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ABSTRACT 

In this paper, we examine genetic 
programming as a policy search 
technique for planning problems 
representable as Markov Decision 
Processes.  The planning task 
under consideration is derived 
from a real-time strategy war 
game.  This problem presents 
unique challenges for standard 
genetic programming approaches; 
despite this, we show that genetic 
programming produces results 
competitive with standard 
techniques, albeit with certain 
trade-offs. 
 

1.  Introduction 
The problem of planning under uncertainty is 
afflicted by what Bellman famously called the “curse 
of dimensionality” [1].  In a setting where a single 
agent attempts to make optimal decisions in a 
stochastic environment, the curse refers to the fact 
that the number of possible states of the environment, 
many or all of which must be considered as possible 
immediate or long-term outcomes of the agent’s 
actions, grows exponentially in the number of 
variables used to describe the environment. Thus, 
naïve representations and solutions of stochastic 
planning problems, such as the framework of general 
Markov Decision Processes (MDPs), quickly become 
intractable as the size of the problem description 
increases. 

Recent work [2,4], however, has resulted in the 
Factored Markov Decision Process (FMDP) 
approach, which can efficiently solve problems with 
large but structured state and action spaces by 
decomposing a planning system into a set of small 

subsystems that have limited interactions with each 
other.  The cost of planning in this way is often 
exponentially less than the cost of planning naively.  
Furthermore, while the assumption of 
decomposability rarely obtains in interesting 
domains, it is thought to often be “nearly” true, and 
therefore this approach is often an effective 
approximation. 

However, FMDP techniques suffer from more 
subtle problems.  In particular, quality 
approximations often require problem-specific 
knowledge from the user that encodes information 
about the form of the solution.  The necessity of 
human expertise prevents the FMDP framework from 
being an automated planning solution. 

As an alternative, we propose the use of genetic 
programming (GP) [5] as a method for directly 
obtaining MDP solutions.  GP is a generic framework 
that does not require problem-specific information, 
unlike standard FMDP techniques.  We show that 
policy search in MDPs is a challenging task for GP to 
address, but that competitive and substantially more 
efficient results can be obtained if the robustness of 
the solution is unimportant. 

In the following section, we outline the MDP 
framework and address its shortcomings, along with 
those of its factored variant.  In section 3, we discuss 
several issues that arise in employing GP as a method 
for policy search.  In section 4, we present a 
challenging problem based on an aspect of a real-
time strategy war game.  Finally, in sections 5 and 6, 
we describe a series of progressively superior 
approaches to the problem and present their results. 

2.  Markov Decision Processes 
Markov Decision Processes are a general framework 
for representing stochastic planning problems.  An 
MDP is a 4-tuple (X, A, R, P) where X is a finite set 
of states; A is a finite set of actions; R is a reward 
function R : X × A → ℜ; and P is a Markovian 
transition model such that P(x’ | x, a) is the 
probability of transitioning from state x to state x’ 



after taking action a.  Thus, an agent (or set of 
agents) responds to the state of the environment by 
taking some action.  Note that the full set of actions A 
is available regardless of the environment state.  This 
action, in turn, has a stochastic influence on the state 
of the environment as specified by P.  The Markovity 
of P implies that future states are independent of 
previous states given the current state and action.  
The agent receives a reward depending on the state it 
encounters (and, in general, on the action it takes 
from that state; for our purposes, however, we will 
assume that the reward depends only on the state).  
Our goal is to determine a mapping from states to 
actions (known as a policy) that will maximize the 
agent’s expected long-term reward from any state.  
We assume that the MDP has an infinite horizon, 
meaning that the agent never stops acting in the 
environment, and thus we bound the expected long-
term reward by discounting future rewards 
exponentially by some γ ∈[0, 1). 

The optimal policy can be computed through any 
of a variety of methods.  Many such procedures first 
compute a value function V : X → ℜ, which specifies 
the expected long-term value of acting optimally 
from a particular state.  The optimal value function is 
the fixed point of the Bellman equations: 
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Once the value function is computed, the optimal 
policy π : X → A can be computed in a greedy 
fashion:
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Unfortunately, computing the value function is 
intractable in the general case.  The total number of 
states under consideration is exponential in the 
number of variables that describe the environment, 
and the total number of actions that can be taken is 
exponential in the number of agents being modeled in 
a multi-agent setting.  Thus, even storing the value 
function or the optimal policy may be infeasible. 

For many problems, however, this framework is 
overly generic.  It may be the case, for instance, that 
the reward function has a compact description, or that 
some of the state variables may transition in a manner 
that depends only on a subset of the state variables, or 
a subset of the agents.  Factored MDPs make exactly 
these assumptions in the hopes of achieving 
tractability by exploiting structure.  Unfortunately, 
compactness in the reward and transition functions 
does not entail compactness in the value function; 
variables that are independent across a single step 
may become correlated over time.  Thus, FMDPs can 
usually only approximate the value function, 

generally by restricting attention to a class of 
compact value functions.  Automatic methods of 
specifying this class so as to ensure a quality 
approximation given tractable computation are 
presently unknown.  In practice, the approximating 
class is determined by human expertise or trial-and-
error.  The quality of the policy obtained depends 
heavily on the choice of approximating class (usually 
in a problem-specific way), and this is a significant 
disadvantage of the approach. 

3.   GP as Policy Search 
Of course, approximating the value function is 
unnecessary if we can determine a good policy 
directly.   Our purpose in this paper is to apply 
genetic programming to the problem of directly 
computing an optimal or near-optimal policy for a 
Markov Decision Process (which will be factored in 
our example).  In this context, GP becomes a 
technique for policy search.  We are interested in the 
successful application of GP to this task because GP 
tends to be more problem-independent than the 
FMDP solution methods mentioned above.  In 
particular, although GP requires user specification of 
the function and terminal sets being used, in addition 
to various run parameters such as the population size, 
it does not generally require significant information 
about the structure of the solution.  By contrast, 
specifying an appropriate approximation for a value 
function often requires user expertise in the problem 
domain, and the approximation often encodes 
nontrivial information about the form of the solution.  
In effect, FMDP solution algorithms often require 
that the user supply them with information about the 
solution (such as whether two variables are 
independent or correlated in their effect on the value 
function), which is undesirable.  GP, on the other 
hand, could be capable of evolving compact 
approximate policies for many problems with 
relatively generic function and terminal sets. 

However, MDP policy search also presents 
several difficulties for GP, which we address but do 
not fully resolve in the course of this paper.  The 
most significant problem is that of evaluation.  In 
general, the quality of a policy is specified by its 
corresponding value function.  Computing the value 
of a particular policy is easier than computing the 
optimal value function (in the former case, the value 
function is the fixed point of a set of linear 
equations), but is still intractable if the number of 
states is sufficiently large.  Thus, performing an exact 
evaluation of an individual in a nontrivial MDP 
policy search problem is effectively as difficult as 
solving the MDP in the first place. 



For most problems, we must therefore 
approximate the value function.  Using a user-
specified approximation class would effectively 
negate the advantage of using GP, so we must turn to 
other options.  One such method is Monte Carlo 
simulation.  We can place the agent at some initial 
state and simulate the policy’s interaction with the 
stochastic environment for some fixed number of 
steps while tracking the total discounted reward 
received.  If we perform several such runs, the mean 
value (per run) obtained will approach the value of 
the initial state.  Unlike general value function 
determination, Monte Carlo focuses the computation 
on probable states at the expense of less probable 
states.  This is generally a mixed blessing.  On one 
hand, it is desirable to take knowledge of an initial 
state into account, and we can feel reasonably sure 
about our assessment of the value at that state.  On 
the other, states that are rarely reached receive little 
evaluation.   Thus, Monte Carlo may not be able to 
distinguish the optimal policy from a policy with a 
similar value at the initial state but highly suboptimal 
values at less probable states.   

In addition, Monte Carlo typically requires a very 
large number of runs for reasonable accuracy.  The 
number of runs depends heavily on the overall 
distribution over states.  Clearly, performing a 
thousand simulations (which is not an unreasonable 
number for Monte Carlo, depending on the problem) 
of a possibly complex stochastic environment for 
each unique individual in a large population over 
many generations will be infeasible.  However, 
inaccurate evaluation is also hardly an option, unless 
we want policies to succeed through chance as much 
as through fitness.  Monte Carlo evaluation is in fact 
used in our approach, and we show a technique for 
dealing with this problem in subsequent sections.  

Another problem is the potential sensitivity of the 
environment defined by an MDP to subtle changes in 
a policy.  For example, changing a single agent’s 
action in a multi-agent domain requiring coordination 
between agents may have disastrous effects on the 
long-term collective reward received.  Furthermore, 
subtle state changes may require dramatic changes in 
actions.  Thus, the value surface over the (very large) 
space of policies tends to be spiky and discontinuous.  
As we will show, using a simple policy construction 
which accepts as input an integer indexing the set of 
possible states and returns as output an integer 
indexing the set of possible actions (even assuming 
that the problem is sufficiently tractable to do so) can 
easily lead to poor results.  However, we also present 
an improvement that allows for coordination between 
agents in our multi-agent setting in a way that 
minimizes the effect of small policy changes. 

4.   Freecraft Tactical Problem 
For our experiments, we used an instance of the 
Freecraft domain outlined in [3].  Freecraft is a 
freeware real-time strategy war game.  The goal of 
playing is to control a set of agents and manage 
resources so as to construct an army and defeat an 
opponent.  The problems introduced in [3] are 
simplified variants of different aspects of Freecraft, 
but are sufficiently interesting that the policies 
obtained from the simple models can be successfully 
employed as part of an in-game strategy.  
Furthermore, these simplified problems are difficult 
to solve by themselves, even for FMDP techniques.  
Generally speaking, Freecraft problems tend to 
involve dense, rather than isolated, interactions 
between variables, so they are not readily factored.  
Coordination between agents is essential, but no 
natural coordination structure is implied by the 
problem.  In summary, Freecraft is an excellent 
challenge problem for MDPs, and we can 
demonstrate the value of GP as a policy search 
technique by solving such a problem. 
 

 
Figure 1: Freecraft Tactical Problem 

The tactical problem is a test of agent control; an 
in-game screenshot of the tactical scenario is shown 
in Figure 1.  The player (or agent, in our example) 
starts with n footmen, and is confronted by an enemy 
with an equal number of equivalent footmen.  Each 
footman is capable of attacking any individual 
enemy, and may switch targets at any time.  In our 
model, enemies are assigned distinct and static 
targets.  This is done both for simplicity and to 
provide structure for a smart policy to exploit.  
Rewards are achieved for each enemy killed, and the 
overall goal is to defeat the opposing force as quickly 
as possible. 

More formally, each footman and enemy are 
associated with state variables representing their 
health states.  Each such variable can take one of five 
values: Unhurt, Barely Wounded, Wounded, Badly 



Wounded, and Dead.  Additionally, each footman’s 
action at each time step is an integer ranging from 1 
to n, and specifies which enemy it targets at that time 
step.  Note that any valid policy will automatically 
target and attack some enemies.  This increases the 
difficulty involved in finding the optimal policy, 
because the difference in value between the optimal 
policy and other policies is diminished. 

Each living footman and enemy has an 80% 
chance of striking his opponent in a given time step.  
If it strikes successfully, it lowers the target’s health 
status by one (unless the target is already dead).  If 
multiple footmen target the same enemy, they each 
have an independent chance to strike, and each 
successful strike will lower its health status by one.  
The reward collectively received by the footmen at 
each state is equal to the number of dead enemies in 
that state. 

For our experiments, we use n = 3 and γ = 0.98 as 
a discount factor.  Three footmen and enemies do not 
constitute particularly large state and action spaces, 
but nonetheless require considerable computational 
effort for FMDP methods.  Indeed, instances with n = 
4 prove infeasible.  Fortunately, the optimal policy 
with n = 3 is sufficiently interesting for our purposes. 

5.   Methods 
In this section, we present a series of GP approaches 
to the problem under consideration.  We begin with 
relatively simple attempts, analyze their limitations, 
and refine them to yield progressively better policies. 

5.1.  Simple Integer Mapping 
Our initial attempt was the most general and scalable, 
and also the least successful.  The corresponding 
tableau is shown in Table 1 below.  All terminal and 
function values are typed as integers.  The terminal 
set consists of two integer inputs to the program, P 
and E.  P is an integer index into the set of all 
possible player (agent) health states, and E is an 
index into the set of all enemy health states.  Thus, P 
and E completely describe the Markov state, although 
in too general a manner to be particularly useful.  The 
function set is a smattering of arithmetic, logical, and 
conditional functions.  Most have direct equivalents 
in C, with the exception of the protected division 
operator %.  For any integers a and b, %(a,b) = a / b 
unless a = b = 0, in which case %(a,b) = 1.  The 
ternary operator ?  is shorthand for the ?: operators in 
C; ?(a,b,c) is equivalent to the C statement a ? b : c.  
All integers are interpreted as Boolean values 
according to C conventions (namely, an integer is 
true if and only if it is nonzero). 
 

Objective: Find a policy for the 
Freecraft tactical problem 
that has the maximum 
expected value 

Terminal Set: P, E 

Function Set: +, -, *, %, &&, ||, !, ? 

Raw Fitness: Average of 10 Monte 
Carlo runs of 20 steps 
each  

Standardized 
Fitness: 

150 – Raw Fitness 

Adjusted 
Fitness: 

1 / (1 + Std. Fitness) 

Wrapper: Return value interpreted 
as index into set of all 
possible actions 

Parameters: Population size = 10000 
# of generations = 100 
Internal crossover = 0.8 
External crossover = 0.09 
Reproduction = 0.1 
Mutation = 0.01 

Depth 
restrictions: 

Initial: 5-10 

Success 
Predicate: 

The best-of-run individual 

Table 1: Simple Integer Map Tableau 

The return value of an individual is interpreted as 
an index into the set of all possible actions.  If the 
value is lower than the smallest possible index, it is 
simply set to that index, and likewise if larger than 
the largest possible index.  The raw fitness measure is 
the average of a small number (in this case, 10) of 
Monte Carlo evaluations.  A loose maximum on the 
value obtained can be determined mathematically as 
(Rmax / (1 - γ)), which evaluates to 150 in this case.   
A measure of standardized fitness can therefore be 
easily obtained.  The run parameters were selected to 
be representative of standard GP parameter values; 
no special effort went into selecting these values.   
All initial populations were created with a depth 
ramp ranging from 5 to 10, and subsequent 
populations can have individuals of any depth. 

The results of this approach (shown, along with all 
subsequent results, in Table 4 in section 6) are quite 
poor when compared to the policy computed by 
FMDP techniques.  We also tested whether doubling 
the population size, number of generations or number 
of Monte Carlo runs per fitness evaluation had any 



effect on the value.  These changes were ineffectual; 
the problem with simple integer mapping is more 
systemic.  

5.2.  Coordinated ADFs  
Simple integer mapping is not robust to small 
changes in its input or output, and generally does not 
map well onto the sort of problem that we are trying 
to solve.  Small changes to an input terminal can map 
onto very different Markov states, and small changes 
to the output value can map onto very different 
actions, regardless of the orderings associated with 
the state and action sets.  Furthermore, an attempt to 
find a single, pure mapping from states to actions is 
very general, but does not take advantage of any 
features of the problem under consideration.   

Correspondingly, we make two revisions to the 
simple integer map model.  First, we replace the 
terminals P and E by the full set of state variables in 
the problem.  It is thereby easier to evolve a program 
that examines particular nuances of the state because 
they are readily available as separate terminals; they 
don’t need to be picked out of the integer encoding 
the state. Furthermore, we can view our problem 
more appropriately as a coordinated multi-agent task.  
Rather than determining a single joint action for all 
agents, we can each agent determine its own action 
separately.  This effectively decomposes the problem 
into a set of much simpler sub-problems, where each 
requires a considerably smaller program to be solved.  
However, we must have coordination between our 
agents (they will often want to ensure that they attack 
the same target, for instance).  We do so by imposing 
a general coordination hierarchy on the problem: we 
specify an order in which actions will be determined, 
and allow each agent to see all actions that were 
previously determined.  Thus, we are interested in 
evolving a set of separate programs that make use of 
each other; in other words, we want a set of 
automatically defined functions (ADFs), one for each 
agent, without a central result-producing branch. 

The resulting revisions to the simple integer map 
tableau are shown in Table 2.  Note that we call each 
ADF separately when evaluating the overall policy.  
Agent 1 determines its action and submits it to Agent 
2, who takes it into action, determines its action, and 
submits both actions to Agent 3, who takes both into 
account in determining its own action.  Each 
individual policy is relatively simple, and we 
therefore cap the maximum depth of a program at a 
relatively shallow level. 

The policies yielded by this approach are a 
significant improvement over those computed by 
simple integer mapping, although they still fall short 
of the FMDP results.  

Terminal Set 
(for all ADFs): 

P1, P2, P3, E1, E2, E3 

ADF1 
Function Set: 

+, -, *, %, &&, ||, !, ? 

ADF2 
Function Set: 

+, -, *, %, &&, ||, !, ?, 
ADF1 

ADF3 
Function Set: 

+, -, *, %, &&, ||, !, ?, 
ADF1, ADF2 

Wrapper: Each ADF is interpreted 
as the value for a 
particular agent. 

Depth 
restrictions: 

Initial: 2-5 
Maximum depth: 5 

Table 2: Coordi nated ADF Tableau Revisions 

5.3.  Best-of-last-generation Selection 
Up to this point, we have not considered any methods 
of dealing with the evaluation problem described in 
section 3.   One technique implicitly used in the 
above approaches is to recompute fitness for an 
individual each time it is encountered, rather than 
computing once and caching the result.  This is 
effectively a way of extending Monte Carlo 
evaluation for individuals that appear often in a 
population.  More precisely, if a given individual 
appears m times in a given population, and each 
occurrence is evaluated by a distinct Monte Carlo 
simulation of n runs, then the average fitness for that 
individual in the population (which fundamentally 
determines its success) is equivalent to the result of a 
Monte Carlo simulation with mn runs.  Individuals 
that benefit (or suffer) from lucky (or unlucky) 
simulations will be evaluated again in later rounds as 
a hedge against chance.  Throughout the entire 
process, individuals that succeed will receive 
increasingly careful scrutiny, which can increase or 
diminish their success as appropriate. 

Given the above, however, choosing the best-of-
run individual is a very poor way of selecting the 
fittest policy.  Generally speaking, it selects among 
decent candidates by picking the one with the most 
favorable one-time limited-accuracy evaluation.  It is 
much more reasonable to restrict our attention to 
individuals that survive until the final generation, 
given the above results.  Furthermore, we can 
perform more accurate evaluations on this limited 
population, and select the fittest candidate 
accordingly. 

This iteration’s tableau revisions are shown in 
Table 3.  Note that we have also doubled both the 
number of generations (which allows greater 
confidence in the success of the last generation) and 



the number of Monte Carlo runs.  These changes are 
allowed by the considerably improved running time 
of the coordinated ADF approach. 

 

Raw Fitness: Average of 20 Monte 
Carlo runs of 20 steps 
each  

Parameters: # of generations = 200 
 

Success 
Predicate: 

The best of last generation 
individual, according to 
the average of 100 Monte 
Carlo runs of 20 steps 
each 

Table 3:  Best-of-last-generation Tableau 
Revisions 

Once again, the resulting policies are an 
improvement over those of the previous approach, 
but do not yet match FMDP policies. 

5.4.  Revised Standardized Fitness 
We can achieve better results still by tightening the 
bound on raw fitness used in computing standardized 
fitness, thereby increasing the difference in fitness for 
policies with similar values.  In particular, we note 
that the upper bound of 150 is utopian and cannot be 
obtained by any policy, since a minimum of 5 steps 
are necessary before maximum reward can be 
received.  Furthermore, none of our Monte Carlo 
evaluations extend past 20 steps, where the upper 
bound of 150 is the infinite limit of reward received.  
Observing that raw fitness values of 35 and 37 are 
rather small when compared to this upper bound, and 
noting that they correspond to adjusted fitness values 
of 0.00862 and 0.00877, respectively, we can see that 
they will be considered as almost equally fit in our 
GP runs.   Given that only 20 steps of reward will be 
considered in each Monte Carlo evaluation, and 
assuming an ideal case where every footman always 
hits and every enemy always misses, we can tighten 
our upper bound to 43, which is much more in line 
with the received fitness values.  Given this new 
upper bound, raw fitness values of 35 and 37 
correspond to adjusted fitness values of 0.11111 and 
0.14286, which are far more readily differentiated 
(the percentage increase between the values has 
changed from 2% to 29%). 

Given this revised standardized fitness, the value 
of the policies improves to match that of the FMDP 
policy.  Even so, the policies are not equal: the GP 
policy behaves poorly, as predicted, in states that are 
rarely reached, where the FMDP policy does not.  We 
discuss this further in the following section. 

6.  Results 
All GP experiments were implemented in C using 
LIL-GP [6] and were run on a 900 MHz Sun 
UltraSPARC-III+ workstation.  All runs were 
initialized with the same random seed, implying that 
two runs with identical population sizes and 
restrictions have identical initial populations.  All 
values were obtained by 1000 Monte Carlo runs of 20 
steps each on the selected candidate. All times shown 
are in seconds.  The FMDP solution is based on a 
technique presented in [3], and was implemented in 
C++ and executed on a 700 MHz Pentium III.  Our 
results are reported in Table 4 below. 
 

 Integer Mapping Integer Mapping 
Gen. = 200 

Value 27.0988 27.9260 

Time  10894 36244 

 Integer Mapping 
Pop. = 20000 

Integer Mapping 
Runs = 20 

Value 28.3471 27.7703 

Time  21305 47147 

 Coordinated 
ADFs 

Best-of-last 
Selection 

Value 32.1184 35.8467 

Time  1893 3735 

 Revised 
Standardized 

Fitness 

FMDP 
Solution 

Value 37.8953 37.3289 

Time  4906 36031 

Table 4: Experimental Results 

We note, initially, that changing the number of 
generations, population size, or number of Monte 
Carlo runs per evaluation has  little effect on the 
values of the policies obtained via the simple integer 
mapping method.  By contrast, working to take 
advantage of problem structure in the coordinated 
ADF method yields a noticeable improvement in 
policy value and an order-of-magnitude improvement 
in running time.   Eventually, the fourth iteration of 
our approach yields a policy value which is 
essentially identical to that of the FMDP solution, in 
roughly 1/7 the time. 

This policy, however, is not optimal; unlike the 
FMDP policy, it selects poor actions in states that are 
seldom reached.  For example, in one Monte Carlo 
run, the agents initially focus their attacks on Enemy 



3.  Once Enemy 3 is badly wounded, two of the 
agents attack another target and leave the third to 
finish off the nearly dead enemy.  However, over the 
course of these steps, Agent 3 has never been struck 
by Enemy 3, which has a 0.008 probability of 
occurrence.  After killing Enemy 3, the attacking 
agent continues to attack his corpse, which is clearly 
suboptimal.  However, in another, more likely run, all 
agents again initially focus their attacks on Enemy 3.  
Again, two of the agents attack another target and 
leave the third to finish off Enemy 3.  This time, 
however, Agent 3 has been struck, and when the 
attacking agent kills Enemy 3, he moves on to 
another target.  This trend pervades the GP policy, as 
expected.  It is a fundamental flaw of using Monte 
Carlo for evaluation in this way. 

7.  Conclusions 
Clearly, more remains to be said about the use of GP 
as a policy search technique for MDPs.  Here, 
however, we have shown that GP using Monte Carlo 
evaluation and a coordinated ADF structure can 
effectively and very efficiently match FMDP 
solutions for difficult coordinated multi-agent 
problems.  GP combined with Monte Carlo exploits 
knowledge of an initial state in order to produce 
policies with high overall value in a minimum of 
time, while MDP solution algorithms expend extra 
time to produce more robust policies that have high 
value from any state, however improbable.  However, 
unlike approximate MDP approaches, GP does not 
require problem-specific knowledge about the value 
structure, and may be superior when truly automated 
planning is desired. 
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