Skip to main content

A New Variant of Genetic Programming in Formulation of Laser Energy Consumption Model of 3D Printing Process

  • Chapter
  • First Online:
Handbook of Sustainability in Additive Manufacturing

Abstract

Literature studies reveal that significant work has been done in improving the productivity of the 3D printing process, at the same time neglecting the associated environmental implications. Growing demand for customized and better product quality has resulted in an increase in energy consumption, which is one of the important factors for sub-standard environmental performance. Consequences include the adverse impacts on humans, plant life, and soil and among others. Thus, an optimization of energy consumption is needed for improving the environmental performance of the 3D printing process. In this context, the present work proposes a complexity-based-evolutionary approach of genetic programming (CN-GP) in formulation of functional expression between laser energy consumption, total area of sintering, and two inputs of 3D printing process [selective laser sintering (SLS)]. The performance of the proposed laser energy consumption models is evaluated against actual experimental data based on five statistical metrics and hypothesis testing. Relationships between laser energy consumption and two inputs are unveiled which can be used for effectively monitoring the environmental performance of the SLS process. It was found that the slice thickness has 98 % impact on the laser energy consumption in the process. A major contribution of the study is that the optimum values of inputs can be selected to optimize the energy consumption of the SLS process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baumers M, Tuck C, Bourell DL, Sreenivasan R, Hague R (2011) Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process. Proc Inst Mech Eng Part B J Eng Manuf 225(December (B12)):2228–2239

    Google Scholar 

  • Beal V et al (2009) Statistical evaluation of laser energy density effect on mechanical properties of polyamide components manufactured by selective laser sintering. J Appl Polym Sci 113(5):2910–2919

    Article  CAS  Google Scholar 

  • Bellini A, Guceri S, Bertoldi M (2004) Liquefier dynamics in fused deposition. J Manuf Sci Eng Trans ASME 126(2):237–46

    Google Scholar 

  • Cervera GBM, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyping J 5(1):21–26

    Article  Google Scholar 

  • Chatterjee A et al (2003) An experimental design approach to selective laser sintering of low carbon steel. J Mater Process Technol 136(1):151–157

    Article  CAS  Google Scholar 

  • Childs THC, Tontowi AE (2001) Selective laser sintering of a crystalline and a glass-filled crystalline polymer: experiments and simulations. Proc Inst Mech Eng Part B J Eng Manuf 215(11):1481–95

    Google Scholar 

  • Childs THC, Berzins M, Ryder GR, Tontowi A (1999) Selective laser sintering of an amorphous polymer—simulations and experiments. Proc Inst Mech Eng Part B J Eng Manuf 213(4):333–49

    Google Scholar 

  • Cho HS, Park WS, Choi BW, Leu MC (2000) Determining optimal parameters for stereolithography processes via genetic algorithm. J Manuf Syst 19(1):18–27

    Article  Google Scholar 

  • Cong-Zhong C et al (2009) Density prediction of selective laser sintering components based on support vector regression. Acta Physica Sinica 58(6):S8–S14

    Google Scholar 

  • Deckard CR, McClure P (1988) Selective laser sintering

    Google Scholar 

  • Fuh JYH, Choo YS, Nee AYC, Lu L, Lee KC (1995) Improvement of the UV curing process for the laser lithography technique. Mater Des 16(1):23–32

    Article  CAS  Google Scholar 

  • Garg A, Garg A, Tai K, Sreedeep S (2014a) An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Eng Appl Artif Intell 30:30–40

    Article  Google Scholar 

  • Garg A, Tai K, Savalani MM (2014b) State-of-the-art in empirical modeling of rapid prototyping processes. Rapid Prototyping J 20(2):164–178

    Article  Google Scholar 

  • Garg A, Tai K, Savalani MM (2014c) Formulation of bead width model of an SLM prototype using modified multi-gene genetic programming approach. Int J Adv Manuf Technol 73(1-4):375–388

    Article  Google Scholar 

  • Garg A, Lam JSL (2015a) Improving environmental sustainability by formulation of generalized power consumption models using an ensemble evolutionary approach. J Cleaner Prod 102:246–263

    Google Scholar 

  • Garg A, Lam JSL (2015b) Measurement of environmental aspect of 3-D printing process using soft computing methods. Measurement 75:210–217

    Google Scholar 

  • Garg A, Lam JSL, Gao L (2015a) Energy conservation in manufacturing operations: modelling the milling process by a new complexity-based evolutionary approach. J Cleaner Prod. doi:10.1016/j.jclepro.2015.06.043

    Google Scholar 

  • Garg A, Vijayaraghavan V, Lam JSL, Singru MP, Gao Liang (2015b) A molecular simulation based computational intelligence study of a nano-machining process with implications on its environmental performance. Swarm Evol Comput 21:54–63

    Google Scholar 

  • Garg A, Lam JSL, Savalani MM (2015c) A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. Int J Adv Manuf Technol 80(1):555–565

    Google Scholar 

  • Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press

    Google Scholar 

  • Kellens K, Yasa E, Dewulf W, Duflou J (2010) Environmental assessment of selective laser melting and selective laser sintering. In: Going green—CARE INNOVATION 2010

    Google Scholar 

  • Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. MIT, USA

    Google Scholar 

  • Kruth JP, Kumar S (2005) Statistical analysis of experimental parameters in selective laser sintering. Adv Eng Mater 7(8):750–755

    Article  CAS  Google Scholar 

  • Lam JSL (2015) Designing a sustainable maritime supply chain: a hybrid QFD-ANP Approach. Transp Res Part E 78:70–81

    Article  Google Scholar 

  • Lam JSL, Dai J (2015) Environmental sustainability of logistics service provider: an ANP-QFD approach. Int J Logistics Manage 26(2):313–333

    Article  Google Scholar 

  • Lam JSL, Lai KH (2015) Developing Environmental Sustainability by ANP-QFD Approach: the Case of Shipping Operations. J Clean Prod 105:275–284

    Article  Google Scholar 

  • Liao H-T, Shie J-R (2007) Optimization on selective laser sintering of metallic powder via design of experiments method. Rapid Prototyping J 13(3):156–162

    Article  Google Scholar 

  • Luo YC, Ji ZM, Leu MC, Caudill R (1999a) Environmental performance analysis of solid freeform fabrication processes. In: Proceedings of the 1999 IEEE inter-national symposium on electronics and the environment, ISEE—1999, p. 1–6

    Google Scholar 

  • Luo YC, Leu MC, Ji ZM (1999b) Assessment of environmental performance of rapid prototyping and rapid tooling processes. In: Solid freeform fabrication pro-ceedings, Aug 1999, pp 783–91

    Google Scholar 

  • Mognol P, Lepicart D, Perry N (2006) Rapid prototyping: energy and environment in the spotlight. Rapid Prototyping J 12(1):26–34

    Article  Google Scholar 

  • Nancharaiah T, Nagabhushanam M, Amar Nagendram B (2013) Process parameters optimization in SLS process using design of experiments. Int J Mech Eng Technol 4(2):162–171

    Google Scholar 

  • Nelson JC et al (1993) Model of the selective laser sintering of bisphenol-A polycarbonate. Ind Eng Chem Res 32(10):2305–2317

    Article  CAS  Google Scholar 

  • Niino T, Haraguchi H, Itagaki Y (2011) Feasibility study on plastic laser sintering without powder bed preheating. In: Proceedings of the 22th solid freeform fabrication symposium

    Google Scholar 

  • Paul Ratnadeep, Anand Sam (2012) Process energy analysis and optimization in selective laser sintering. J Manuf Syst 31(4):429–437

    Article  Google Scholar 

  • Raghunath N, Pandey PM (2007) Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int J Mach Tools Manuf 47(6):985–995

    Article  Google Scholar 

  • Savalani MM et al (2012) The effects and interactions of fabrication parameters on the properties of selective laser sintered hydroxyapatite polyamide composite biomaterials. Rapid Prototyping J 18(1):16–27

    Article  Google Scholar 

  • Shen, X et al (2004) Density prediction of selective laser sintering components based on artificial neural network. In: Advances in neural networks-ISNN 2004. Springer, Berlin, pp 832–840

    Google Scholar 

  • Singh A, Prakash RS (2010) DOE based three-dimensional finite element analysis for predicting density of a laser-sintered component. Rapid Prototyping J 16(6):460–467

    Article  Google Scholar 

  • Sreenivasan R, Bourell DL (2009) Sustainability study in selective laser sintering—an energy perspective. In: Proceedings of the 20th solid freeform fabrication symposium, pp 3–5

    Google Scholar 

  • Sun MM (1991) Physical modeling of the selective laser sintering process. Dissertation. TX, United States: The University of Texas at Austin

    Google Scholar 

  • Sun MM, Beaman J (1991) A three dimensional model for selective laser sintering. In: Solid freeform fabrication symposium

    Google Scholar 

  • Sun MM, Beaman J, Barlow JW (1990) Parametric analysis of the selective laser sin-tering process. In: Solid freeform fabrication symposium

    Google Scholar 

  • Thompson DC, Crawford RH (1997) Computational quality measures for evaluation of part orientation in freeform fabrication. J Manuf Syst 16(4):273–289

    Article  Google Scholar 

  • Tontowi AE, Childs T (2001) Density prediction of crystalline polymer sintered components at various powder bed temperatures. Rapid Prototyping J 7(3):180–184

    Article  Google Scholar 

  • Vijayaraghavan V, Garg A, Wong CH, Tai K, Regella PS, Tsai CM (2014) Density characteristics of laser-sintered three-dimensional printing parts investigated by using an integrated finite element analysis–based evolutionary algorithm approach. Proc Inst Mech Eng Part B J Eng Manuf (Imeche), Dec 2, 2014. 0954405414558131

    Google Scholar 

  • Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping J 4(2):90–100

    Article  Google Scholar 

  • Xu F, Wong YS, Loh HT (2000) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296

    Article  Google Scholar 

  • Yang H-J, Hwang P-J, Lee S-H (2002) A study on shrinkage compensation of the SLS process by using the Taguchi method. Int J Mach Tools Manuf 42:1203–1212

    Article  Google Scholar 

  • Yardimci AM, Guceri SI, Danforth SC, Agarwala M (1995) A phenomenological numerical model for fused deposition processing of particle filled parts. In: Proceedings of the solid freeform fabrication symposium. The University of Texas, pp 189–195

    Google Scholar 

Download references

Acknowledgments

This study was supported by Nanyang Technological University’s funding, reference number M060030008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine Siu Lee Lam .

Editor information

Editors and Affiliations

Appendix

Appendix

$$ \begin{aligned} {\mathbf{TAS}}_{{{\mathbf{GP}}}} & = - 88628431.5699 + ( - 14421262.2035) \\ & \quad \times (\tanh (\sin (\tan (\cos ((x1) \times (( - 8.993442))))))) + (107.691) \\ & \quad \times (\sin (x2)) + (70467967.5522) \times (\sin ((x1) \times (\cos ((\tanh (x1)) \\ & \quad *(( - 8.993442)))))) + ( - 3390.7491) \times (\cos ((\cos ((x1) \\ & \quad \times (( - 8.993442)))) \times (( - 8.993442)))) + ( - 65390146.1759) \\ & \quad \times (\sin (\tanh (\tanh (x1)))) + ( - 24.1412) \times (\tan (x2)) \\ & \quad + (99531980.4057) \times (\cos (\tanh (\tan (x1)))) \\ \end{aligned} $$
(7)
$$ \begin{aligned} {\mathbf{TAS}}_{{{\mathbf{CN{\text{-}}GP}}}} & = \, 5137644.8262 + \left( { - 1706557.4605} \right) \times \left( {\tan \left( {\left( {\sin \left( {\left( {\cos \left( {x1} \right)} \right) + \left( {\left( {\left( {9.289170} \right)} \right) \times \left( {x1} \right)} \right)} \right)} \right) - \left( {\tan \left( {\tan \left( {x1} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( { - 3439756477.4271} \right) \times \left( {\tan \left( {\left( {x1} \right) \times \left( {x1} \right)} \right)} \right) + \left( { - 107.6723} \right) \times \left( {\left( {x1} \right) - \left( {\sin \left( {x2} \right)} \right)} \right) \\ & \quad + \left( { - 26870.1687} \right) \times \left( {\left( {\tan \left( {x1} \right)} \right) \times \left( {\tan \left( {\tan \left( {\left( {\left( {9.289170} \right)} \right) \times \left( {x1} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {24.1369} \right) \times \left( {\left( {\left( {\sin \left( {\left( {\cos \left( {x1} \right)} \right) + \left( {\left( {\left( {9.289170} \right)} \right) \times \left( {x1} \right)} \right)} \right)} \right) - \left( {\tan \left( {x2} \right)} \right)} \right) - \left( {\tan \left( {x1} \right)} \right)} \right) \\ & \quad + \left( {4643987.9876} \right) \times \left( {\left( {\sin \left( {\left( {\cos \left( {x1} \right)} \right) + \left( {\left( {\left( {9.289170} \right)} \right) \times \left( {x1} \right)} \right)} \right)} \right) - \left( {\tan \left( {\cos \left( {\tan \left( {x1} \right)} \right)} \right)} \right)} \right) + \left( { - 574696436.1438} \right)\\ & \quad \times \left( {\left( {x1} \right) \times \left( {\left( {x1} \right) \times \left( {\left( {\left( { - 5.810103} \right)} \right) - \left( {x1} \right)} \right)} \right)} \right) \\ \end{aligned} $$
(8)
$$ \begin{aligned} {\mathbf{Laser}}{\mkern 1mu} {\mathbf{energy}}{\mkern 1mu} {\mathbf{consumption}}_{{{\mathbf{GP}}}} & = 1115180.5442 + (744275.6671) \times (\tan (\sin ((x1) \\ & \quad + (x1)))) + ( - 357003.1223) \\ & \quad \times (\tan (\tanh (\tan ((( - 8.767966)) \times (x1))))) \\ & \quad + (347109.7909) \times ((\tan (\tanh (\tan ((( - 8.767966)) \\ & \quad \times (x1))))) - ((( - 4.185710)) + (\sin ((x1) \\ & \quad + (x1))))) + ( - 4442389.3594) \\ & \quad \times (\cos (((x1) - ((0.17))) \times (((4.09)) \times (x1)))) \\ & \quad + ( - 4151) \times (\cos (\sin (((9.961556)) + (x2)))) \\ & \quad + (2149599.4264) \times (\cos (\sin (((9.961556)) \\ & \quad + (x1)))) + (0.045548) \times ((((\tan (\tan (x1))) \\ & \quad \times (\cos (\sin (x1)))) + (\sin (x1))) + (\sin (((x1) \\ & \quad - (\sin (x2))) + (\sin ((x1) + (x1)))))) \\ \end{aligned} $$
(9)
$$ \begin{aligned} {\mathbf{Laser \, energy \, consumption}}_{{{\mathbf{CN{\text{-}}GP}}}} & = \, - 594678.7278 + \left( {2241.127} \right) \times ((\cos (\tan ((\left( {x1} \right) - (( - 2.441394))) \\ & \quad - \left( {\left( {x1} \right) \times \left( {\left( {5.972072} \right)} \right)} \right)))) \times \left( {\left( {\tanh \left( {\tan \left( {\sin \left( {x1} \right)} \right)} \right)} \right) - \left( {\tanh \left( {\tanh \left( {\cos \left( {x1} \right)} \right)} \right)} \right)} \right)) \\ & \quad + ( - 3719342.8431) \times \left( {\left( {x1} \right) \times \left( {x1} \right)} \right) + \left( { - 177698.568} \right) \times (\tan (\tan (\sin ((\left( {\left( {5.372252} \right)} \right) \\ & \quad + (( - 0.213505))) + \left( {\tanh \left( {x1} \right)} \right))))) + \left( {2474839.7138} \right) \times \left( {\tan \left( {\sin \left( {\left( {\cos \left( {x1} \right)} \right) \times \left( {x1} \right)} \right)} \right)} \right) \\ & \quad + \left( { - 0.064203} \right) \times \left( {\left( {\sin \left( {x2} \right)} \right) + \left( {\tanh \left( {\left( {\left( {\cos \left( {x2} \right)} \right) + \left( {\cos \left( {x1} \right)} \right)} \right) - \left( {\left( {\tan \left( {x2} \right)} \right) - \left( {\left( {x1} \right) - \left( {x1} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {0.085606} \right) \times \left( {\tan \left( {\left( {\tanh \left( {\left( {\left( {6.960941} \right)} \right) \times \left( {\sin \left( {x2} \right)} \right)} \right)} \right) \times \left( {\sin \left( {\left( {\sin \left( {x2} \right)} \right) + \left( {\left( {x2} \right) + \left( {x1} \right)} \right)} \right)} \right)} \right)} \right) \\ & \quad + \left( {41104.3208} \right) \times \left( {\cos \left( {\left( {\left( {\left( {\left( {5.372252} \right)} \right) + \left( {x1} \right)} \right) + \left( {\tanh \left( {x1} \right)} \right)} \right) \times \left( {\left( {5.972072} \right)} \right)} \right)} \right) \\ \end{aligned} $$
(10)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Garg, A., Lam, J.S.L., Savalani, M.M. (2016). A New Variant of Genetic Programming in Formulation of Laser Energy Consumption Model of 3D Printing Process. In: Muthu, S., Savalani, M. (eds) Handbook of Sustainability in Additive Manufacturing. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-10-0549-7_3

Download citation

Publish with us

Policies and ethics