
MIT Open Access Articles

GUI-Based, Efficient Genetic Programming For Unity3D

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gold, Robert, Grant, Andrew, Hemberg, Erik, O'Reilly, Una-May and Gunaratne,
Chathika. 2022. "GUI-Based, Efficient Genetic Programming For Unity3D."

As Published: https://doi.org/10.1145/3520304.3534022

Publisher: ACM|Genetic and Evolutionary Computation Conference Companion

Persistent URL: https://hdl.handle.net/1721.1/146338

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/146338
https://creativecommons.org/licenses/by/4.0/

GUI-Based, Efficient Genetic Programming For Unity3D
Robert Gold

robertgold@csail.mit.edu
ALFA, MIT CSAIL

Cambridge, MA, USA

Andrew Haydn Grant
haydn@mit.edu
ALFA, MIT CSAIL

Cambridge, MA, USA

Erik Hemberg
hembergerik@csail.mit.edu

ALFA, MIT CSAIL
Cambridge, MA, USA

Chathika Gunaratne
contact@chathika.com
ALFA, MIT CSAIL

Cambridge, MA, USA

Una-May O’Reilly
unamay@csail.mit.edu
ALFA, MIT CSAIL

Cambridge, MA, USA

ABSTRACT
Unity3D is a game development environment that could be co-
opted for agent-based machine learning research. We present a
GUI-driven, and efficient Genetic Programming (GP) system for this
purpose. Our system, ABL-Unity3D, addresses challenges entailed
in co-opting Unity3D: making the simulator serve agent learning
rather than humans playing a game, lowering fitness evaluation
time to make learning computationally feasible, and interfacing GP
with an AI Planner to support hybrid algorithms that could improve
performance. We achieve this through development of a GUI using
the Unity3D editor’s programmable interface, and performance
optimizations. These optimizations result in at least a 3x speed
up. We describe ABL-Unity3D by explaining how to use it for an
example experiment using GP and AI Planning.

CCS CONCEPTS
• Computing methodologies → Multi-agent planning; Simu-
lation tools; Genetic programming; • Human-centered com-
puting → Graphical user interfaces.

KEYWORDS
Genetic programming, Unity3D, Simulator, AI Planning, GUI
ACM Reference Format:
Robert Gold, Andrew Haydn Grant, Erik Hemberg, Chathika Gunaratne,
and Una-May O’Reilly. 2022. GUI-Based, Efficient Genetic Programming For
Unity3D. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3520304.3534022

1 INTRODUCTION
There are many computational simulation environments that sup-
port the development and evaluation of agent-based learning algo-
rithms, both academic and commercial [1]. While many projects
center on the learning of game play, there has been growing in-
terest in agent-based learning (ABL) in non-game contexts, such
as network security and attack planning, or Covid-19 contagion

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534022

interaction protocols [5, 8]. This implies the need to simulate more
realistic environments. For this, there exists well-supported and
capable game development environments, such as Unity3D [9].
However, these are often focused on human game play, not AI
agent-based learning. Further, game development environments
co-opted to non-game playing agents present the risk of expensive
fitness evaluation and inappropriate interfaces for development
and evaluation of agent-based learning algorithms. ML-Agents is a
Unity3D reinforcement learning library that improves upon this
[6].

We aim to enable different projects to run Genetic Program-
ming (GP) in Unity3D. We introduce ABL-Unity3D to hopefully
reduce the development effort, time, and reoccurring mistakes. Our
primary goal is to provide an open-source, domain-targetable agent-
based learning system that demonstrates GP and AI Planning, ad-
dresses agent evaluation efficiency, and pivots the human interac-
tion lens of Unity3D to a GP-developer user-friendly GUI. We want
the system to support AI experiments that are easy to design and ef-
ficient to execute. Our aim is a baseline for running AI experiments
which require 3D simulation, not a unifying framework for all AI
experiments. In this paper we present ABL-Unity3D, see Figure 1,
which is our project centered on these goals. The code repository
for ABL-Unity3D can be found at [4].

ABL-Unity3D interfaces a 3D physics-based simulation with
Genetic Programming and AI Planning, to support specific method-
ological investigations in agent-based learning. It uses the Unity3D
game engine editor and is written in C#. Unity3D provides an easy
to use, efficient, and extendable GUI and API interface to run sim-
ulations and AI. ABL-Unity3D contains a simulation world state.
This state can be input to the GP and Hierarchical Task Network
(HTN) Planner components [3]. The GP and HTN components can,
but are not required to, act as inputs to (or outputs from) each other
to create a hybrid algorithm. The outputs of the GP (typically a
candidate solution that needs evaluation in a 3D simulator) and/or
the outputs of the HTN (typically a plan for an agent to follow in
a 3D simulator) become inputs to the simulation. As a simulation
progresses, the world state updates. These updates are returned to
the learning components. ABL-Unity3D provides a GUI to set pa-
rameters for, and examine, the simulator and learning components.

Our main contribution is a simulator built to be used directly
with GP and AI, is easy to configure and examine what the AI does,
and is domain-targetable. The ABL-Unity3D GUI uses the Unity3D
editor to provide the ability to view the simulation as it is running,

2310

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3520304.3534022
https://doi.org/10.1145/3520304.3534022
https://creativecommons.org/licenses/by/4.0/

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Robert Gold, Andrew Haydn Grant, Erik Hemberg, Chathika Gunaratne, and Una-May O’Reilly

Figure 1: Overview graphic for ABL-Unity3D.

Figure 2: A sample view of a simulation and GP GUI.

and modify it. It also makes it easy to run, organize and design
repeatable experiments, and save results.

2 ABL-UNITY3D
ABL-Unity3D is designed to be efficient and user-friendly, see Fig-
ure 2. For example, conducting a GP experiment requires no coding.
It only requires setting parameters in GUI fields, such as selecting
GP primitives and a fitness function. Though, creating new GP
primitives and fitness functions requires coding.

2.1 Software Design
The primary design objectives for ABL-Unity3D are: (1) speed, via
caching, fast copying and multithreading; (2) extendability, via
object oriented design and decoupling of the AI and simulation
components; and (3) usability, via a GUI.

Our simulator maintains and gives access to a world state that
describes properties of the simulation. The simulation world state
can contain two object types. One is an agent within the world state,
of which there are two types: SimUnit and SimGroup . SimUnit
is a single agent within the world state, and a SimGroup is a group
of SimUnit s. The other object type is actions performed by agents.
These are called SimAction s.

Generally, the simulation world state, and objects contained in
it, are object oriented. However, simulation speed is priority. Thus,
ABL-Unity3D uses abstractions to allow for more efficiency. E.g,
ABL-Unity3D implements an abstraction similar to Model-View-
Controller (MVC) with SimUnit and SimUnitFollower . This
allows for faster copying of the simulation world state. SimUnit

is similar to the model in MVC and SimUnitFollower is like the
View. We do not make a strict separation for the Controller part of
MVC, so both classes implement controller like behavior.

Figure 3: Visualization of a GP solution that represents a
conditional statement which evaluates to a SimAction in
ABL-Unity3D.

ABL-Unity3D improves performance by running AI Planning,
GP, agent pathfinding, and the simulation in separate parallel pro-
cessing threads. In addition, when running multiple GP experi-
ments at once, each experiment is run in a separate thread. This
also allows for these processes to be cancelled independently. The
ABL-Unity3D GUI is object oriented, and exposes public properties
to the user through the GUI. ABL-Unity3D makes it easy to swap
out the simulation. The simulation world state is decoupled from
the GP and the AI Planning. The only aspects of the GP and AI
Planning that depend on the simulation world state are user-defined
GP primitives, fitness functions, and AI Planning methods.

2.2 Simulator
ABL-Unity3D uses the Unity3D game engine. It is widely used,
and provides a large and well documented API for designing sim-
ulations and GUIs. Unity3D has a large community-driven base
which provides third-party functionality which is easily integrated
using the Unity Asset Store. ABL-Unity3D uses a third-party A*
agent pathfinding library [2]. To improve performance for pathfind-
ing, ABL-Unity3D caches previously queried paths from different
locations in the terrain.

2.3 GP
The key innovations of GP in ABL-Unity3D are the GP solution
representation and fitness function. These are designed to achieve
a fast, extendable and user-friendly GP framework.

2.3.1 GP Representations. ABL-Unity3D uses a standard strongly-
typed GP implementation with the option for ramped initialization
and the genetic operators crossover, and mutation. The algorithm
for initialization can be modified. ABL-Unity3D represents GP so-
lutions as tree data structures [7]. Each GP node in the tree has an
evaluation type. When a GP node is evaluated, it returns that type.
Figure 3 shows a visualization from ABL-Unity3D of a GP primitive
written to represent a conditional statement. This implementation
of a conditional statement evaluates to a SimAction .

The root node of the tree represents the evaluation type of the
tree. The root node must have one child node with the same evalu-
ation type of the root node. For example, the conditional statement
in Figure 3 evaluates to a SimAction . This is shown by the root

2311

GUI-Based, Efficient Genetic Programming For Unity3D GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

1 public class Conditional : ExecutableNode<SimAction> {
2 public ExecutableNode<bool> Cond =>

(ExecutableNode<bool>) this.children[0];
3 public ExecutableNode<SimAction> TrueBranch =>

(ExecutableNode<SimAction>) this.children[1];
4 public ExecutableNode<SimAction> FalseBranch =>

(ExecutableNode<SimAction>) this.children[2];
5

6 public Conditional(ExecutableNode<bool> cond,
ExecutableNode<SimAction> trueBranch,
ExecutableNode<SimAction> falseBranch) :
base(cond, trueBranch, falseBranch) { }

7

8 public override SimAction Execute(GpFieldsWrapper
gpFieldsWrapper) {

9 return Cond.Execute(gpFieldsWrapper) ?
TrueBranch.Execute(gpFieldsWrapper) :
FalseBranch.Execute(gpFieldsWrapper);

10 }
11 }

Figure 4: Sample code to define a GP primitive for a condi-
tional statement which evaluates to a SimAction .

node type “RootNodeSimAction”. The other nodes can have any
number of children nodes and can be named anything.

The class ExecutableNode<T> (line 1, Figure 4) is the super-
class for all GP primitives. T is the evaluation type of the GP
primitive. ExecutableNode<T>.children is a list of child nodes
for a GP primitive. Child nodes must extend ExecutableNode<T> .
A GP primitive must define a constructor which passes all child
nodes to be evolved to the primitives base constructor. A GP primi-
tive must also override the function Execute , which returns the
result of the GP primitive upon evaluation. The return type of
Execute must be the same as the evaluation type T for the GP
primitive.

Figure 4 shows sample code for defining the conditional state-
ment GP primitive in Figure 3. The GP primitive Conditional

has an evaluation type of SimAction (line 1, Figure 4). Lines 2-4
are helper properties used for visualization. Lines 6-9 define the
constructor for Conditional class. Lastly, lines 11-12 define the
Execute method. Line 12 first evaluates the child node which
represents the condition for the conditional. If true, return the
evaluation of the child node TrueBranch . Otherwise, return the
evaluation of the child node FalseBranch .

Child nodes of a GP primitive can be immutable; they can not
be modified by genetic operators. For example, in replace line 5
with a hard coded instance of a subclass of ExecutableNode<T>
in Figure 4. E.g. an instance of the GP primitive “Attack”.

2.3.2 Fitness Function. To define a fitness function, define a class
which extends FitnessFunction . This sub-class must define a
constructor and override the method GetFitnessOfIndividual .
GetFitnessOfIndividual returns the fitness of a GP individual.

Figure 5: Part of the UI for viewing the results of a GP exper-
iment.

Figure 6: UI for viewing attributes of SimUnit s, such as lo-
cation, health, etc.

2.4 AI Planning
ABL-Unity3D implements an HTN that generates all possible plans
for agent behavior, as opposed to finding a single plan that satis-
fies the given goal method. To do this, The planner decomposes
a goal method into a set of sub-methods which achieve the given
goal. The methods chosen are then implemented using concrete
SimAction s, which are then executed in the simulation. It is pos-
sible to use the AI Planner in combination with GP in ABL-Unity3D.
ABL-Unity3D provides a feature to visualize a plan that an agent
is executing, see Figure 8. ABL-Unity3D also provides a feature to
visualize a plan using the same graph view interface as Figure 3.

2.5 GUI
The ABL-Unity3D GUI facilitates interaction with the simulation
and AI, with the goal to be user-friendly. Its capabilities include:

• Defining simulation parameters;
• Running GP experiments and AI Planning experiments. Fig-

ure 5 shows the UI for examining the result of a run of a GP experi-
ment. Figure 7 shows the UI for defining GP experiment parameters;

• Examination of the simulation world state, as well as results
generated from experiments. Figure 6 shows UI which can be used
to examine agent attributes.

3 ABL-UNITY3D EXAMPLE USE CASE
One use case for ABL-Unity3D is for generating strategic plans.
Consider the following scenario: “Blue” team is defending a position,
and “Red” team is attempting to take over that position. We want
to preserve“Red” team health while reducing “Blue” team health.

One approach is to split the “Red” team into 3 groups. These
3 groups can then attack the position from 3 different angles. In
particular, each group can attack up one waypoint along its path

2312

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Robert Gold, Andrew Haydn Grant, Erik Hemberg, Chathika Gunaratne, and Una-May O’Reilly

Figure 7: Part of the UI to define and run a GP experiment,
and view and save results.

Figure 8: UI for the 3 prongs scenario.

to the position. We call these waypoints “prongs”. 𝐵 is the set of
blue team agents, and 𝑅 is the set of red team agents. Let 𝐶 be the
prongs chosen, and 𝑃 be the set of prongs to choose from, 𝐶 ⊆ 𝑃 .
There can be more than 3 prongs in 𝑃 , but there must be at least
3 prongs in 𝑃 , |𝑃 | ≥ 3. There must at least be one prong in 𝐶 , but
there can be no more than 3 prongs, 1 ≤ |𝐶 | ≤ 3. Altogether, we
can say 1 ≤ |𝐶 | ≤ 3 ≤ |𝑃 |. We also must assign a mapping of red
team agents to prongs. Let us call this mapping 𝑀 : 𝐵 → 𝐶 . We
call this the 3 prongs scenario. Our goal is to find an optimal 𝐶
and 𝑀 to maximize 𝑓 (𝐵, 𝑅) given 𝐵, 𝑅, and 𝑃 . In other words, to
maximize the total “Red” team health, and minimize the total “Blue”
team health, we must find the best prongs to choose and the best
assignment of red team groups to those chosen prongs.

ABL-Unity3D can generate solutions to this problem using GP,
AI Planning or a combination. Arguably, when |𝑃 | is small, AI
Planning is the most effective to solve this because it can feasibly
exhaust the search space. Though, if |𝑃 | is large, the search space
will increase in size exponentially. Exhausting the search space
through AI Planning may take too long. GP can be used to reduce
the search space size by deriving 𝐶 . This will not always generate
the optimal 𝐶 , but given some constraints, it may be sufficient. We
can then use AI Planning to determine what the optimal𝑀 is given
𝐶 . ABL-Unity3D scores and sorts results according to 𝑓 (𝐵, 𝑅).

We benchmark ABL-Unity3D speed by running the three prongs
scenario with the AI Planner, and with the AI Planner and GP in
combination. We measure mean speed in seconds with and with-
out pathfinding caching, multithreading, and both. The HTN1 and
GP+HTN2 rows cannot be compared because they have different

Setting Base Cache Multithread Both
HTN1 401.46 120.96 (x3) 18.23 (x22) 15.68 (x25)
GP+HTN2 30.85 27.71 (x1.1) 11.59 (x2.7) 10.36 (x3)

Table 1: Average speed (second) and speedup for the HTN (AI
Planner) andGPwithout (base) andwith pathfinding caching,
multithreading, and both. Note: the HTN1 and GP+HTN2
rows cannot be compared because they have different HTN
parameters.

HTN parameters. With both optimizations, the AI Planner receives
a 25x speed up, and the GP and AI Planner combination receives a
3x speed up, see Table 1. Each test was ran 6 times on a PC with an
i7 8700k CPU.

4 DISCUSSION & FUTUREWORK
We also tested GP in ABL-Unity3D with an experiment where
GP determines the path for an agent to approach another. This
involved lower-level GP primitives involving vector and floating
point manipulation. This showed that GP worked, but reinforced
that GP is not effective for certain problems.

We plan to implement more features. For example, the AI planner
generates plans before running the simulation, but the planner
cannot react on-the-fly to unexpected enemy behavior. To improve
this, we will implement replanning [3]. Other examples are the
ability to generate evolution statistic graphics for GP experiments,
and adding a GUI for defining new primitives to reduce coding for
domain-specific GP experiments. Finally, we plan to conduct human
interaction tests to determine how user-friendly ABL-Unity3D is.

ACKNOWLEDGMENT
This research was, in part, funded by the U.S. Government. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.

REFERENCES
[1] Sameera Abar, Georgios K. Theodoropoulos, Pierre Lemarinier, and Gregory M.P.

O’Hare. 2017. Agent Based Modelling and Simulation tools: A review of the
state-of-art software. Computer Science Review 24 (2017), 13–33.

[2] Aron Granberg. [n.d.]. A* Pathfinding Project. https://www.arongranberg.com/
astar/

[3] Ilche Georgievski and Marco Aiello. 2014. An Overview of Hierarchical Task
Network Planning. https://doi.org/10.48550/ARXIV.1403.7426

[4] Robert Gold, Andrew Haydn Grant, Erik Hemberg, Chathika Gunaratne, and Una-
May O’Reilly. 2022. ABL-Unity3D. https://github.com/ALFA-group/ABL-Unity3D

[5] Chathika Gunaratne, Rene Reyes, Erik Hemberg, and Una-May O’Reilly. 2022.
Evaluating efficacy of indoor non-pharmaceutical interventions against COVID-19
outbreaks with a coupled spatial-SIR agent-based simulation framework. Scientific
reports 12, 1 (2022), 1–11.

[6] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan
Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and
Danny Lange. 2018. Unity: A General Platform for Intelligent Agents. https:
//doi.org/10.48550/ARXIV.1809.02627

[7] David J. Montana. 1995. Strongly Typed Genetic Programming. Evolutionary
Computation 3, 2 (Summer 1995), 199–230. http://vishnu.bbn.com/papers/stgp.pdf

[8] Una-May O’Reilly, Jamal Toutouh, Marcos Pertierra, Daniel Prado Sanchez, Dennis
Garcia, Anthony Erb Luogo, Jonathan Kelly, and Erik Hemberg. 2020. Adversarial
genetic programming for cyber security: A rising application domain where GP
matters. Genetic Programming and Evolvable Machines 21, 1 (2020), 219–250.

[9] Unity Technologies. 2020. Unity3D. https://unity3d.com

2313

https://www.arongranberg.com/astar/
https://www.arongranberg.com/astar/
https://doi.org/10.48550/ARXIV.1403.7426
https://github.com/ALFA-group/ABL-Unity3D
https://doi.org/10.48550/ARXIV.1809.02627
https://doi.org/10.48550/ARXIV.1809.02627
http://vishnu.bbn.com/papers/stgp.pdf
https://unity3d.com

	Abstract
	1 Introduction
	2 ABL-Unity3D
	2.1 Software Design
	2.2 Simulator
	2.3 GP
	2.4 AI Planning
	2.5 GUI

	3 ABL-Unity3D Example Use Case
	4 Discussion & Future Work
	References

