

Studying the influence of Synchronous and Asynchronous Parallel GP on Programs
Length Evolution

G. Galeano1, F. Fernández1, M. Tomassini2, L. Vanneschi2

1 Computer Science Department, University of Extremadura
C/ Calvario, s/n. 06800 Mérida, Spain
{ ggaleano, fcofdez} @unex.es
http://atc.unex.es/pacof

2 Computer Science Department, University of Lausanne
{ Marco.Tomassini, Leonardo.Vanneschi} @iis.uni.ch

ABSTRACT
In this paper we present a study of parallel and distributed

genetic programming models and their relationships with the
bloat phenomenon. The experiments that we have performed
have also allowed us to find an interesting link between the
number of processes, subpopulations and the model we
should use when applying parallelism to GP. We study the
synchronous and asynchronous version of the island-model in
GP domain.

I. INTRODUCTION
It is well known that Genetic Programming (GP) programs

tend to increase their size as population evolves [10,11]. This
phenomenon is in some respect negative since it requires a
large amount of computer resources to be managed. Several
alternatives have been proposed to control that problem. In
[11] some of these proposals are described: firstly, by
placing a universal upper limit either on tree depth or
program length; secondly, by incorporating a penalty which
is proportional to program size; and finally, tailoring the
genetic operations.

To our knowledge, the problem of bloat has always been
studied by using sequential GP and panmictic populations.
Nevertheless, when we studied different parallel models for
GP in some of our previous research, we found an interesting
relationship between program size evolution and the number
of populations and individuals we employ (see [7]). We
stated there that this relationship has much to do with the
problem of bloat. In [5] and [6] we defined the concept of
parameters region of effort; This characterises performance
curves in parallel GP. Although we indicated that this region
had a lot to do with the difficulty of problems and the
optimum number of individuals that are required for solving
problems, it can now be analysed again in the light of the
new influences detected from the parallel and distributed GP
models. This idea is more widely studied in this paper by
means of a couple of benchmark problems and several set-
ups.

We have also analysed the synchronous and asynchronous
parallel GP models when completing our previous study on
the influence of the number of individuals and
communication time. We can thus have an idea about how
the best performances are obtained.

At the same time, this study has also shown us some
important links between firstly the total number of
individuals and secondly subpopulations, and the number of
processors we use to obtain results. Sometimes, when the
brute force is not available, we must carefully consider the
computer resources we have and GP models we must use to
obtain the best results.

This paper is structured in the following way: Section 2
presents parallel models that are commonly used in
evolutionary algorithms. In section 3 we describe the
benchmark problems we have employed. Section 4 deals
with the bloat phenomenon. Section 5 presents an study of
synchronization models. In section 6 we show some ideas
that establish a relationship between number of processors,
populations and synchronization models. Finally, section 7
presents our conclusions.

II. PARALLEL MODELS FOR EVOLUTIONARY
ALGORITHMS

One common problem when evolutionary algorithms are
used for solving real-life problems is the large amount of
computer resources that are required. Parallel models have
been applied to Evolutionary Algorithms (EAs) over the last
few years [1,2,3,8 and 15]. This is done by taking the concept
of subpopulation: the main population is divided into several
smaller ones that evolve at their own pace, exchanging
individuals. The idea is to search different portions of the
search space and also promote diversity by means of those
migrating individuals (other configurations are also possible,
see [13]).

If we focus on GP we see that individuals feature different
sizes and complexities, and this means that evaluating
different individuals may require very different lengths of
time. Therefore, when we use several subpopulatios for

0-7803-7282-4/02/$10.00 ©2002 IEEE

devising solutions -the well known island-model- each of the
subpopulations will evolve generations at a very different
pace. At the same time, this is very important when we use
several processors to compute subpopulations: depending on
the way we synchronise subpopulations, we will obtain
different results. This is one of the issues we investigate in
this paper. Specifically, we study the synchronous and
asynchronous versions of the island-based parallel and
distributed GP. When we use the synchronous model, all
processes -subpopulations- synchronise when sending and
receiving individuals. Nevertheless, if we employ the
asynchronous model, each population sends and receives
individuals according to some internal measurements. No
synchronization exists in this second model. Both parallel
models are also employed to study the size evolution of
individuals.

III. EXPERIMENTS
We have taken a couple of benchmark problems that are

widely used in GP literature: the ant problem (see [11]) and
the even parity 5 problem [9]. Summarizing, the ant problem
tries to find some pieces of food which are positioned along a
path on a two dimensional grid. The even parity function
takes a number of Boolean inputs and returns TRUE only if
an even number of inputs are true.

Performing the same experiments a number of times is
useful for obtaining conclusions (14 times in [14] and 14, 25
or 60 times in [8]). We have decided to run each of our
experiments 50 times. We have employed the padgp tool
[5,6] and all the experiments have been conducted in a PC-
LINUX 350 Mhz environment.

The padgp tool implements the master/slave model, each
slave being a subpopulation. The master process is in charge
of managing messages, while the communication topology is
the ring: process n sends its individuals to process n+1.

The main GP parameters we have employed are the
following ones: Crossover probability 98%; Mutation
probability 50% for the ant problem and 5% for the even
parity. Each population exchange 10% of their individuals
each 10 generations for the ant problem, and each 5
generation for the even parity problem. We have employed
the padgp tool (see [6] and [4]) which implements the
master/slave model, each slave being a subpopulation. The
communication topology is the ring: process n sends its
individuals to process n+1.

IV. THE BLOAT PROBLEM
As mentioned above, there is an increase in size of GP

programs when GP populations evolve. This has been fought
by establishing limit values for the maximum size of
individuals, or by penalizing the individuals' fitness values
with a factor that is proportional to their size.

Nevertheless, in [7], we presented preliminary results
which showed that when none of the above solutions are

applied to island-based parallel GP, the individuals' length
evolution varies according to the number of individuals and
subpopulations we employ. In order to confirm that idea, we
have performed a larger set of experiments.

Figure 1: The Ant problem without length control.

Figure 2: Fitness obtained with and without length control in the ant
problem.

0-7803-7282-4/02/$10.00 ©2002 IEEE

In figure 1, we show the ant problem with several
configurations: panmictic GP and parallel GP based on the
island model, with 250 and 2500 individuals and 5, 10 or 20
subpopulations. When performing these experiments, we
have sometimes applied a penalty that is proportional to
individual's size within the fitness function. This set of
experiments has been labelled "with length control" in the
graphs. When this restriction has not been applied, we have
labelled graphs as "without length control".

When there is no length control the panmictic –labelled as
classic in graphs– model shows a greater increase in size than
the parallel models. This happens in almost all the
configurations. However, when length control is applied, the
classic model sometimes controls the average size of
individuals better than parallel models (see figure 3).

The same experiments have been performed with the even
parity 5 problem, and similar conclusions can be drawn (see
figure 3 and 4). We can observe that when using the parallel
model, the higher the number of populations we use, the
smaller the increase in individuals size we find.

Figure 3: The Ant problem with length control.

Figure 4: The evenp problem with length control.

Figure 5: The evenp problem without length control.

We can thus state that length evolution depends greatly on
the GP model we use. Both synchronous and asynchronous
versions of GP restrict the bloat phenomenon when no
penalization is applied within the fitness function.
Nevertheless, this control is not so effective as when it is
explicitly introduced into the fitness function. Consequently
(when the latter is use) differences favouring parallel models
are not observed.

0-7803-7282-4/02/$10.00 ©2002 IEEE

Figure 6: The evenp problem with length control

Figures 2, 5 and 6 show the fitness obtained by all the
models studied. We see that sometimes panmictic GP
obtains the same or even worse results than parallel GP
(synchronous or asynchronous), but this depends on the
number of subpopulations we use.

Furthermore, we have seen that a larger number of
populations -which in turn means a smaller number of
individuals per population- controls the bloat phenomenon
better than using smaller number of populations, and this is
the reason which allows parallel models to control bloat
better than the panmictic model (the model with only 1
population) when no other control is applied. At the same
time, given that differences in size are sometimes large and
differences in fitness obtained are small, parallel models may
obtaind better convergence results when we compare fitness
to computing effort. This of course depends on the number
of subpopulations we use, which confirms the notion of "
region of effort" presented in [5].

V. SYNCHRONIZATION MODEL
We now continue by analysing the time required for

evaluating generations within synchronous and asynchronous
parallel GP.

Figure 7 shows us the time taken to compute each
generation in the ant problem. We show different settings,
and the curves can be classified in two groups: those that
correspond to experiments with a high number of individuals
and those with a low number of individuals.

If we focus on curves obtained when employing a higher
number of individuals (2500) we can remark on an
interesting issue: when we use the synchronous model, pre-
migration generations take less time to compute. These
effect becomes evident two or three generations before the

migration phase. Something similar can also be observed
when using the asynchronous model. But this time the
reduction of time happens during the final generations of
each experiment. This occurs when length control is applied
and also when it is not employed

Figure 7. Time spent by each generation in ant problem with 2500

individuals

In order to explain that circumstance, we must remember
how the Operating System works. When we use a
monoprocessor system, which is endowed with a multi-
process operating system (Linux), several processes can run
simultaneously, thanks to the assignment of pieces of
processor time -quantums- to different processes. Each
process is assigned a quantum cyclically, until it finishes.
When a process stop for an input/output operation, it is not
assigned new quantums before it receives data. Its
corresponding quantum is distributed among the other
processes.

Padgp uses mpich [12] which is an implementation of
MPI. In turns, mpich uses sockets for exchanging
information between processes. The picture becomes
complete if we say that Linux consider sockets as
input/output operations. This means that each time a process
is awaiting data from another process, the first one will
become idle and will give its corresponding quantum to other
processes, which in turn will compute quicker.

This operating system feature is the source for the
temporal reduction in generations that are close to the
migration generation. Within the synchronous model, if a
process begins a migration generation, it sends its best
individuals to the master process and becomes idle before
individuals from other populations arrive. Other populations
that have not yet arrived at the migration generation will use
the supplied quantum in order to compute more quickly, thus

0-7803-7282-4/02/$10.00 ©2002 IEEE

arriving earlier at the migration generation, and also
providing new quantums for other populations. Sumarising,
this issue causes the last few generations before the
synchronisation step to do their work in less time on average
(see figure 6), while migration generations require much
longer.

Something similar happens within the asynchronous
model: the lack of synchronization helps each population to
compute at its own pace, never waiting for individuals, only
receiving them when they are in the buffer. Due to the
different speed of each process, the quicker ones will finish
before the remaining ones. When they finish, their quantums
are also distributed among the remaining ones, which are
probably performing their final generations. This helps the
last few generations to compute quickly in slower processes,
allowing them to finish more quickly and providing in turn
new quantums to even slower processes. This is the reason
for the decrease in generation time for the final generations.

If we bear in mind all the experiments that we have
performed using only one processor, we could conclude that
the asynchronous model will be the preferred algorithm if we
employ a multiprocessor system or even a cluster of
computers: each population runs on a different processor,
and the synchronous model will not be able to make use of
quantums from idle processes.

On the other hand, if we focus on curves that have been
obtained with a low number of individuals, the above
mentioned effects are not so evident. This is due to the low
communication rate (we always take 10% of the population
size as the migration rate).

We can thus state that the number of individuals in
subpopulations is a critical factor when determining the total
time needed for obtaining solutions in parallel models, not
only because they require time to compute, but also because
they produce bottlenecks in communication processes. We
could avoid this problem by suppressing the master process,
allowing subpopulations to communicate directly, and also
by using several processors. This final issue is studied in the
following section.

VI. ADVANTAGES OF PARALLEL MODELS.
If we look at figure 8, we can see that the best

performances are not always obtained with the same model.
It greatly depends on the total number of individuals and
number of populations. We must now observe figure 6 again,
and be aware of the dynamics of synchronous and
asynchronous models.

If we carefully study figure 9, we can draw the following
conclusion if we attend to both the number of populations
and processors we are using. Let M be the total number of
processors we are using, and N the total number of
populations:

Figure 8: Fitness obtained by several configurations and 2500 individuals

1. If N=1, we are dealing with the panmictic model.
There is no interest in using a parallel architecture.

2. If M=1, then we are using a monoprocessor system
a. If N is large, then we should use the

asynchronous or the panmictic model.
b. If N is nor large nor small, we should use the

panmictic model.
c. If N is small, we better use shynchronous or

asynchronous model.
3. If N>>M (N is much larger than M), then N/M=k,

being k a large number. In this case we can apply
conclusion 2.a within each of the processors (each of
them must evaluate k subpopulations). But if we look
at all the processors at the same time, the
asynchronous model is preferable, given that it obtains
better convergence when we are measuring fitness.

4. If N<<M, there are idle processors, and those that are
working, are managing only 1 subpopulation. In this
case the asynchronous model is also preferable.

5. If N≅M, then N/M≅1, and we are also managing each
subpopulation with one processor: The asynchronous
model is again the best choice. We save time and also
obtain the best convergence results.

0-7803-7282-4/02/$10.00 ©2002 IEEE

Figure 9: Acumulated time in each generation.

VII. CONCLUSIONS
In this paper we have studied synchronous and

asynchronous parallel GP models. We have seen how they
can help to control the bloat phenomenon when no other
controls are applied. We achieve better control of bloat when
we use a larger number of populations, each with a smaller
number of individuals.

We have also studied the time required for computing
synchronous and asynchronous models, as well as the
influence of the Operating System when working on
monoporocessor systems. This study has allowed us to draw
conclusions about the performance that will be obtained in
multiprocessor systems. The asynchronous model is the
preferable when we use Parallel and Distributed GP with
several processors. If we work on a monoprocessor system,
both synchronous and asynchronous models obtain similar
results.

REFERENCES
[1] E. Alba, J. M. Troya: “Analyzing synchronous and asynchronous

parallel distributed genetic algorithms”. Future Generation Computer
Systems 17 (2001) 451-465

[2] David Andre and John R. Koza. “Parallel Genetic Programming: A
Scalable Implementation Using The Transputer Network
Architecture”. P. Angeline and K. Kimea editors. Advances in Genetic
Programming 2, Cambridge, MA, 1996.

[3] E. Cantú-Paz and D. Goldberg: Predicting Speedups of Ideal
Bounding Cases of Parallel Genetic Algorithms. Proceedings of the
Seventh International Conference on Genetic Algorithms. Morgan
Kaufmann.

 [4] F. Fernández, M. Tomassini, L Vanneschi, L. Bucher, "The GP’s
Tool". http: //www-iis.unil.ch/gpi/tool.html

[5] F. Fernández, "Parallel and Distributed Genetic Programming models,
with application to logic síntesis on FPGAs", PhD Thesis.
Universidad de Extremadura, February 2001.

[6] F. Fernández, M Tomassini, W.F. Punch, J.M Sánchez: “Experimental
Study of Multipopulation Parallel Genetic Programming”. In R. Poli,
W. Banzhaff, W. Langdon, J. Miller, P. Nordin, T. Fogarti (eds)
LNCS 1802 Proceedings of Euro Gp 2000. pp. 283-293.

[7] F. Fernández, G. Galeano, "Comparing Synchronous and
Asynchronous Parallel and Distributed GP Models", EuroGP
2002. To appear.

 [8] J. R. Koza, F. H. Bennett III, D. Andre, M.A. Keane: Genetic
Programming III. Darwinian Invention and Problem Solving.
Morgan Kaufmann Publishers. San Francisco.

[9] J. R. Koza: Genetic Programming. On the programming of computers
by means of natural selection. Cambridge MA: The MIT Press.

 [10] W. B. Langdon, “Quadratic Bloat in Genetic Programming”,
In Proceedings Genetic and Evolutionary Computation
Conference GECCO 2000. Morgan Kauffman.

[11] W. Langdom and R. Poli. “Fitness causes bloat”. In P.K. Chawdhry
et. Al., editors. Soft Computing in Engineering Design and
Manufacturing, pp 13-22. Springer London, 1997.

 [12] MPI Forum (1995) MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/index.htm.

[13] A. Tettamanzi, M.Tomassini, “Soft Computing”. Springer Verlag,
Heideberg, Germany 2001

[14] W.F. Punch: “How effective are multiple populations in Genetic
Programming”. Genetic Programming 1998: Proceedings of the Third
Annual Conference, J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, D. Goldberg, H. Iba and R. L.
Riolo (Eds),Morgan Kaufmann, San Francisco, CA, 308-313, 1998.

[15] M. Tomassini, F. Fernández, L. Vanneschi, L. Bucher, "An MPI-
Based Tool for Distributed Genetic Programming" In Proceedings of
IEEE International Conference on Cluster Computing
CLUSTER2000, IEEE Computer Society. Pp.209-216.

0-7803-7282-4/02/$10.00 ©2002 IEEE

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
