other words, the changing, adaptive nature of a training set replaced
with every generation, produces a diverse landscape that results in the evolution of robust
solutions.

It was also surprising to observe that there was not much difference with the increased
size of the training set on group B. This second group climbs the initial learning ladder
in less generations — hitting 50% after 80 generations, as compared with 140 generations
for group A. The latter is more efficient, however, given the fact that the number of games
played per generation is quadrupled for group B. Both groups settle after reaching a 65%
performance, and there was no apparent benefit from choosing a larger training set size.

3.7.3 Tuning up the Novelty Engine

These results prompted a change in parameters in our novelty engine; we decided to reduce
f, the size of the fixed part of the training set. Now the bulk of the fitness comes from
the coevolving population itself. We keep the one all-time best as the single fixed training
example.

The novelty engine has changed configurations twice:

� Initially (robots 1-739), f =15, MAXGEN=0,SEED=false.
The population is reset every time the front end finishes a generation, and the best 15
against humans are used as trainers.

� Between robots 740 and 2539, f =15, MAXGEN=100, SEED=false.
The pace of the front end was faster than expected, so the background population
was being reset too often; by setting MAXGEN=100 we forced them to continue
coevolving for at least 100 generations.

� After robot 2540, f =1, MAXGEN=500, SEED=true.
With the results of our control, we realized that it takes up to 500 generations for a
population to reach a performance plateau; f was reduced to 1 because pure coevo-
lution was shown to outperform evolution against fixed trainers. Instead, the SEED

3.7. Evolving Agents Without Human Intervention: A Control Experiment 103

Control Performance Statistical Percent
generation vs evaluation strength of robots

no. set (% wins) (RS) below

360 10.0 -4.7 0.1
387 46.7 0.4 80.6
401 54.4 -0.2 59.7
354 61.1 0.4 80.0
541 63.3 0.1 70.5
462 66.7 0.1 67.8
570 70.0 -0.2 60.0
416 75.6 -1.0 40.7
410 78.9 0.4 80.3
535 96.7 0.3 77.2

Table 3.2: Evaluation of control agents (evolved without human intervention) after being introduced
into the main population, and evaluated against humans. A robot’s performance against our eval-
uation set does not predict how it will measure up against humans. As a coevolving population
wanders through behavior space, it finds both good and bad players.

option was incorporated to provide a means of feedback from the experienced fore-
ground into the novelty engine.

The graph of rookie robots’ strengths (fig. 3.9b) shows how the first change introduced a
slight improvement, and the second an important improvement in new robots’ qualities.

3.7.4 Test Against Humans

To verify the hypothesis that selecting against humanity is not irrelevant, we selected a
group of 10 players produced by the control experiment, and introduced them manually in
the main population, to have them tested against humans. We ran this generation (no. 250)
for longer than our usual generations, to get an accurate measurement.

Table 3.2 summarizes the result of this test. A group of 10 robots was chosen, each
one the best from one of the 600 generations that group B (t=100) ran for. We chose
the one that performed worst against the evaluation set (generation 360) and the one that
performed best (gen. 535), along with eight others, chosen by their different performances
vs. the evaluation set.

The last column of the table shows how these robots compare, as measured by their
performance against humans (RS) with all other ranked robots.

From the internal point of view of robot-robot coevolution alone, all these agents should
be equal: all of them are number one within their own generation. If anything, those of later

104 Chapter 3. Coevolving Behavior with Live Creatures

generations should be better. But this is not the case, as performance against a training set
suggests that after 100 generations the population is wandering, without reaching higher
absolute performance levels. This wandering is also occurring with respect to the human
performance space.

We conclude that a coevolving population of agents explores a subspace of strategies
that is not identical to the subspace of human strategies and consequently the coevolution-
ary fitness is different from the fitness vs. people. Without further testing vs. humans, self
play alone provides a weaker evolutionary measure.

3.7.5 The Huge Round-Robin Agent Tournament

After 3 years of Tron evolution, there are 5750 ranked robots (some robots are unrated
because they lost all their games). Taking advantage of a 16-processor MIMD parallel
computer, a round-robin tournament was performed between all robots: 33 million games!
How well can this approximate the evaluation against humans?

Figure 3.24 shows the correlation between evaluation vs. humans and evaluation vs.
robots. Each dot represents one robot, its winning ratio amongst the 5750 robots on the x
axis and its RS against humans on the y axis. To avoid noise on the RS value, only robots
who have played 100 games or more were chosen (N=514).

A linear regression (dotted line) tells us what the straight line that best approximates
the data is, and the correlation coefficient R2 � 0 � 87. This means that there is a strong
correlation between both values. Comparing with the table that resulted from tests against
just 90 robots (table 3.2), the correlation here has improved dramatically.

Even within the limits of our simple sensors and GP operators, the configuration of
Tron had the capacity of producing a large diversity of players such that, evaluating against
a large number of diverse but highly evolved agents we could predict with a confidence of
90%, how well they will perform against humans.

When the experiment started this was unknown. One might wonder from this result,
whether it should have been possible to evolve good Tron players by self-play alone. This
may be the case, perhaps a better algorithm for finding good agents than the one used in
our coevolutionary experiments is conceivable.

Even with the highly sophisticated measure produced, which involves evaluating each
agent against all agents selected form a 3-year, continuously running coevolution algo-
rithm (i.e., the novelty engine), we still have a 11% uncertainty predicting the performance
against people.

But this fact is only provable a posteriori, when the experiment has played thousands
of games and measured hundreds of players along the way.

Graph 3.22 proves the success of our selection procedure; our system consistently per-
forms better than the novice robots being produced by the novelty engine, by an approxi-
mate margin of 0.5 RS points, that is, by odds of 62%. Without selection against humans

3.7. Evolving Agents Without Human Intervention: A Control Experiment 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

robot win index

re
la

tiv
e

st
re

ng
th

R2 = 0.876
N = 514

Figure 3.24: Robotic fitness vs. RS. All 5750 robots that have ever played humans were evaluated
against themselves in a round-robin tournament (33 million games!) to extract the best self-play
evaluation possible. We obtain a strong, but not total correlation (The broken line shows the linear
regression) with the RS against humans (only robots who have played 100 games or more against
people were considered).

106 Chapter 3. Coevolving Behavior with Live Creatures

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

200

400

no
de

s
(lo

op
s

fo
r

cy
cl

om
at

ic
 n

o.
)

game no.

Depth

Size

Cyclomatic no.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

10

20

de
pt

h

Figure 3.25: Evolution of Complexity in Tron Agents. The horizontal axis is the time scale. Three
complexity measures are plotted: expression depth, size and cyclomatic number (depth is on the
right-hand y axis). All three complexity measures increase with evolutionary time. Depth has
reached an internal limit (17) whereas size could still grow (the maximum is 512).

the performance would have been weaker by at least this margin.

3.8 Emergent Behaviors

3.8.1 Standard Complexity Measures

Does selection favor more complex forms? The answer is yes. As indicated by figure 3.25,
the complexity of the average Tron agent has been increasing over time.

We have taken three straightforward software complexity measures and applied them
to the s-expressions governing Tron agents: depth (of the expression tree), size (number of
tokens) and cyclomatic number (irreducible loops — see page 3). As time and selection
go by, the average complexity of the surviving agents’ code goes up. depth variable has
reached a ceiling; most surviving agents have the maximum depth of 17.

But expression complexity is an abstract measure. Are we evolving complex behaviors?
The present section analyzes the behavioral characteristics of evolved Tron robots.

3.8. Emergent Behaviors 107

3.8.2 Analysis of sample robots

Among the first robots moderately good vs. people was R.510006:

(* _H (IFLTE _A 0.92063 _H (- (% D (- (+ 0.92063 (IFLTE 0.92063 _F
0.92063 (LEFT_TURN))) (IFLTE (- (IFLTE _C _G (RIGHT_TURN) (
LEFT_TURN)) (IFLTE (+ (LEFT_TURN) (LEFT_TURN)) _G _F _G)) _H
(RIGHT_TURN) _G))) (RIGHT_TURN))))

This can be roughly reduced to pseudocode as:

if FRONT < 0.92063 go straight
else if 0.92063 >= REAR_RIGHT turn left
else if LEFT < RIGHT turn right
else turn left

This robot will always go straight, unless there is an obstacle in front of it closer than 8%
of the size of the arena. At this point, it will turn right or left. The use of the REAR_RIGHT
sensor is confusing, and its is difficult to infer from the code the actual behavior of this
expression, as complex variations arise from its interactions with the Tron environment.

When inserted in a Tron arena, the agent shows an interesting behavior. It will avoid
obstacles, get out of dead ends and do tight turns to maximize space when in a confined
space (fig. 3.26).

The basic strategy of going straight all the time, then turning at the last minute, is one
of the obvious solutions for reasonable Tron agents, given the established architecture. But
robots can do much better than this: Today R. 510006 ranks at no. 2740 among 5977
robots, which means that 45% of the strategies found are better than its own.

3.8.3 An Advanced Agent

We now take a more detailed look at one of the top agents. R. 5210008 is at the time of this
analysis, the top rated agent with an experience of more than 400 games; it has played 528
games and is the tenth ranked robot among those with 100 or more games played.

The s-expression of this agent has 449 tokens (see fig. 3.27). But even the cyclomatic
number of this expression is 283: a very complex formula indeed. Software complexity
measures [100] suggest that cyclomatic numbers higher than 10 should be “avoided” be-
cause they make a program difficult to understand. The cyclomatic number fails to capture
some of the inherent complexity of the formula, such as the widespread use of templates
such as (- C _) and (IFLTE G _ _ _).

With its difficult structure, we were not able to manually de-compile the expression into
pseudocode to try and follow the logic. The beginning of such pseudocode would be:

108 Chapter 3. Coevolving Behavior with Live Creatures

Figure 3.26: Sample games of robot 510006 (black) vs. a human opponent (grey). It quickly beats
a novice player (left). It fights against an expert player, making tight turns when confined in a small
space (right).

(IFLTE _G (- (- _A (- (IFLTE _C (+ _A (IFLTE _E (- (- _F _A) (- _E (- _C _G))) _A _D)) _C
_D) (- (IFLTE (- (+ (+ _C (- (* _C (- (- _E _H) _C)) _A)) _A) (- _F (- (+ _G _A) _H))) (-
_B (+ (* _H _E) _F)) (- _C _A) (IFLTE _G (- (- _C (IFLTE _G _A _F _F)) _C) (% (IFLTE _A
(+ _B _D) (- _C _C) (RIGHT_TURN)) _H) (IFLTE (+ (IFLTE _E _C _C _D) (IFLTE (IFLTE (-
_A _C) (IFLTE (IFLTE (- _C (- _F _A)) _D _A (IFLTE _G _C _F _C)) _E (+ (- _C _H) _E) (
RIGHT_TURN)) _A _D) _A (- _F (- _C (- _C (+ 0.06349 _A)))) (RIGHT_TURN))) (- _A (+ (
* _F _B) _G)) _A _A))) (- _E (- _A (- _F (- _C (- _C (+ 0.06349 _F))))))))) (- (IFLTE _G
_D (IFLTE (- _E (- _E _A)) (IFLTE (- (+ (+ (+ _C (- (* _C (+ _C _F)) _H)) (- (* _E (- (- _E
_H) _C)) _A)) (IFLTE (IFLTE (* (- _E (- _A _C)) _C) (- _A (+ (+ (- _C 0.06349) _B) _C))
_E _C) (* _F _C) _F _A)) (- _F (- _C _H))) (- _B (+ (* _H _E) _F)) (- _C _A) (IFLTE _A (
- (- (- (* (+ (- (- _H _D) 0.06349) _C) _A) (IFLTE _A (IFLTE (IFLTE (- _C _A) _D (- (- _D
_A) _D) (IFLTE _G _C _A _F)) (+ (IFLTE _E _B _C _A) _G) _A (RIGHT_TURN)) _G _H)) (
IFLTE _G _H _F _F)) _C) (% (IFLTE _A (+ _B _A) (- _C _C) (RIGHT_TURN)) _H) (IFLTE (
+ (IFLTE _E _C _C _D) (IFLTE (IFLTE (- _A _C) (IFLTE (IFLTE (- _C (- _F _A)) _D _A (IFLTE
_G _C (+ (% _D _A) (LEFT_TURN)) _C)) (+ (- _H (- _A _C)) _A) (+ (- _C 0.06349) _E)
(RIGHT_TURN)) _A _D) _A (- _F (- _C _C)) (RIGHT_TURN))) (IFLTE _D (- (+ (- (+ _G
_D) _A) _D) _E) _B (- _A _A)) _C (* _A (* _H _E))))) _B _E) (IFLTE (+ (IFLTE _E _C _A
_D) _G) _C _C _H)) (IFLTE _F (- _C _G) (IFLTE _G _C _F _F) _A))) (- (* (* (- (* _C (-
_C (IFLTE (- (- _F _A) (* _F (IFLTE _G _C _D _A))) (* _D (IFLTE _G _C (+ (LEFT_TURN) (
LEFT_TURN)) (* _B (RIGHT_TURN)))) _F _A))) (* _C _G)) (IFLTE (* (IFLTE (- _A (- _F (
- _C (- _C (* _B _E))))) _E _B _C) (IFLTE _H _C (+ (LEFT_TURN) _F) _A)) _C _E _B))
_G) _D) (+ _F (IFLTE _E _C _A _D)))

Figure 3.27: The code (s-expression) of agent 5210008.

3.8. Emergent Behaviors 109

if (LEFT + RIGHT + RIGHT * (1 - RIGHT -
FRONT_LEFT)) > (FRONT_RIGHT - FRONT)
then

If FRONT< 1 - FRONT_LEFT
Then

x = FRONT - RIGHT

else

x = REAR_RIGHT;

if x > FRONT turn right
else y = FRONT

else

y = RIGHT - FRONT;

if LEFT < REAR_RIGHT
then

[...]

The first inequality involves 4 different sensors in a complex relationship, including a
confusing multiplication and is already difficult to understand; it may generate a right turn
or not, in which case the evaluation continues. And this is just the first expression of a
long program, which would take several pages of pseudocode. Instead we have manually
looked at several games from our historic records — to see how the agent behaves in the
game environment.

So the next section, which talks about emergent behaviors in general, takes most of
its examples from this player. We found out that it is capable of producing a surprising
assortment of different behaviors including a different opening move for each game, cutting
off the opponent , open box “traps” , driving around the edges and so on (figs. 3.31, 3.32,
3.33, 3.34 and 3.35).

3.8.4 Emergent Behaviors

Tron agents, by their architecture, are purely reactive entities — there is no state at all,
no history or even access to the current position of the adversary. All behaviors are thus
emergent, in the sense that they appear only as a result of the changing environment.

The architecture of Tron was designed in 1997, when many researchers in the adaptive
behavior community were proposing basic reactive agents whose complex behavior relied
more on the complexities of the environment than on complex reasoning and planning [14].
Consequently, Tron agents were deprived of any planning capability; they have no internal
state, their sensory inputs are very restricted and all the complex behaviors that we observe

110 Chapter 3. Coevolving Behavior with Live Creatures

are the result of their situatedness: Tron agents behave in complex ways as a results of their
being adapted to a complex environment over a long evolutionary process.

Placed on a fixed environment, a Tron agent would have a constant behavior, either
right or left turn, or straight. This of course, never happens: even in the absence of an
opponent, a Tron agent is constantly moving, generating a trail that immediately becomes
part of the environment; such changes will be perceived and thus different actions begin to
occur as a result of the re-evaluation of the agent’s control expression.

Among the information sent back by the Tron Java applets, and stored in our server’s
database, is the full trace of game. All turns are recorded, so we can re-enact and study the
games that took place between humans and agents.

From this record we have selected a few snapshots that showcase Tron agents per-
forming different high-level behaviors during their games with humans. Every snapshot is
labelled with the time7 at which the game finished, the id number of the human opponent
and the robot’s id number. An asterisk marks the losing player (or both in the case of a tie).

The trace of the robot player is a black line, the human a grey line.

Spiral inwards Tracing a box and then spiraling inwards is a commonplace defensive
behavior (fig. 3.28). Once the box is marked, the opponent cannot get in; a spiral-in then
exploits this gained territory optimally.

Live and let live Sometimes two players avoid each other, staying away from confronta-
tion, for as long as possible. Two commonplace occurrences in agent-vs-agent coevolution-
ary scenarios are loops across the vertical dimension, as seen on fig. 3.29 (left). Another
strategy that attempts to stay away from the opponent is to spiral outwards from the starting
position (fig. 3.29, right).

We think that this phenomenon occurs as a form of cooperation between coevolving
agents: agents that agree on this behavior split the point with each other, engaging in a
form of cooperation: any deviation from this behavior would be retaliated against. Figure
3.3 depicts two robots that persist on their behavior until they crash simultaneously, thus
producing a tied game.

We were surprised to observe humans engaging in the same type of strategy. In these
two examples we see the human imitating the agent’s behavior — albeit imperfectly. On
the first example, H. 457 died first; but on the second, H. 259 successfully broke the pattern,
and R. 370002 lost the match.

Staircasing Only orthogonal movement is defined by the rules of Tron. One can move in
a horizontal or vertical direction, never diagonal. But Tron agents often simulate a diagonal,

7In UNIX-style time units (number of seconds after 0:00 01/01/1970).

3.8. Emergent Behaviors 111

897577742: 2308 vs. 1830008*

Figure 3.28: Spiral Inwards. A spiral inwards is a good solution to make the most out of a closed
space (black=agent, gray=human).

878853884: 457* vs. 100007 878850932: 259 vs. 370002*

Figure 3.29: Live and Let Live. In both these games, human and agent agree on a common strategy
to avoid confrontation. This often occurs as a form of emergent collusion in coevolutionary games,
yet it’s surprising to observe it occur between human and agent (black=agent, gray=human).

112 Chapter 3. Coevolving Behavior with Live Creatures

878854643: 457 vs. 280003*

Figure 3.30: Too much staircasing. Agent 280003 seems to know about staircasing and little else
(black=agent, gray=human).

by quickly alternating left and right turns. It may be a bit disconcerting for the human but,
by itself, is not enough to be a good player (fig. 3.30).

Opening moves The first few seconds of a match set up the type of game that will be
played. A player has the option to try and stay away from its opponent, or go after him; to
stay close to the starting position or mark territory away from it. In any case, performing
the same opening moves in every game seems like a bad idea, for opponents would be able
to adapt to it. Performing a different opening move every time is difficult to accomplish
for deterministic agents that start every game from the same configuration. Figure 3.31,
however, shows a series of games played by R. 5210008 (only the first 300 steps of every
game). All these games have different initial moves.

The cutoff maneuver A common move among humans is the “cutoff”: If you and your
opponent are running parallel to each other, but you are ahead, cut him off and try to beat
his reaction. One wouldn’t expect to see an agent perform the cutoff — they don’t know
where you are! Figure 3.32 however, depicts R. 5210008 performing what looks like a
typical cutoff.

3.8. Emergent Behaviors 113

955557987 (1−300): 7903* vs. 5210008 955086247 (1−300): 7660* vs. 5210008 955573994 (1−300): 8082* vs. 5210008

955074717 (1−300): 7629* vs. 5210008 955070272 (1−300): 7412 vs. 5210008* 955473898 (1−300): 7397* vs. 5210008

955462837 (1−300): 2961* vs. 5210008 955314104 (1−300): 7379* vs. 5210008 955314578 (1−300): 7379* vs. 5210008

Figure 3.31: Changing Behavior. Agent 5210008 showcases here its variety of opening moves
(black=agent, gray=human).

114 Chapter 3. Coevolving Behavior with Live Creatures

955583298 (1−777): 8130* vs. 5210008 955583298: 8130* vs. 5210008

Figure 3.32: Cutoff. R. 5210008 is seen here performing the “cutoff” maneuver. Human and agent
find themselves running parallel (left), but the agent is ahead, so it makes a sharp right turn, cutting
off the human (black=agent, gray=human).

Topological games During the game depicted on fig. 3.33, agent 5210008 created a
box with a small opening. This box spans across the screen boundary, so it is not easy
to perceive for a human player. When the opponent finds himself in the box, it may be
difficult to go back and find the narrow exit.

Combined behaviors Fig. 3.34 shows an agent combining different behaviors: wander-
ing, wall following, obstacle avoidance, space-filling turns, to win a game.

Edging Running along the edges of the screen is a strategy that easily creates confusion
in humans. A human player approaching the edge often finds it difficult to quickly look
at the other edge to plan ahead for what is going after emerging on the other side. A wall
along it is difficult to see. Agents on the other hand, are immune to this strategy — the
border of the screen is invisible to them; their sensors have no perception of borders, they
don’t really exist, being an artifact of how the display was encoded for visual human input
(fig. 3.35).

Space Filling It often happens that an end game is reached where both opponents are
confined in a space, isolated from the opponent. At this point the optimal strategy becomes
filling the space as densely as possible, hoping for the other opponent to crash sooner. Any

3.8. Emergent Behaviors 115

955632023 (1−835): 8323* vs. 5210008 955632023: 8323* vs. 5210008

Figure 3.33: Trapped. R. 5210008 created a box at the edge of the screen, with a small opening, and
its opponent fell inside it. After visiting the trap once, H. 8323 goes up (left), ultimately landing in
the trap again. Eventually the human is boxed in and commits suicide (right).

good Tron player should master this technique. The game depicted on fig. 3.36 shows
human and agent in a match of endurance.

Unforced errors Even the highest ranked Tron agents seem to make an occasional mis-
take, crashing against themselves in a silly manner for example (fig. 3.37). People do the
same, even the best player makes an occasional mistake.

Behavior or Imagination?

Are these behaviors really occurring as we described them? Some cases, such as spiraling,
are quite obvious, but others like the cutoff and the trap might be more in the imagination
of the observer. After all, a Tron agent cannot decide that the time is ripe for a cutoff
maneuver without knowing the position of the other player. Nor it has memory to decide:
“I am in the process of doing a spiral, so turn in the same direction again”.

On the other hand, it might be the case that the cutoff is “definable” for an agent in
different terms than ours. As long as there is a certain environmental condition (in terms of
sensory inputs) that is correlated with the right moment to do a cutoff, agents likely to turn
in the correct direction in those circumstances might have an evolutionary advantage, so in
the end we see agents “doing it” with increasing frequency.

116 Chapter 3. Coevolving Behavior with Live Creatures

954420755 (1−1000): 7253* vs. 5210008 954420755: 7253* vs. 5210008

Figure 3.34: Emergent Behaviors R. 5210008 displays different emergent behaviors in this match.
In the first part of the game it uses a combination of wandering and obstacle avoidance strate-
gies, cutting off the arena in small spaces (left). As the game progresses, a combination of tight
turns and wall following help make the most out of a more confined situation (right) (black=agent,
gray=human).

3.8. Emergent Behaviors 117

953001587: 7151* vs. 5210008

Figure 3.35: Edging and Staircasing. Here R. 5210008 shows the use of staircasing to produce a
diagonal displacement in a domain where only horizontal and vertical movements were originally
defined. Creating walls along the edges of the screen, as in this game, allows Tron agents to exploit
one human handicap: humans have trouble understanding the toroidal topology where edges are
connected. In this game the human attempted to go across the border and crashed the wall that the
agent had built (black=agent, gray=human).

118 Chapter 3. Coevolving Behavior with Live Creatures

961652955: 5074* vs. 5470006

Figure 3.36: Space Filling. R. 5470006 and Human 5074 engage in a space-filling endurance con-
test. The difference between their perceptual modes is visible: The human is allowed tighter turns,
yet its finger ability is limited. The agent cannot measure with precision the space remaining, so
sometimes recurs to spiraling in, then out as in the upper right region. In the end the human fails to
enter a narrow passage and loses (black=agent, gray=human).

3.8. Emergent Behaviors 119

958507849: 8760 vs. 5470006*

Figure 3.37: Error. R. 5470006, one of the all-time best Tron agents, loses here in a stupid manner,
crashing itself. Even though this is a highly evolved agent capable of winning against most human
opponents, it still makes occasional mistakes (black=agent, gray=human).

Ethologists warn us [106, p. 105] that an animal’s action is called behavior only when
performed in order to improve its chances of survival or reproduction — because it has
been selected for, that is. The present section just shows a group of snapshots to illustrate
the types of actions that Tron agents are performing. In the next one we go further, testing
for correlations between behaviors, evolutionary time, and fitness.

3.8.5 Quantitative Analysis of Behaviors

Emergent behaviors are difficult to quantify: how could we measure “wandering” ? In
this section we examine some behaviors that we were able to define with simple formulas,
allowing us to count their occurrences quickly by using regular expressions.

Two consecutive turns of a Tron player can be either in the same direction (left-left or
right-right) or in opposite directions (right-left or left-right). The former are U moves, and
the latter S moves. The size of the move is the number of pixels advanced between the
two turns. Most of the different behaviors we quantified are formally defined by a regular
expression on the sequence of turns thus defined (table 3.4).

120 Chapter 3. Coevolving Behavior with Live Creatures

Behavior Expression

Tight Turn U � 6
Spiral U3

Staircase S3

Zig-zag USU
Loop � � U � S � � � 150 � � S � 14 �

Diagonal � S � 15 � 3

Zig-zag Fill � U � 6 � S � U � 6 �
Turns turns

Asymmetry ���
left turns � right turns

turns ���Edge Crossing distance to edge = 0
Edging distance to edge

�
10 and parallel to edge

Spiral In & Out U3SU3

Table 3.3: Definitions of Behaviors

1. Tight Turns A tight turn is defined as two consecutive turns to
the same side, within 6 steps of each other (U � 6). The icon depicts
a player doing 8 tight U turns.

2. Spirals A spiral can be outwards or inwards; it is characterized
as making four turns in the same direction.

3. Staircase A staircase is defined as 4 consecutive alternating
turns.

3.8. Emergent Behaviors 121

4. Zig-zag A player is “zig-zagging” when alternating left-left then
right-right turns.

5. Looping A player “loops” around the torus when she goes
straight for more than 150 steps, then makes a quick ‘S’ turn (less
than 14 steps) to make a second pass parallel to the first one (fig.
3.29 left).

6. Diagonal A diagonal move is a tight staircase, all turns within
15 steps of each other (fig. 3.30).

7. Zig-zag filling This behavior is a combination of zig-zag and
tight turns; a succession of 2 opposite tight U turns. It is a useful
strategy to fill up the space tightly. The human player on fig. 3.36
spent most of the match executing this behavior.

8. Turns Some players go straight for a long time, others are
turning all the time. This feature could also be called “nervousness”.

9. Asymmetry Some players prefer to do mostly left turns or right
turns; others have a 50%-50% balance. According to the definition
on table 3.3, an asymmetry equal to one means all turns have been
made to the same side, and a zero asymmetry means an equal num-
ber of turns to both sides. The icon depicts a player making seven
right turns but just one left turn (6/8 asymmetry = 0.75).

122 Chapter 3. Coevolving Behavior with Live Creatures

10. Edge Crossing Each time a player crosses the edge of the
screen, to reappear on the opposite side. Agents do this without
noticing, since they have no perception of the arena having edges;
they just see a continuous topology. Humans need to learn to men-
tally connect the opposite borders of the screen. The icon depicts a
player going across the edge five times.

11. Edging Each step a player runs parallel to the edge of the
screen within 10 pixels of it (see fig. 3.35).

12. Spiral in and Out We have observed that one of the ways Tron
agents may use to gain a space and exploit it, is a spiral that goes in
first, then out. This player can spiral in loosely, then go backwards,
spiraling out. The pure spiral behavior often ends in a crash (fig.
3.28) but after spiraling in, then out, the player is still alive. The
agent of fig. 3.36 used this strategy at the upper right corner of
the arena. We have defined it as four consecutive turns to one side
(spiral) followed by four turns to the opposite side (opposite spiral).

The first question we wish to quantify is: Are any of these simple behaviors being
favored or disfavored by evolution? Is our system consistently relying on any of them?
The first group of results, fig. 3.38, shows the frequency of behaviors along the history of
the system. We grouped all games in bins of 1000, and counted the occurrences of each
of the 12 patterns, divided by the number of steps. So each behavior is quantified as the
“propensity” of the Tron system to engage in it (except for asymmetry which is a per-turn
ratio, not per-step).

The behaviors that occur with increased frequency along time are tight turns, zig-zags,
filling zig-zags, edge following and spiral-in-out. Decreasing in frequency are spiraling and
asymmetry. The others do not show a clear tendency. This confirms some of our intuitions,
such as filling spaces and edging being favored by evolution. Spiraling on the other hand,
is surprisingly disfavored. We must conclude that spiraling is a bad idea in general, albeit
a necessary tool for a behavior that is a specialization of spiral — spiral-in-then-out, which
is favored by evolution.

3.8. Emergent Behaviors 123

0 50 100 150 200 250 300 350 400
1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

tight turn

0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

7

8
x 10

−3

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

spiral

0 50 100 150 200 250 300 350 400
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

staircase

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

zigzag

0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

7
x 10

−4

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

loop

0 50 100 150 200 250 300 350 400
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

diagonal

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5
x 10

−3

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

zigzag fill

0 50 100 150 200 250 300 350 400
0.02

0.025

0.03

0.035

0.04

0.045

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

turns

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

asymmetry

0 50 100 150 200 250 300 350 400
2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

edge crossing

0 50 100 150 200 250 300 350 400
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

edge following

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

game no. x 1000

oc
cu

re
nc

es
 p

er
 s

te
p

spiral in & out

Figure 3.38: Behaviors vs. Time. U turns, spirals, staircasing, zigzag, loop, diagonal, zigzag-fill,
turns, asymmetry, edge crossing, edge following, spiral in, then out. Games were sampled in groups
of 1000 and average events of each behavior, per game step, plotted on the vertical axis.

124 Chapter 3. Coevolving Behavior with Live Creatures

The next question is, are these behaviors associated with a robot’s measured strength?
Do some behaviors occur more or less often in stronger robots? The associations should
not be much different from those defined by time, since performance is being selected
across the time dimension. To observe this, we have selected all robots whose accumulated
games are at least 10000 steps, and measured their behavioral frequency. On fig. 3.40 we
have marked one point per robot; the x coordinate being the strength, the y coordinate the
behavioral frequency. The result is a cloud of points, quite disperse in all cases. This means
that none of these behaviors implies, by itself, that an agent is strong or weak. Quite the
opposite, for each behavior one can usually find both good and bad players who perform it
either often or rarely.

The clouds of points do show some accumulation regions though, so we also divided
the RS axis in six segments and calculated the mean and its standard error. We confirm
with this that, on average, better robots are doing more tight turns, zig-zags, filling zig-zags
and spirals in/out but less spirals — and tend to have symmetrical behaviors and follow the
edges of the screen.

3.8.6 Differences Between Human and Agent Behaviors

In this section we analyze the differences between agent and human behavior, according
to the 12 “quantifiable” behaviors described on the previous section. Figure 3.40 shows
the results. The graphs in this figure repeat the curves for robot behavior frequency vs.
performance (same as in 3.39), adding the curves for the human case. .

Table 3.4 summarizes these results, comparing four categories: novice agents, advanced
agents, novice humans and advanced humans.

These are the differences for each individual behavior:

Tight turns Agents develop the capacity for doing tight turns early on. Due to their error-
free sensors, they can perform this type of maneuver very efficiently. The more
advanced the agent, the more frequent the behavior becomes.

For humans, doing closed turns with exact precision requires training. As with
agents, there is a strong correlation between frequency of tight turns and perfor-
mance. A top human, on average, performs tight turns as often as a beginner agent.

Spiral Although it does happen sometimes (see fig. 3.29), this is not a frequent behavior
for people. The inwards spiral amounts to creating a confined space and entering
it, something that human biases warn us against. The outwards spiral also seems
pointless, it is a passive behavior that neither attacks nor runs away from the attacker.

The opposite is true for agents. Robots develop this strategy in the beginning of
robot-robot coevolution scenarios, when most other strategies are random (hence

3.8. Emergent Behaviors 125

−5 −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

6

7

8

9

10
x 10

−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

tight turn

−5 −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

6

7

8

9

10

x 10
−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

spiral

−5 −4 −3 −2 −1 0 1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

staircase

−5 −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

6

7

x 10
−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

zigzag

−5 −4 −3 −2 −1 0 1 2
0

2

4

6

8

10

12

x 10
−4

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

loop

−5 −4 −3 −2 −1 0 1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

diagonal

−5 −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

6

x 10
−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

zigzag fill

−5 −4 −3 −2 −1 0 1 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

turns

−5 −4 −3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

asymmetry

−5 −4 −3 −2 −1 0 1 2

2

2.5

3

3.5

4

4.5

x 10
−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

edge crossing

−5 −4 −3 −2 −1 0 1 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

edge following

−5 −4 −3 −2 −1 0 1 2
0

2

4

6

x 10
−4

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

spiral in & out

Figure 3.39: Behaviors vs. Performance: U turns, spirals, staircasing, zigzag, loop, diagonal,
zigzag-fill, turns, asymmetry, edge crossing, edge following, spiral in, then out. Horizontal axis:
robot RS; vertical axis: average events per game step. Every robot is plotted as one point. The
broken line is a histogram showing mean occurrences along 6 intervals on the RS range. Error bars
mark the standard error of the mean.

126 Chapter 3. Coevolving Behavior with Live Creatures

−3 −2 −1 0 1 2
0

1

2

3

4

5
x 10

−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

tight turn

−3 −2 −1 0 1 2
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

spiral

−3 −2 −1 0 1 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

staircase

−3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

zigzag

−3 −2 −1 0 1 2
0

1

2

3

4

5
x 10

−4

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

loop

−3 −2 −1 0 1 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

diagonal

−3 −2 −1 0 1 2
0

1

2
x 10

−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

zigzag fill

−3 −2 −1 0 1 2
0.01

0.02

0.03

0.04

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

turns

−3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

asymmetry

−3 −2 −1 0 1 2
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

−3

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

edge crossing

−3 −2 −1 0 1 2

0.1

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

edge following

−3 −2 −1 0 1 2
0

1

2

3

x 10
−4

relative strength

oc
cu

re
nc

es
 p

er
 s

te
p

spiral in & out

Figure 3.40: Agent & Humans behavior frequencies vs. strength: There are significant behavioral
differences between agent (thin lines) and human (thick lines) behaviors, according to our 12 test
cases. Horizontal axis: RS; vertical axis: average events per game step. Error bars indicate the
standard error of the mean. The first and last bins are wider, to compensate for the sparsity of
players at both ends of the performance scale.

3.8. Emergent Behaviors 127

from Novice Advanced Novice
Agent Agent Human

to Advanced Novice Advanced Novice Advanced Advanced
Agent Human Human Human

tight turns + - = - - +
spiral - - - - = =

staircase = - - - - =
zigzag + = + - - +
loop + = - - - =

diagonal = - - - - =
zigzag fill = = + - = +

turns = - - - - =
asymmetry - - - = = =

edge crossing = - - - - +
edge following + - = - - =
spiral in&out + = - - - =

Table 3.4: Correlations between humans, agents and behaviors. Each column represents a pair of
categories. The “=” symbol means that there is no big difference between both categories on the
respective behavior, whereas “+” means that the second group has an increased value with respect
to the second (and “-” the opposite). The first and last columns compare novices with advanced
players, amongst agents and humans respectively. Tight turns for example, increase with level of
play for both agents and humans (+); a novice agent doing about as many of them as an advanced
human. Asymmetry is negatively correlated with quality (for robots) but uncorrelated for humans.

128 Chapter 3. Coevolving Behavior with Live Creatures

Agent Id. Len Code

230007 5 (IFLTE 0.88889 _C _C (LEFT_TURN))
230009 5 (IFLTE 0.88889 _C _C (LEFT_TURN))
230010 5 (IFLTE 0.88889 _C _C (LEFT_TURN))
90001 5 (IFLTE _D _C (LEFT_TURN) _D)
90002 5 (IFLTE _D _C (LEFT_TURN) _D)

510003 7 (* _H (IFLTE _A 0.90476 _H (RIGHT_TURN)))
50008 9 (* _H (IFLTE _A 0.90476 _H (RIGHT_TURN)))
60001 9 (IFLTE _B _F (IFLTE _C _H (LEFT_TURN) 0.11111) _F)
60002 9 (IFLTE _B _F (IFLTE _C _H (LEFT_TURN) 0.11111) _F)
60003 9 (IFLTE _B _F (IFLTE _C _H (LEFT_TURN) 0.11111) 0.12698)

Table 3.5: The shortest agents produced by the novelty engine have 5 tokens each. Agents 230007,
230009 and 230010 do a tight spiral. 90001 and 90002, a wide spiral (fig. 3.41). 510003 does
something different: it goes straight until it reaches an obstacle. 60001-60003 do a sort of “Tit-for-
tat”; they spiral while the other player is also spiraling, but break the pattern when the other player
does so.

suicidal). Sometimes a whole population may fall into a mediocre stable-state [108]
characterized by most agents doing spirals. The spiral is probably the simplest non-
suicidal behavior in terms of GP code.

A search for the shortest robots ever produced by the novelty engine (table 3.5) re-
veals two minimal behaviors which use just 5 tokens. One of them, R230007 does
a classic tight spiral, and the other, R. 90001, a more loose spiral. The code for R.
230007 is:

(IFLTE 0.88889 _C _C (LEFT_TURN))

which translates as:In the end, humans get out of mazes for the exact same reason.

if LEFT < 0.8888 then go straight else turn left

so this robot executes a left turn whenever there are no obstacles to the left. This
minimal code results in an basic wall following that produces a tight spiral as depicted
on fig. 3.41 (top). When the robot is running along its own wall, built by the previous
lap, the left sensor perceives the obstacle and the agent goes straight. But as soon as
the corner is reached, the space suddenly opens to the left and the agent turns.

As evolution progresses, agents “unlearn” to do spirals, finding better strategies. The
behavior frequency diminishes sharply for more advanced agents, approaching the

3.8. Emergent Behaviors 129

human average rate: In the best robots, spiraling has been almost completely aban-
doned.

Staircase Together with its tight version, the diagonal, staircasing is a characteristic be-
havior that strongly differentiates human and robotic playing styles. Agents perform
a diagonal on 1% of their total game time on average, whereas the rate for humans is
much lower, close to 0.05%.

A human’s attention typically shifts between two modes: it either focuses on a narrow
region around the present position, in order to perform precise maneuvers and turns,
or spreads over a wider region, analyzing the different parts of the arena in an effort
to plan the next move.

A move such as the staircase can be performed only in the narrow attention mode.
When one switches to the second, “big picture” mode of attention, turns stop com-
pletely. So humans in general will not perform continuous turns for long periods of
time.

Agents, on the other hand, lack attention characteristics altogether, so they can af-
ford to be constantly turning without confusing or delaying their sensors readings or
analysis.

Zigzag/Zigzag fill This is a behavior that shares similar frequency profiles for both species.
Zigzagging is an important ability for the endgame, so its frequency increases with
expertise on agents as well as on humans. The sample game shown on figure 3.36
illustrates how both species resort to zigzagging in similar situations.

The “filling” zigzag serves the purpose of making the most out of a confined space
and amounts to about half of all zig-zags, in humans and robots alike. The frequency
of filling zig-zag, for humans as well as agents, is an order of magnitude larger for
expert players as compared to novices.

Loop Looping, together with spiraling and tight zigzagging, is a space-filling strategy (fig.
3.29, left). The correlations of looping and strength are unique, though: both humans
and agents seem to increase looping with expertise, but only up to a certain point.
In the end, the most expert players, humans or robots alike, have abandoned this
behavior, frequencies falling down to beginners’ levels.

Turns Another behavior that strongly differentiates humans and agents: agents are much
more “nervous”, they make turns more frequently. Robots turn once every 33 steps
on average, whereas humans do so only once every 80 steps. Again we think that this
difference is related to human attention modes, as in the staircase above.

130 Chapter 3. Coevolving Behavior with Live Creatures

Figure 3.41: Simplest Agent. Sample games of the simplest agents according to code size (table
3.5). R. 230007 and R. 90001 are 5 tokens long. Agent 230007 does a tight spiral by means of a
simple wall following, oblivious to what its opponent is doing (top left). This agent can sometimes
break the spiral when it finds an obstacle (top right), by “following” the wall of an obstacle. The
spiral of agent 90001 (bottom), created by comparing the left and rear-left sensors, is a Fibonacci
spiral (the length of each segment equals the sum of the previous two).

3.8. Emergent Behaviors 131

Asymmetry Humans rarely depict any strong preference for turning to either side, whereas
this is a typical characteristic of unsophisticated robots.

The reasons for asymmetric behavior on robots are similar to those explained for spi-
raling above: early on coevolutionary runs, a useful turn is discovered and exploited.
The code will spread along the population and everybody will start performing the
same type of turn. Later on, more advanced turning patterns are discovered that
involve left as well as right turns.

In the end, the best agent strategies have perfectly balanced frequencies of left and
right turns: levels of asymmetry are near-zero for advanced robots, and for humans
of all levels.

Edge Crossing Unsurprisingly, robots cross the edges of the screen more often than hu-
mans. Robots do not perceive edges in any direct manner, so they move across with-
out a problem.

Agents go across edges once every 300 game steps (approximately), whereas the
human frequency is closer to one crossing every 500 game steps (a random walk
would go across an edge every 256 steps).

Edge Following Another differentiating behavior, robots move close and parallel to the
edges of the visible screen (at a distance of 10 or less, see fig. 3.35) more often than
humans. Also, the percentage of game time they spend doing this, increases with the
expertise of the agent.

A random walk would move along the edges 7.8% of the time. This is about the
frequency for novice robots, but expert ones ‘edge’ about 12% of the time. Human
rates stay between 2.5% and 5%, increasing slightly for experts.

Even though agents do not perceive edges — and thus are incapable of defining
“edging” explicitly — the better ones do it more often than random. Thus, albeit
indirectly defined, agents seem to have found a way to exploit a human weakness.

For humans, being close to an edge is perceived as dangerous: something might
come up unexpectedly from the other side, so humans stay away from edges more
often than not.

Spiral In & Out A behavior that occurs only amongst advanced robots. Difficult for hu-
mans, because it needs very precise navigation, robots discovered it at some point
and now is a resource strongly correlated with better performance.

Altogether, we have found that the set of behaviors we have been analyzing has provided
us with interesting measures of robot and human evolution and learning. Some of them

132 Chapter 3. Coevolving Behavior with Live Creatures

are typical of the “robot” species: more tight turns, more crossings of the screen’s edges,
diagonals produced by quickly alternating turns.

Zigzag is a unique problem in that it seems about equally important, and equally dif-
ficult for agents and humans alike. Zigzagging is fundamental for split endgames, when
both players are trying to save space, waiting for the other to make a mistake.

Some behaviors occur mostly at specific levels of expertise: Spiraling and asymmetry
are typical of novice agents, whereas in-out spirals and edge following are characteristic
behaviors of advanced agents. Among humans, tight turns and edge crossings are common
tools of expert players.

None of these behaviors had more frequency on humans than robots. Perhaps our choice
of 12 sample behaviors was biased by our observations of how agents behave, rather than
humans. But it is also interesting to reflect on the fact that human behavior is more com-
plex, more changing, so it is difficult to find fixed patterns that occur very often. Several
behaviors have much larger frequencies amongst agents than humans: staircase, edge fol-
lowing, and frequency of turns.

This last characteristic, lower human frequency of turns, we conjecture is related to a
fundamental difference on the way that agents and humans approach the game. Agents
are reactive, they read their sensors and act immediately. Humans switch between different
attention modes: they exploit safe situations, where they can go straight for a while without
interruptions, to look at the opponent’s behavior, examine remote areas of the board, study
the current topology of the game situation, and make plans for the future. Even though
strategically it makes no difference, a human would rarely do a diagonal, quickly pressing
the left and right keys while his/her attention is analyzing remote areas of the screen. A
person can perform a diagonal with equal efficiency than a robot, but at the cost of concen-
trating all attention on the narrowest area, maintaining a precise coordination of turns and
trajectory.

3.8.7 Maze Navigation

There is no problem solving in nature, just adaptation. A frog, evolutionary biologists may
argue, is not “a solution to the problem of being a frog”, and it is not appropriate to say
for example that it has solved the problem of jumping, or “being green”. In the same vein,
none of the behaviors we have observed among Tron agents have evolved deliberately, but
rather as a consequence of the fight for survival.

Tron agents perform known basic robotics behaviors, such as obstacle avoidance or
wall following, not because they have solved those problems, but rather as a consequence
of evolving for survival.

Figure 3.42 shows a Tron agent that has been inserted on a maze. This agent visits some
of the various passages, backtracks, then finally finds the exit and leaves. Approximately

3.9. Discussion 133

Figure 3.42: A Tron agent navigates out of a maze. It uses its own traced movements to explore
until it finds the exit. There was never a purpose or explicit fitness reward for navigating mazes;
instead, this agent behaves in this way as a result of its adaptation to the environment of Tron. The
agent leaves the maze through the exit only because it has evolved to avoid confined spaces.

one every 10 evolved agents is able to find the exit to this particular maze. But the reason
they do so is a need for survival, for there was never any payoff to do it.

The fact that the agent actually leaves the maze through the exit is particularly inter-
esting. Why leave? Humans observing this behavior might interpret that there is a will to
escape, a need for freedom; but on a deeper sense these are just consequences, as all animal
behaviors are, of their being adapted to a competitive environment.

3.9 Discussion

3.9.1 Adapting to the Real Problem

We use a state-of-the art evolutionary algorithm, continuously being trained by self-play,
as our novelty engine; but the players generated have a broad RS distribution: some of
them are very good against humans and others are very bad. In all, even with feedback
from the human results (by using champions as trainers, or later, by allowing champions to

134 Chapter 3. Coevolving Behavior with Live Creatures

reproduce) the average RS of the robots produced is below the performance of Tron as a
whole (section 3.7).

A Tron playing system relying solely on self-play would not be able to improve be-
yond this rate. It was the power of selection coming from interaction with a live human
population that drove the system up to an expert level.

3.9.2 Evolution as Mixture of Experts

As perceived by an individual user, our virtual Tron plays differently every time, as agents
are switched before each game. Simultaneously, due to the evolutionary process, the overall
level of play increases. This heterogeneous behavior is part of the success; the strength
of an individual strategy is valid only given the collective behavior of all other agents
— if the same strategy were used over and over, humans would quickly adapt and the
artificial opponent would appear boring and repetitive. This amounts to a mixture of experts
architecture [69], but here the mixture is a consequence of evolution, of agents exploiting
different niches created by their opponents. No single strategy can dominate, as long as
there are humans who learn to respond to it, bringing down its fitness, making the way for
new ones to take its place.

An interesting question for further study is to look for those emergent niches: is it
possible that some agents may have adapted to specific subsets of humans? It is conceivable
for example, that some agents are better against people with certain styles — novices for
example, or aggressive players.

3.9.3 Human-Machine Coevolution

The word coevolution is used in computer science literature to describe relative fitness
situations, where an individual’s value depends upon the population itself. But the present
work is the first example, to the best of our knowledge, of coevolution between an agent
and an animal species. Agents are selected, through the fitness rules coded into the system,
based only on their interaction with humans.

With Tron we are proposing a new paradigm for evolutionary computation: creating
niches where agents and humans interact, leading to the evolution of the agent species.
There are two main difficulties introduced when one attempts this type of coevolution
against real people:

� Interactions with humans are a sparse resource.

� Opponents are random and known tournament techniques for coevolution become
infeasible.

3.9. Discussion 135

The first problem is common to all applications that wish to learn from a real, or even
simulated, environment: interactions are slow and costly. We address this problem by
nesting an extra loop of coevolution: while the system is waiting for human opponents, it
runs many generations of agent-agent coevolution.

The second problem led us to develop a new evaluation strategy, based on the paired
comparisons statistics. With it we were able to successfully select the best strategies, push-
ing the system to the level of a top 3% human.

The differences between self evaluation and human evaluation, studied in section 3.7,
indicate, on the one hand, that evolving Tron agents by playing each other was not suffi-
cient, as the top agents are usually not so special against people. But on the other, some
of them are good, so expertise against other robots and expertise against people are not
independent variables either.

We think that this is the general case: evolutionary computation is useful in domains
that are not entirely unlearnable; at the same time, there is no substitute for the real experi-
ence: simulation can never be perfect.

We have also been able to show here, how most humans — at least those who stay for
a while — learn from their interaction with the system; some of them quite significantly.
Even though the system was not designed as a training environment for people, but rather
simply as an artificial opponent, the implications for human education are exciting: evo-
lutionary techniques provide us with a tool for building adaptive environments, capable of
challenging humans with increased efficiency by interacting with a large group of people.

3.9.4 Human Motivations

The dynamics of the human population are complicated. New players arrive at a steady
pace, but at the same time many veterans keep coming back (fig. 3.15), resulting in a
relatively stable experience distribution. The median is 87 games, meaning that half of the
games are played by users with a previous experience of 87 or more matches (25% with
387 or more).

The uniquely adaptive quality of the Tron web site is one of the reasons for such enthu-
siasm. One of our visitors described it in an eloquent e-mail message:

“I can actually see that the best robots now are better than the best robots of
yesterday. (Specifically, all of a sudden when I logged in at 7PM yesterday, I
could swear that there were sentient beings behind some of the robots)”8 .

8M. Jacobs, 1998.

136 Chapter 3. Coevolving Behavior with Live Creatures

Chapter 4

Conclusions

4.1 Discovery in AI

Intelligence defined as symbolic reasoning was the foundation of the first works in AI:
playing chess, solving logic problems, following formal rules, were thought to epitomize
intelligent behavior. Reasoning capacity was traditionally considered to be the difference
between intelligent Man and unintelligent animal.

Doug Lenat claimed that his Automated Mathematician (AM) program [91], seeded
with 115 elementary set theory concepts, was able to “discover” natural numbers and for-
mulate interesting concepts in basic number theory such as addition, multiplication, etc.;
even prime numbers. Lenat thought that the fundamental rule of intelligence, namely
heuristic search, had been found. The follow-up project, EURISKO, would discover a
domain’s heuristics by itself, thus enabling discovery in any field. To discover mathematics
for example, one should be able to run EURISKO with the initial axioms, and the program
would eventually find both the subject’s heuristics and facts, each one reinforcing the other.
Lenat’s hopes failed, though, and EURISKO did not live up to its expectations [90]. From
this and other failures, AI shifted focus, over the ensuing decades, towards programmed
expertise rather than discovery.

By showing how evolutionary entities find and exploit emergent properties of reality,
we go back to Lenat’s idea of AI as discovery. From the human perspective, complex is
what is not obvious, what is entangled and difficult; emergent properties are the complex
ones, those that need intelligence to be discovered and assimilated. With a growing un-
derstanding of what complexity and emergence are, and how they are generated, Artificial
Life methods bring a new perspective on discovery as adaptation.

The goal of AI should not be to program situated agents, but to make them adaptive.
Manually coding the program with all the information an organism needs becomes infea-
sible because it is too much — and because of the Red Queen problem: by the time we

137

138 Chapter 4. Conclusions

finish, the environment has changed. The code for a complete real agent, a horse for ex-
ample, may well be impossible to write. Even if we knew how to, a team of programmers
could not debug so many interdependent lines of code [111]. But an adaptive agent, as
natural evolution shows, is capable of doing so.

4.2 From Discovery to Abstraction

ALife is founded upon a different paradigm than classic AI: it considers human intelligence
as a small part logic, and a large part interaction with the habitat — embodiment. Evolu-
tionary methods have shown the potential to develop artificial entities adapted to complex
habitats and discover their rules. This is, however, only part of the problem, because it is not
known how to abstract those found rules and incorporate them into the agent as modules,
as new words in the language.

Here we have shown that recombination plays a fundamental role, acting as a simple
way of finding and reusing higher-level descriptions and subsolutions. One of the reasons
why agents can find and exploit emergent rules on their domains is that there is a par-
tial reduction of complexity coming from the crossover operator, which replicates useful
components at random. The question for the future is: how can these emergent rules be as-
similated by the agent? ALife has only started to look at this problem, sometimes referred
to as the modularity problem [5, 74].

The bulk of evidence coming from ALife work, including the one described here, sup-
ports the g-t-r hypothesis of Universal Darwinism: it is plausible that selection and re-
combination, in the scope of a challenging environment, can lead to increasing levels of
complexity. But it also shows that this is still a crude model of evolution. Two big ques-
tions remain:

� How are discoveries assimilated into higher level descriptions?

Take the genome of mammals as an example. It is organized to protect a core part
of the genotype, while encouraging mutation on regulation factors. The result is a
basic template that allows the exploration of morphology without changing the basic
components [17]. Horizontal gene transfer, which leads to inter-species recombi-
nations, has been controlled by sexual reproduction, to make it happen only within
the species. Thus not only emergent complex components have been found, such as
organs, but they have been incorporated into the representation, and the language of
mutation and recombination itself has been reformulated.

� How can evolution be described and studied at the level of whole systems instead of
agent-environment interaction?

4.3. The Humans in the Loop 139

Coevolution (as a subfield of evolutionary computation) has obtained interesting re-
sults that could be pointing in the right general direction. These experiments do not
have a drastic agent/environment distinction. Instead, the environment is the result of
the collective behavior of the population. This configuration, when successful, cre-
ates a continuous challenge at the right level, leading to agents that climb the ladder
of complexity. Coevolution thus breaks the first mold, that of a changing agent in a
rigid environment. But real evolution involves simultaneous co-adaptation through-
out all levels of organization, from the individual gene to the symbiotic association
of species.

Expanded views of evolution, both from biology [92, 97, 99] and ALife [138] that look at
collective evaluations, symbiosis and cooperations effects, and “evolution of evolvability”
[17, 31] point towards the more general understanding of natural and artificial evolution
that is necessary to address these problems.

4.3 The Humans in the Loop

With the reciprocal learning environments presented in this thesis, we have described new
ways to exploit the enormous potential of feedback loops between human intelligence and
evolutionary methods. The “blind watchmaker” algorithms [30, 86], and TD-Leaf’s induc-
tion of the relative values of chess figures from games against humans [7] were previous
indications of this potential.

EvoCAD (section 2.9) shows how a design tool can employ AI to generate creative so-
lutions for engineering problems. Researchers in design usually reject the concept of artifi-
cial creativity, yet the diverse characteristics of computer and human problem-solving lead
to solutions that are radically different. If our experiments can be described as generating
surprise and innovation [116] then the goal of artificial creativity might not be impossible,
after all.

In EvoCAD, human and machine take turns in trying to bring a design closer to a final
goal. But Tron puts human and machine in a collaboration of a larger scale.

The cooperative effect of large groups of humans working together on the Internet is
known, but Tron is the first example of an adaptive system that harvests voluntary con-
tributions of intelligence from its users. The technique also induced learning in humans,
suggesting that the coevolutionary dynamics can produce new kinds of educational and en-
tertainment environments through coadaptation between machines and humans. Sklar and
Pollack [126] have begun an effort to create educational environments for people based on
the type of mutually adaptive challenge first demonstrated by Tron.

The Internet is a new kind of environment where people and software interact in an
unprecedented scale. Thus the potential for a new kind of intelligent software that — as

140 Chapter 4. Conclusions

exemplified by our Tron domain — thrives on the niches of a virtual ecology that mixes
natural and artificial life forms.

4.4 The Reality Effect

We have described in detail some of the solutions encountered by our test domains: the
appearance of nested levels of complexity in Lego structures, the reuse and adaptation of
components, the emergence of basic navigation behaviors such as wall-following, spiraling,
maze navigation and space filling, amongst Tron agents.

The Brooksian idea that an agent’s complexity sometimes comes from the environment
more than the agent itself is supported by the evidence of Tron robots: these stateless agents
have no internal means for storing plans or previous decisions, yet were shown (section 3.8)
to reliably evolve behaviors involving choreographed sequences of moves.

By adapting to the real problem, rather than a metaphor or an incomplete simulation,
the applied aspect of evolutionary methods comes to life, which could lead to a variety of
applications.

Fully Automated Design, the idea of computers designing complete, functional arti-
facts, based on constraints and goals defined externally, was shown here with Lego struc-
tures. Lipson and Pollack extended this idea by showing how a static motion simulator can
be used to coevolve morphology and brain of walking creatures [94]. Automated design is
central to evolutionary robotics, for brains need bodies to inhabit, as well as evolutionary
design, which needs to break the mold of pre-imposed problem decomposition, and play
more freely with components and goals.

Together with work by other researchers such as Sims and Thompson our thesis deals
with what we have called the reality effect: when evolution interacts with a large, com-
plex environment like those typically generated by the world around us, complex solutions
appear that exploit emergent properties of the domain in surprising new ways.

Bibliography

[1] 20th Century Fox (1966) Fantastic Voyage. R. Fleischer, director (Film).

[2] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1993) Network Flows. Prentice Hall,
Englewood Cliffs.

[3] Ali, A., Helgason, R. V., Kennington, J. L. and Lall, H. (1980) Computational
comparison among three multicommodity network flow algorithms. Operations Re-
search 28: 995–1000.

[4] Angeline, P. J. and Pollack, J. B. (1993) Competitive environments evolve better
solutions for complex tasks. Forrest, S. (ed.), Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, Calif., 264–270.

[5] Angeline, P. J. and Pollack, J. B. (1994) Coevolving high-level representations. Ar-
tificial life III. Addison-Wesley, Reading, Mass., 55–71.

[6] Axelrod, R. (1987) The evolution of strategies in the iterated prisoner’s dilemma.
Davis, L. (ed.), Genetic Algorithms and Simulated Annealing, Pitman: London.

[7] Baxter, J., Tridgell, A. and L.Weaver (1998) TDLeaf(λ): Combining temporal dif-
ference learning with game-tree search. Proceedings of the Ninth Australian Con-
ference on Neural Networks. 168–172.

[8] Beasley, D., Bull, D. R. and Martin, R. R. (1993) A sequential niche technique for
multimodal function optimization. Evolutionary Computation 1(2): 101–125.

[9] Belew, R. K., McInerney, J. and Schraudolf, N. (1990) Evolving networks, using
the genetic algorithm with connectionist learning. Technical Report CSE-CS-174,
UCSD.

[10] Bennet, C. H. (1985) Emerging Syntheses in Science. Pines.

[11] Bentley, P. (ed.) (1999) Evolutionary Design by Computers. Morgan-Kaufmann, San
Francisco.

141

142 Bibliography

[12] Bentley, P. J. (1996) Generic Evolutionary Design of Solid Objects using a Genetic
Algorithm. Ph.D. thesis, Division of Computing and Control Systems, School of
Engineering, The University of Huddersfield.

[13] Bezerra, C. and Owen, C. L. (2000) Evolutionary structured planning. Gero, J. S.
(ed.), Artificial Intelligence in Design ’00. Kluwer Academic, 287–307.

[14] Brooks, R. (1991) Intelligence without reason. Proceedings of the 12th International
Joint Conference on Artificial Intelligence. IJCAI, San Mateo, Calif., 569–595.

[15] Brooks, R. (1991) Intelligence without representation. Artificial Intelligence 47(1-
3): 139–160.

[16] Brooks, R. A. (1986) A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation 2(1): 14–23.

[17] Carroll, S. B. (2000) Endless forms: The evolution of gene regulation and morpho-
logical diversity. Cell 101: 577–580.

[18] Castro, J. and Nabona, N. (1996) An implementation of linear and nonlinear multi-
commodity network flows. European Journal of Operational Research 92: 37–53.

[19] Chaitin, G. J. (1966) On the length of programs for computing finite binary se-
quences. Journal of the ACM 13(4): 547–569.

[20] Chapman, C. D., Saitou, K. and Jakiela, M. J. (1993) Genetic algorithms as an ap-
proach to configuration and topology design. Gilmore, B. (ed.), Advances in Design
Automation. American Society of Mechanical Engineers (ASME), New York, no.
65:1 in series DE, 485–498.

[21] Cherkassky, B. V. and Goldberg, A. V. (1997) On implementing push-relabel method
for the maximum flow problem. Algorithmica 19: 390–410.

[22] Cliff, D., Harvey, I. and Husbands, P. (1993) Explorations in evolutionary robotics.
Adaptive Behavior 2(1): 71–108.

[23] Cliff, D., Husbands, P. and Harvey, I. (1992) Analysis of evolved sensory-motor
controllers. Technical Report Technical Report CSRP 264, University of Sussex
School of Cognitive and Computing Sciences.

[24] Cliff, D. and Miller, G. (1995) Tracking the Red Queen: Measurements of adap-
tive progress in co-evolutionary simulations. Morán, F., Moreno, A., Merelo, J. J.
and Chacón, P. (eds.), Advances in Artificial Life: Third European Conference on
Artificial Life. Springer, Berlin, New York, no. 929 in Lecture Notes in Computer
Science, 200–218.

Bibliography 143

[25] Cliff, D. and Miller, G. (1996) Co-evolution of pursuit and evasion II: Simulation
methods and results. From Animals to Animats 4. MIT Press, 506–515.

[26] Cliff, D. and Noble, J. (1997) Knowledge-based vision and simple visual machines.
Philosophical Transactions of the Royal Society of London: Series B 352: 1165–
1175.

[27] Cormen, T. H., Leiserson, C. and Rivest, R. L. (1989) Introduction to Algorithms.
MIT Press - McGraw Hill.

[28] Cziko, G. (1995) Without Miracles: Universal Selection Theory and the Second
Darwinian Revolution. MIT Press, Cambridge, USA.

[29] Dawkins, R. (1983) Universal darwinism. Bendall, D. S. (ed.), Evolution from
Molecules to Man, Cambridge University Press, Cambridge. 403–425.

[30] Dawkins, R. (1987) The Blind Watchmaker. W. W. Norton, New York.

[31] Dawkins, R. (1996) Climbing Mount Improbable. W. W. Norton, New York.

[32] Di Paolo, E. A. (2000) Homeostatic adaptation to inversion of the visual field and
other sensorimotor disruptions. Meyer, J., Berthoz, A., Floreano, D., Roitblat, H.
and Wilson, S. W. (eds.), From Animals to Animats 6. MIT Press, Cambridge (Mass),
London (England), 440–449.

[33] Edmonds, B. (1999) Syntactic Measures of Complexity. Ph.D. thesis, University of
Manchester, Department of Philosophy.

[34] Elo, A. E. (1986) The Rating of Chessplayers, Past and Present. Arco Pub., New
York, 2nd ed.

[35] Fahlman, S. E. (1974) A planning system for robot construction tasks. Artificial
Intelligence 5: 1–49.

[36] Floreano, D. (1998) Evolutionary robotics in artificial life and behavior engineering.
Gomi, T. (ed.), Evolutionary Robotics, AAI Books, Ontario (Canada).

[37] Floreano, D. and Mondada, F. (1994) Automatic creation of an autonomous agent:
Genetic evolution of a neural network driven robot. D. Cliff, P. H., Meyer, J. and
Wilson, S. W. (eds.), From Animals to Animats 3. MIT Press, Bradford Books.

[38] Floreano, D. and Mondada, F. (1996) Evolution of homing navigation in a real mo-
bile robot. IEEE Transactions on Systems, Man, and Cybernetics .

144 Bibliography

[39] Floreano, D., Nolfi, S. and Mondada, F. (1998) Competitive co-evolutionary
robotics: From theory to practice. From Animals to Animats 4. MIT Press.

[40] Fogel, D. B. (2000) Evolving a checkers player without relying on human expertise.
Intelligence 11(2): 20–27.

[41] Forbus, K. (1984) Qualitative process theory. Artificial Intelligence 24: 85–168.

[42] Fukuda, T. and Kawauchi, Y. (1990) Cellular robotic system (CEBOT) as one of the
realization of self-organizing intelligent universal manipulator. Proceedings of the
1990 IEEE International Conference on Robotics and Automation. 662–667.

[43] Funes, P. (1996) The Tron game: an experiment in artificial life and evolutionary
techniques. (Unpublished).

[44] Funes, P. (2000) Measuring progress in coevolutionary competition. Meyer, J.,
Berthoz, A., Floreano, D., Roitblat, H. and Wilson, S. W. (eds.), From Animals to
Animats 6. MIT Press, Cambridge (Mass), London (England), 450–459.

[45] Funes, P., Lapat, L. B. and Pollack, J. B. (2000) EvoCAD: Evolution-assisted de-
sign. Artificial Intelligence in Design’00 (Poster Abstracts). Key Centre of Design
Computing and Cognition, University of Sidney, 21–24.

[46] Funes, P. and Pollack, J. B. (1997) Computer evolution of buildable objects. Hus-
bands, P. and Harvey, I. (eds.), Fourth European Conference on Artificial Life. MIT
Press, Cambridge, 358–367.

[47] Funes, P. and Pollack, J. B. (1998) Componential structural simulator. Technical
Report CS-98-198, Brandeis University Department of Computer Science.

[48] Funes, P. and Pollack, J. B. (1998) Evolutionary body building: Adaptive physical
designs for robots. Artificial Life 4(4): 337–357.

[49] Funes, P. and Pollack, J. B. (1999) Computer evolution of buildable objects. Bentley,
P. (ed.), Evolutionary Design by Computers, Morgan-Kaufmann, San Francisco. 387
– 403.

[50] Funes, P., Sklar, E., Juillé, H. and Pollack, J. B. (1998) Animal-animat coevolution:
Using the animal population as fitness function. From Animals to Animats 5. MIT
Press, Cambridge, MA, University of Zurich, 525–533.

[51] Funes, P., Sklar, E., Juillé, H. and Pollack, J. B. (1998) Animal-animat coevolution:
Using the animal population as fitness function. Pfeiffer, Blumberg, Wilson and
Meyer (eds.), From Animals to Animats 5. MIT Press.

Bibliography 145

[52] Gardin, F. and Meltzer, B. (1989) Analogical representations of naive physics. Arti-
ficial Intelligence 38: 139–159.

[53] Gell-Mann, M. and Lloyd, S. (1996) Information measures, effective complexity,
and total information. Complexity 2(1): 44–52.

[54] Glickman, M. E. (1999) Parameter estimation in large dynamic paired comparison
experiments. Applied Statistics 48: 377–394.

[55] Goldberg, D. (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading.

[56] Gould, S. and Vrba, E. (1982) Exaptation - a missing term in the science of form.
Paleobiology 8: 4–15.

[57] Gould, S. J. (1996) Full house: the spread of excellence from Plato to Darwin..
Harmony Books, New York.

[58] Grassberger, P. (1990) Information and complexity measures in dynamical systems.
Information Dynamics. Plenum Press, New York.

[59] Grigoriadis, M. D. and Khachiyan, L. G. (1995) An exponential-function reduction
method for block-angular convex programs. Networks 26: 59–68.

[60] Gruau, F. (1992) Cellular encoding of genetic neural networks. Technical Report
92.21, Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de
Lyon.

[61] Gruau, F. (1993) Genetic synthesis of modular neural networks. Proceedings of the
Fifth International Conference on Genetic Algorithms. Morgan-Kaufman, 318–325.

[62] Harvey, I. (1997) Artificial evolution for real problems. Gomi, T. (ed.), Evolutionary
Robotics: From Intelligent Robots to Artificial Life (ER’97). AAI Books, Kanata,
Ontario Canada, 127–149.

[63] Heylighen, F. (1989) Self-organization, emergence and the architecture of complex-
ity. Proceedings of the First European Conference on System Science. AFCET, Paris,
23–32.

[64] Heylighen, F. (1999) The growth of structural and functional complexity during evo-
lution. Heylighen, F., Bollen, J. and Riegler, A. (eds.), The Evolution of Complexity,
Kluwer Academic, Dordrecht-Boston-London. 17–43.

146 Bibliography

[65] Hillis, D. (1991) Co-evolving parasites improves simulated evolution as an optimiza-
tion procedure. C. Langton, C. Taylor, J. F. and Rasmussen, S. (eds.), Artificial Life
II, Addison-Wesley, Reading, MA.

[66] Hornby, G. S., Lipson, H. and Pollack, J. B. (2001) Evolution of generative design
systems for modular physical robots. IEEE International Conference on Robotics
and Automation. (to appear).

[67] Husbands, P. and Harvey, I. (1992) Evolution versus design: Controlling au-
tonomous robots. Proceedings of the Third Annual Conference on Artificial Intelli-
gence, Simulation and Planning. IEEE Press, 139–146.

[68] Iusem, A. and Zenios, S. (1995) Interval underrelaxed Bregman’s method with an
application. Optimization 35(3): 227.

[69] Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991) Adaptive mix-
tures of local experts. Neural Computation 3: 79–87.

[70] Jakobi, N. (1994) Evolving sensorimotor control architectures in simulation for a
real robot. Master’s thesis.

[71] Jakobi, N. (1997) Half-baked, ad hoc, and noisy: minimal simulations for evolution-
ary robotics. Husbands, P. and Harvey, I. (eds.), Fourth European Conference on
Artificial Life. MIT Press, 348–357.

[72] Jakobi, N., Husbands, P. and Harvey, I. (1995) Noise and the reality gap: The use
of simulation in evolutionary robotics. Morán, F., Moreno, A., Merelo, J. J. and
Chacón, P. (eds.), Advances in Artificial Life: Third European Conference on Artifi-
cial Life. Springer, Berlin, New York, no. 929 in Lecture Notes in Computer Science,
704–720.

[73] Joe, H. (1990) Extended use of paired comparison models, with application to chess
rankings. Applied Statistics 39(1): 85–93.

[74] Juillé, H. and Pollack, J. B. (1996) Co-evolving intertwined spirals. Proceedings of
the Sixth International Conference on Genetic Algorithms. 351–358.

[75] Juillé, H. and Pollack, J. B. (1996) Dynamics of co-evolutionary learning. From
Animals to Animats 4. MIT Press, 526–534.

[76] Kawauchi, Y., Inaba, M. and Fukuda, T. (1999) Genetic evolution and self-
organization of cellular robotic system. JSME Int. J. Series C. (Dynamics, Control,
Robotics, Design & Manufacturing) 38(3): 501–509.

Bibliography 147

[77] Keirsey, D. M. (1999) Involution: On the structure and process of existence. Hey-
lighen, F., Bollen, J. and Riegler, A. (eds.), The Evolution of Complexity, Kluwer
Academic, Dordrecht-Boston-London. 45–57.

[78] Kitano, H. (1990) Designing neural network using genetic algorithm with graph
generation system. Complex Systems 4: 461–476.

[79] Kolmogorov, A. N. (1965) Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission 1(1): 1–11.

[80] Kolmogorov, A. N. (1983) Combinatorial basis of information theory and probabil-
ity theory. Russian Mathematical Surveys 38: 29–40.

[81] Komosinski, M. and Ulatowski, S. (1999) Framsticks: towards a simulation of a
nature-like world, creatures and evolution. Floreano, D., Nicoud, J.-D. and Mon-
dada, F. (eds.), Advances in Artificial Life: 5th European Conference on Artificial
Life. Springer-Verlag, vol. 1674 of Lecture Notes in Artificial Intelligence, 261–265.

[82] Koppel, M. (1987) Complexity, depth, and sophistication. Complex Systems 1:
1087–1091.

[83] Kotay, K., Rus, D., Vona, M. and McGray, C. (1998) The self-reconfiguring robotic
molecule. 1998 IEEE International Conference on Robotics and Automation,.
Robotics and Automation Society.

[84] Koza, J. (1992) Genetic Programming. MIT Press, Cambridge.

[85] Koza, J. R. (1990) Evolution of subsumption using genetic programming. Varela,
F. J. and Bourgine, P. (eds.), Toward a practice of autonomous systems: First Euro-
pean Conference on Artificial Life. MIT Press, 110–119.

[86] K.Sims (1991) Artificial evolution for computer graphics. Computer Graphics (Sig-
graph ’91 proceedings). 319–328.

[87] Langton, C. (1989) Artificial life. Langton, C. (ed.), Artificial Life: the proceedings
of an Interdisciplinary Workshop. Addison-Wesley, 1–47.

[88] Lee, W., Hallam, J. and Lund, H. (1996) A hybrid GP/GA approach for co-evolving
controllers and robot bodies to achieve fitness-specified tasks. Proceedings of IEEE
3rd International Conference on Evolutionary Computation. IEEE Press, Piscat-
away, N.J., 384–389.

148 Bibliography

[89] Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, E. and Tragoudas, S. (1995)
Fast approximation algorithms for muticommodity flow problems. Journal of Com-
puter and Systems Sciences 50: 228–243.

[90] Lenat, D. and Brown, J. (1984) Why AM and EURISKO appear to work. Artificial
Intelligence 23: 269–294.

[91] Lenat, D. B. (1977) The ubiquity of discovery. International Joint Conference on
Artificial Intelligence (5th, 1977). IJCAI, 1093–1105.

[92] Lewontin, R. C. (2000) The triple helix : gene, organism, and environment. Harvard
University Press, Cambridge, Mass.

[93] Lieberman, H. (1997) Autonomous interface agents. ACM Conference on Human-
Computer Interface.

[94] Lipson, H. and Pollack, J. B. (2000) Automatic design and manufacture of robotic
lifeforms. Nature 406(6799): 974–978.

[95] Lund, H. (1995) Evolving robot control systems. Alander, J. T. (ed.), Proceedings of
the First Nordic Workshop on Genetic Algorithms and their Applications. University
of Vaasa, Vaasa.

[96] Lund, H., Hallam, J. and Lee, W. (1997) Evolving robot morphology. Proceedings
of IEEE Fourth International Conference on Evolution. IEEE Press.

[97] Margulis, L. (1993) Symbiosis in cell evolution: microbial communities in the
Archean and Proterozoic eons. Freeman, New York, 2nd ed.

[98] Mataric, M. J. and Cliff, D. (1996) Challenges in evolving controllers for physical
robots. Robotics and Autonomous Systems 19(1): 67–83.

[99] Maynard Smith, J. and Szathmáry, E. (1997) The major transitions in evolution.
Oxford University Press, Oxford.

[100] McCabe, T. J. (1976) A complexity measure. IEEE Transacions on Software Engi-
neering 2(4): 308–320.

[101] Miller, G. F. and Cliff, D. (1994) Protean behavior in dynamic games. Cliff, D.,
Husbands, P., Meyer, J. and Wilson, S. (eds.), From Animals to Animats 3, MIT
Press.

[102] Minsky, M. (1986) The Society of Mind. Simon & Schuster, New York.

Bibliography 149

[103] Newborn, M. (1996) Kasparov vs. Deep Blue: Computer Chess Comes of Age.
Springer Verlag, New York.

[104] Pamecha, A., Chiang, C., Stein, D. and Chirikjian, G. S. (1996) Design and imple-
mentation of metamorphic robots. Proceedings of the 1996 ASME Design Engineer-
ing Technical Conference and Computers in Engineering Conference.

[105] Park, H. S. and Gero, J. S. (2000) Categorisation of shapes using shape features.
Gero, J. S. (ed.), Artificial Intelligence in Design ’00. Kluwer Academic, 203–223.

[106] Plotkin, H. C. (1993) Darwin Machines and the Nature of Knowledge. Harvard
University Press.

[107] Pollack, J. B. and Blair, A. (1997) Why did TD-Gammon work? Advances in Neural
Information Processing Systems 9: 10–16.

[108] Pollack, J. B., Blair, A. and Land, M. (1996) Coevolution of a backgammon player.
Langton, C. (ed.), Artificial Life V . MIT Press.

[109] Pollack, J. B. and Blair, A. D. (1998) Coevolution in the successful learning of
backgammon strategy. Machine Learning 32: 225–240.

[110] Pollack, J. B., Lipson, H., Ficici, S., Funes, P., Hornby, G. and Watson, R. (2000)
Evolutionary techniques in physical robotics. Miller, J. (ed.), Evolvable Systems:
from biology to hardware. Springer-Verlag, no. 1801 in Lecture Notes in Computer
Science, 175–186.

[111] Pollack, J. B., Lipson, H., Funes, P., Ficici, S. G. and Hornby, G. (1999) Coevolu-
tionary robotics. Koza, J. R., Stoica, A., Keymeulen, D. and Lohn, J. (eds.), The
First NASA/DoD Workshop on Evolvable Hardware. IEEE Press.

[112] Ray, T. (1992) An approach to the synthesis of life. C. Langton, C. Taylor, J. F. and
Rasmussen, S. (eds.), Artificial Life II, Addison-Wesley, Reading, MA.

[113] Ray, T. S. (1994) An evolutionary approach to synthetic biology: Zen and the art of
creating life. Artificial Life 1: 179–209.

[114] Reynolds, C. (1994) Competition, coevolution, and the game of tag. Artificial Life
IV , MIT Press. 59–69.

[115] Rich, E. and Kight, K. (1991) Artificial Intelligence. McGraw-Hill, New York, 2nd
ed.

150 Bibliography

[116] Ronald, E. M. A. and Sipper, M. (2000) Engineering, emergent engineering, and
artificial life: Unsurprise, unsurprising surprise, and surprising surprise. , M. A. B.,
McCaskill, J. S., Packard, N. H. and Rasmussen, S. (eds.), Artificial Life VII. MIT
Press, Cambridge, 523–528.

[117] Rosca, J. (1996) Generality versus size in genetic programming. Proceedings of the
Genetic Programming 1996 Conference. MIT Press.

[118] Rosin, C. D. (1997) Coevolutionary Search Among Adversaries. Ph.D. thesis, Uni-
versity of California, San Diego.

[119] Rosin, C. D. and Belew, R. K. (1995) Methods for competitive co-evolution: find-
ing opponents worth beating. Proceedings of the 6th International Conference on
Genetic Algorithms. Morgan Kaufman, 373–380.

[120] Schoenauer, M. (1996) Shape representations and evolution schemes. Fogel, L. J.,
Angeline, P. J. and Back, T. (eds.), Proceedings of the 5th Annual Conference on
Evolutionary Programming. MIT Press.

[121] Shannon, C. E. (1948) A mathematical theory of communication. Bell System Tech-
nical Journal 27: 379–423,623–656.

[122] Simon, H. A. (1962) The architechture of complexity. Proceedings of the American
Philosophical Society 106: 467–482.

[123] Sims, K. (1994) Evolving 3D morphology and behavior by competition. Brooks, R.
and Maes, P. (eds.), Artificial Life IV . MIT Press, 28–39.

[124] Sims, K. (1994) Evolving virtual creatures. Computer Graphics, Annual Conference
Series.

[125] Sklar, E., Blair, A. D., Funes, P. and Pollack, J. B. (1999) Training intelligent agents
using human internet data. Liu, J. and Zhong, N. (eds.), Intelligent agent technology:
systems, methodologies, and tools. World Scientific, Singapore, River Edge, NJ.

[126] Sklar, E. and Pollack, J. B. (2000) A framework for enabling an internet learning
community. Educational Technology and Society 3(3): 393–408.

[127] Solomonoff, R. J. (1964) A formal theory of inductive inference I, II. Information
Control 7: 1–22, 224–254.

[128] Sutton, R. (1988) Learning to predict by the methods of temporal differences. Ma-
chine Learning 3: 9–44.

Bibliography 151

[129] Temperley, H. N. (1981) Graph Theory and Applications. Ellis Horwood, Chich-
ester.

[130] Tesauro, G. (1990) Neurogammon wins computer olympiad. Neural Computation
1: 321–323.

[131] Tesauro, G. (1992) Practical issues in temporal difference learning. Machine Learn-
ing 8: 257–277.

[132] Tesauro, G. (1995) Temporal difference learning and TD-Gammon. Communica-
tions of the ACM 38(3): 58–68.

[133] Thompson, A. (1995) Evolving electronic robot controllers that exploit hardware
resources. Morán, F., Moreno, A., Merelo, J. J. and Chacón, P. (eds.), Advances in
Artificial Life: Third European Conference on Artificial Life. Springer, Berlin, New
York, no. 929 in Lecture Notes in Computer Science, 640–656.

[134] Thompson, A. (1998) Hardware evolution : Automatic design of electronic circuits
in reconfigurable hardware by Artificial Evolution. Springer, London; New York.

[135] Toulmin, S. (1953) The Philosophy of Science. Hutchinson, London.

[136] V’yugin, V. V. (1999) Algorithmic complexity and stochastic properties of finite
binary sequences. Computer Journal 42(4): 294–317.

[137] Walt Disney Studios (1982) Tron. S. Lisberger, director (Film).

[138] Watson, R. A. and Pollack, J. B. (2000) Symbiotic combination as an alternative to
sexual recombination in genetic algorithms. Schoenauer, M., Deb, K., Rudolph, G.,
Yao, X., Lutton, E., Merelo, J. J. and Schwefel, H.-P. (eds.), Proceedings of Parallel
Problem Solving from Nature VI. Springer Verlag, no. 1917 in Lecture Notes in
Computer Science.

[139] Yim, M. (1995) Locomotion With A Unit-Modular Reconfigurable Robot. Ph.D.
thesis, Stanford University, Department of Computer Science.

[140] Yim, M., Duff, D. G. and Roufas, K. D. (2000) PolyBot: a modular reconfigurable
robot. Proceedings : 2000 IEEE International Conference on Robotics and Automa-
tion. Robotics and Automation Society, Piscataway, NJ.

[141] Zienkiewicz, O. (1977) The Finite Element Method in Engineering Science.
McGraw-Hill, New York, 3rd ed.

