
Development Brings Scalability to Hardware Evolution

Timothy G.W. Gordon and Peter J. Bentley
Department of Computer Science

University College London
Malet St, London WCIE 6BT, UK
{t.gordon,p.bentley}@cs.ucl.ac.uk

Abstract

The scalability problem is a major impediment to the
use of hardware evolution for real-world circuit design
problems. A potential solution is to model the map
between genotype and phenotype on biological
development. Although development has been shown to
improve scalability for a few toy problems, it has not
been demonstrated for any circuit design problems.
This paper presents such a demonstration for two
problems, the n-bit adder with carry and even n-bit
parity problems, and shows that development imposes,
and benefits from, fewer constraints on evolutionary
innovation than other approaches to scalability.

1. Introduction

It is widely recognized that the inability of
evolutionary algorithms to scale to large and complex
circuit design problems is a major impediment to their
application in the real world [1-4].

Recently researchers have begun to explore how
modelling the genotype-phenotype map on biological
development might improve the scalability of hardware
evolution [4-6]. Although more traditional problem
decomposition techniques have been used to improve
scalability in hardware evolution to some extent [1, 3],
unlike development they often require domain
knowledge and decompose the problem using hard
constraints on the interactions between sub-problems,
thus limiting evolution’s opportunity to explore
innovative designs [4].

To date, however, development does not appear to
have achieved its potential. There are a few instances
in the literature that demonstrate development can
enhance scalability for toy problems [7, 8]. These are
pattern generation problems that show a high
correlation between changes in phenotype and changes
in fitness. This is quite unlike circuit evolution, where

the relationship between changes in a circuit design
and their effect on fitness can be highly non-linear.

In fact there is currently very little empirical evidence
to suggest that development can improve scalability for
traditional circuit design problems. For instance in [6]
Miller used development to evolve one bit full adders
and parity generators for up to 5 bits, but has not
presented the evolutionary development of any larger
circuits. Similarly in [4] Gordon and Bentley applied
development to the evolution of two bit adders but
failed to evolve fully functional solutions. In the
analogue domain Koza et al. have shown instances
where development allows design re-use [9] but have
not studied scalability in detail.

This paper shows that an improved version of the
developmental model of [4] can evolve fully functional
two bit adders. It goes on to present a series of
experiments that clearly demonstrate that development
can enhance the scalability of hardware evolution
using two benchmark circuit design problems, the n-bit
adder problem and the even n-bit parity problem.

The largest of the evolved adders presented here is a
seven bit adder with carry. To date there is only one
example in the literature of an evolved adder that is of
comparable size [10]. This example relied heavily on
the use of additional techniques to decompose the
problem into several independently evolved sub-
problems, hence searched a more constrained problem
space. Furthermore unlike the circuits here
connectivity was restricted to feedforward
arrangements only, further constraining the problem
space. The largest parity generator presented here is
larger than any previously discovered using
development and is of similar size to the larger evolved
examples found in the literature [11-13].

Section 2 of this paper presents a summary of the
developmental model used here. Section 3 presents the
evolution of a fully functional two bit adder. Section 4
presents experiments that demonstrate development

enhancing hardware evolution’s scalability for the n-bit
adder problem. Section 5 presents similar experiments
for the even n-bit parity problem. Conclusions are
drawn in Section 6.

2. Developmental Model

The developmental model used here consists of two
layers: a protein layer that models biological
development and an architecture layer that maps the
product of development to a circuit, which is
subsequently evaluated intrinsically using a Xilinx
Virtex FPGA [14]. Each layer is now briefly described.

2.1 Protein Layer

The protein layer is responsible for providing a
mechanism by which evolution can reuse design
innovations that it has already discovered. This is the
primary means by which development can enhance
scalability [4, 9]. It is identical to the Outer Totalistic
developmental model presented in [15], where full
details of the model and the design decisions that lie
behind it can be found. It consists of a set of rules
called the protein rule set, and a two dimensional non-
toroidal array of cells. The protein rule set describes
how the contents of the cells in the cellular array alter
during of development. Each cell in the array contains
up to four proteins, A, B, C and D that define the cell’s
state. Development occurs over a series of discrete
timesteps. At each timestep the proteins present in
every cell at the next timestep are set by comparing the
protein rule set to the proteins currently present in each
cell, and activating the rules that match the cell’s
contents. When a rule is activated it generates a
protein. The protein rule set models DNA
transcription, the process at the heart of biological
development’s generative ability.

2.1.1 Protein Layer Rule Structure

An example of a single protein rule is shown in
Figure 2.1. Each rule consists of a conjunction of
conditions that must be true for the rule to activate.
There are two terms in each rule for each of the four
proteins in the model. The first is a two bit condition
that specifies what proteins the cell itself must contain
(11) or not contain (00) for the rule to activate, with
the other two bit combinations representing don’t care
terms. The second term is a five bit condition that
defines how the contents of the neighbouring cells
affects the activation of the rule: the first two bits
define an operator, which is either an equality,
inequality or one of two precedence operators, and the
final 3 bits define a protein concentration that the
operator acts upon. This concentration is measured by

summing the amount of the protein generated by the
cell’s Von Neumann neighbours. The postcondition of
the rule consists of two bits that define which protein is
generated if the rule is activated.

For development to begin forming useful patterns it
is necessary to begin with a set of simple yet
inhomogeneous protein starting conditions from which
further inhomogeneity can develop.

00 00 001 11 11 011 01 10 111 10 01 100

Protein A Protein B Protein C Protein D

If A absent and

Neighbours A!=
 1

 and B present and

Neighbours B=
3

 and Neighbours C>=

 7

 and Neighbours D<=

 4

01

then
Generate B

Postcondition

(Don’t Care) (Don’t Care)

Figure 2.1: The Outer Totalistic Protein Rule

2.2 Architecture Layer
The architecture layer is similar to that used in [4],

but it is applied to a simpler architecture. It consists of
a virtual FPGA, a second set of rules called the
architecture rule set, and a set of counters that are used
to monitor the behaviour of the protein layer at each
developmental timestep. At the end of development the
counters determine how changes in the contents of the
cells during development are mapped to the
architecture layer. Once this mapping is complete the
virtual architecture is automatically mapped to a Xilinx
Virtex FPGA for evaluation.

The virtual architecture consists of a 2D array of
virtual configurable logic blocks (CLBs). It is
essentially a simplified model of the Virtex
architecture [14]. This architecture is overlaid onto the
array of cells in the protein layer. Thus each CLB in
the architecture layer corresponds to a unique cell in
the protein layer. Each CLB contains two 3-input
lookup tables (LUTs) and 3 inputs that drive both
LUTs. The source of each input is selected from the
LUT outputs of the CLB’s Von Neumann neighbours.
The CLB also contains a set of counters, one for each
configurable element in the CLB. They are used in
conjunction with the architecture rules to map activity
in the protein layer to changes in the CLB’s
configuration. This process is explained below. The
protein rule set and the architecture rule set are simply
concatenated to make up the chromosome.

2.2.1 Mapping Activity to Configuration Changes
An example of an architecture rule is shown in

Figure 2.3. The precondition is identical to the
precondition of a protein rule. Hence the activity of
each architecture rule in each CLB is determined by
the proteins present and/or absent in its corresponding
protein layer cell. The postcondition of the rule
consists of six bits that specify one of the counters

discussed above. Each counter (hence each unique
architecture postcondition) corresponds to a single
reconfigurable element in the virtual CLB. There is a
counter for each of the 16 LUT minterms (eight for
each of the two LUTs) and a counter for each of the 24
possible input sources (eight for each input).

00 00 001 11 11 011 01 10 111 10 01 100

Protein A Protein B Protein C Protein D

If A absent and

Neighbours A!=
 1

 and B present and

Neighbours B=
3

 and Neighbours C>=

 7

 and Neighbours D<=

 4

0010

Increment counter
for F-LUT
minterm 2

Postcondition

(Don’t Care) (Don’t Care)

Figure 2.3: The Architecture Rule

Each time an architecture rule is activated during
development the counter specified in the rule’s
postcondition is incremented. At the end of
development, the counters are used to determine the
structure of the circuit. First each counter that
corresponds to a LUT minterm is queried. If the
counter value is greater than a predefined threshold
value then the minterm configuration bit to which it
corresponds is set high. Should the counter value be
below the threshold value, the minterm configuration
bit is set low. Following LUT configuration the inputs
are then configured, but in a slightly different way. For
each input, all counters that correspond to one of its
possible input sources are queried. The counter with
the highest value, i.e. the input source that has been
most active throughout development for that input, is
selected as the input source. Once the circuit design is
determined it is mapped to a Xilinx Virtex XCV400
FPGA for evaluation using the Xilinx JBits API [16].

3. Evolution of a Two Bit Adder

Before conducting extensive scalability experiments
the model was tested to determine whether relatively
small circuits could be evolved. The initial task was to
evolve a two bit adder with carry: a circuit that mapped
the five inputs A0, A1, B0, B1 and Cin to the three
outputs Sum0, Sum1 and COut in accordance with the
two bit adder with carry truth table [17]. Fitness was
measured as the total correct output bits across all input
combinations, which gives a maximum fitness of 96.

A 2x4 CLB array was evolved using the
developmental model described. The problem inputs
were provided in cells surrounding the evolved area as
in Figure 3.1, which also shows output positions. The
chromosome consisted of 20 protein rules and 30
architecture rules, yielding a length of 1620 bits. At the
beginning of development some simple starting
conditions were introduced: the south western cell was
set as if protein A had been generated at developmental
timestep t-1, and the south eastern cell was set as if

protein B had been generated at timestep t-1.
Development was carried out for 30 timesteps. Table
3.1 shows genetic parameters. Each individual was
evaluated five times and its worst fitness selected.

Sum
0

Sum
1

Carry
Out

F G F G F G F G

F G F G F G F G

A0 B0A0 B0A1 B1A1 B1

CIn

North South

East

West

Orientation on
FPGA

Figure 3.1: Diagram showing where inputs were provided
and outputs were drawn on the evolved area

Operator Type Rate
Selection 2 Member tournament 80%
Crossover One-point 100%
Mutation Point 5 per chrom.

Other parameters: Generational GA with elitism, 2500 generations,
population size = 100, random initialisation.

Table 3.1: Genetic parameters for all experiments

3.1 Results and analysis
50 evolutionary runs were carried out. The results are

shown in Table 3.2, with finesses scaled to 100. 26%
of the runs evolved optimal adders, It should be noted
that the search space contains circuits with unclocked
feedback between CLBs hence it is different from and
perhaps richer than the traditional digital design space.
Examples and analyses of the circuits evolved are
presented in the following section.

Mean Fit. of Best

Solns. (bestf)

Std. Dev. of Best

Solns. (bestσ)

Best Fitness /
Max Fitness

Optimal
Solution %

85.69 12.19 96/96 26
Table 3.2 Results from 50 runs of 2 bit adder evolution

4. Scalability and the n-bit Adder Problem

To date there is little direct evidence that the
scalability of hardware evolution can truly be enhanced
by development. This section demonstrates such an
enhancement clearly, for a real hardware evolution
problem. It presents a series of experiments that evolve
n-bit adder with carry circuits, ranging from a one bit
adder up to a seven bit adder.

4.1 Experimental Setup
The experiments were carried out using the same

developmental and evolutionary models and
parameters as described above. The task was to evolve
an n-bit adder where n varied from 1 to 7. The area
evolved for each experiment was a 2n x 2 array of
virtual CLBs. Inputs and outputs for the four smallest
problems are shown in Figure 4.1. Again the aim was
to evolve a circuit that mapped the inputs to the outputs

in accordance with an n-bit adder with carry truth table
[17]. Fitness was again measured as the total correct
output bits across all input combinations, which gives a
maximum fitness of (n+1) x 22n+1. 50 runs were
conducted for each problem size.

A0
B0

A0
B0

Carry
Out
Sum

0
A0
B0

A0
B0

Sum
0

A1
B1

A1
B1 Carry

Out
Sum

1

A0
B0

A0
B0

Sum
0

A1
B1

A1
B1

Sum
1

A2
B2

A2
B2

Carry
Out
Sum

2

A0
B0

A0
B0

Sum
0

A1
B1

A1
B1

Sum
1

A2
B2

A2
B2

Sum
2

A3
B3

A3
B3

Carry
Out
Sum

3

4 Bit

3 Bit

2 Bit

1 Bit

West East

North

South

Orientation on FPGA:

Figure 4.1: Layout of evolved areas

The experiment was repeated using a naïve 1:1
representation that mapped a gene to each component
of the evolved array. The representation for one cell is
shown in Table 4.1. Unlike the developmental system,
the chromosome length of the naïve system varies with
array size, from 100 bits for a 2x2 cell array (1 bit
problem) to 700 bits for a 14x2 array (7 bit problem).

Locus Component Bits (Representation)
0-2 Input 1 3 (GN,GS,GE,GW, FN,FS,FE,FW)
3-5 Input 2 3(GN,GS,GE,GW, FN,FS,FE,FW)
6-8 Input 3 3 (GN,GS,GE,GW, FN,FS,FE,FW)

9-16 GLUT 8 (8 minterms)
17-24 FLUT 8 (8 minterms)

Table 4.1: Naive representation for the adder problem.

4.2 Results and Analysis
The experimental results are shown in Table 4.2 and

suggest that for small problems (1 to 3 bit) the
proportion of runs reaching optimal fitness is greater
with the naïve system than the developmental system.
However the proportion decays much more gently with
increasing problem size for the developmental system
than for the naïve system. This means that for larger
problems (4 bit and above) development outperforms
the naïve system, and the performance differential
increases with problem size. This can be seen more
clearly in Figure 4.2, which shows a plot of the
percentage of runs with optimal fitness against problem
size for both the naïve and developmental systems
along with a line of best fit.

Figure 4.2 suggests that for both systems the
relationship between fitness and problem size might be
linear. The coefficient of determination, r2, represents
the fraction of fitness variability that is explained by
problem size variability assuming a linear model [18].
A perfect line has a value of 1, and random data 0. This
was calculated for both sets of data in Figure 4.2 to test
whether the data was linear and gave values of 0.918

for development and 0.898 for the naïve trend. When
calculated for the naïve trend the data for the 6 and 7
bit problem were excluded, as the proportion of
optimal runs had already decayed to its minimum. The
measured r2 values are reasonably high, suggesting that
the trend might be linear.

Adder
Size /
Bits

Optimal
Solution

%
Develop

.

Optimal
Solution

%
Naïve

Mean Best
Fitness

Develop.

Dev bestf

Mean Best
Fitness
Naïve

Nv bestf

Std. Dev.
Best

Develop.
Dev bestσ

Std. Dev.
Best Naïve

Nv bestσ

1 32 100 87.88 100 11.81 0
2 26 48 85.69 95.44 12.70 4.95
3 18 28 85.80 92.48 13.50 6.19
4 14 4 82.13 88.58 13.57 5.74
5 12 0 82.61 82.99 12.30 5.39
6 10 0 83.87 79.59 12.50 5.37
7 8 0 82.09 76.61 12.37 4.81
Table 4.2: Results of the adder scalability experiments
showing the mean of the best fitnesses scaled to 100%

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Adder Problem Size / Bits

%
 O

pt
im

al
 R

un
s

Development
Naive
Linear (Development)
Linear (Naive)

Figure 4.2: Plot of the percentage of runs reaching

optimal fitness against problem size.

From an engineering perspective the percentage of
optimal runs is a useful value to examine, as it is vital
for real-world circuits to operate perfectly. However as
this value decays to a minimum value over the studied
problem sizes, raw fitness (scaled to 100 to allow
comparison between the problem sizes) was used to
provide further evidence of scalability.

If evolution scaled poorly with problem size, a strong
negative correlation between problem size and
performance would be expected. Hence one means of
detecting a significant difference in scalability between
the naïve and developmental systems is to compare the
correlations of the two systems. Plots of fitness against
problem size are shown for both developmental and
naïve systems in Figures 4.3(a) and (b) respectively.

The Spearman correlation coefficient is a test for
correlation that does not assume normally distributed
data and can range from -1 to 1 [18]. It was calculated
for problem size against fitness using the data from
Figures 4.3(a) and (b). Using this method the
correlation coefficients were calculated to lie between -
0.28 and -0.07 for the developmental trend and
between -0.88 and -0.82 for the naïve trend, with 95%
confidence. The large difference in coefficients and
high confidence suggests that there is a large difference
between the rates of decay for both systems and that it

is highly significant.

50

60

70

80

90

100

0 2 4 6 8

Bits

Fi
tn

es
s

65

70

75

80

85

90

95

100

105

0 2 4 6 8

Bits
Fi

tn
es

s
Figure 4.3(a) and (b): Plots of fitness normalised to 100
against problem size for the developmental system (left)

and the naïve system (right) for all 50 runs

 A further analysis was carried out to lend support to
the evidence above. The aim was to produce paired
data for each problem size to demonstrate that the
performance differential increased monotonically with
problem size. As the percentage of runs that achieved
optimal fitness had decayed to its minimum for some
problem sizes it was decided that the mean fitness of
the best solutions might be more plausible to analyse
statistically. The r2 coefficients of determination
calculated with this data were -0.98 and 0.70
respectively, suggesting that a linear model fits well
enough for linear analyses to be realistic.

A plot of the difference between f bestDev and
f bestNv for each problem size is shown in Figure 4.4,

along with the least squares line of best fit.
The Pearson correlation coefficient [18] for this data

was 0.979, again suggesting a linear model is a
reasonable assumption, and confirms statistically what
is visually very clear: there is a strong positive
correlation between problem size and enhanced
performance of the developmental system over the
naïve system. This clearly shows that the performance
of the developmental system scales better with
problem size than the performance of the naïve system
when applied to the two bit adder with carry problem.

-15

-10

-5

0

5

10

1 2 3 4 5 6 7

Adder Problem Size / Bits

M
ea

n
B
es

t F
itn

es
s
(D

ev
el
op

m
en

t)
- M

ea
n

B
es

t

Fi
tn

es
s
(N

ai
ve

)

Figure 4.4: Plot of the difference between f bestDev and

f bestNv against problem size.

4.3 Circuit Analysis
The evolved circuits exhibit several features that

reinforce the argument that development can aid

scalability, that it can do so without imposing hard
constraints associated with traditional designer-
imposed abstraction methods, and that this can lead to
the discovery of innovative designs.

4.3.1 Modularity, Reuse without Hard Constraints
The most striking feature of the evolved designs is

the high level of component reuse. Figure 4.5 shows
the first optimal circuit evolved for the two bit
problem, and is typical of the optimal solutions
evolved. Cells 1, 2, and 5-7 assumed identical inputs,
which were generated by the activation of the same
two architecture rules in each of these cells. The only
cell with a unique set of inputs, Cell 4, shares two
inputs with the majority of cells, which generated by
the same rules as for the other cells. Generation of the
third input was inhibited by the initial conditions.

0 011
West F

West GWest F
00

0

1F LUT:

G LUT:

Cell
 0:

0 010

01 11 10

0 100

West GWest F
00

0

1 1 010

01 11 10
West F

0 011
West F 00

0

1F LUT:

G LUT:

Cell
1:

0 100

01 11 10

0 100
00

0

1 1 000

01 11 10
West F

West GSouth G

West GSouth G

0 011
West F

West GSouth G
00

0

1F LUT:

G LUT:

Cell
2:

0 100

01 11 10

0 100

West GSouth G
00

0

1 1 000

01 11 10
West F

Cell
3:

0 011
West F

West FSouth G
00

0

1F LUT:

G LUT:

0 010

01 11 10

0 100

West FSouth G
00

0

1 1 010

01 11 10
West F

Cell
4:

Cell
5: 0 011

West F 00
0

1F LUT:

G LUT:

0 100

01 11 10

0 100
00

0

1 1 000

01 11 10
West F

West GSouth G

West GSouth G

Cell
6: 0 011

West F
West GSouth G

00
0

1F LUT:

G LUT:

0 100

01 11 10

0 100

West GSouth G
00

0

1 1 000

01 11 10
West F

Cell
7:

0 011
West F

West GWest F
00

0

1F LUT:

G LUT:

0 010

01 11 10

0 100

West GWest F
00

0

1 1 010

01 11 10
West F

0 011
West F

West GSouth G
00

0

1F LUT:

G LUT:

0 010

01 11 10

0 100

West GSouth G
00

0

1 1 010

01 11 10
West F

Figure 4.5: K-Maps of an evolved optimal two bit adder

Hence there are different levels of reuse at the
cellular level: most cells use a common set of inputs
generated by identical rules. A single cell has a unique
set of inputs. This can be interpreted as evolution
applying a design abstraction that imposes a common
set of inputs across the circuit, but breaking the
abstraction where necessary. The evolved logic also
shows an extremely high level of reuse. Cells 1, 2, 5
and 6 share identical logic and were generated by the
same set of rules. Cells 0, 3, 4 and 7 also share
identical logic generated by a common rule set. There
are also several rules common to both sets of logic.

4.3.2 Design Innovation
Of the traditional adder designs familiar to the

authors the only one that would fit within the evolved
array is a ripple-carry adder. Examination of the inputs
to each cell of the circuit in Figure 4.5 reveals that
signals pass east and north, much like a ripple-carry
adder. Although there was no explicit fitness bias
towards doing so, the circuit generates and uses a
traditional first stage carry out term that propagates up
a carry chain in the right hand column of the circuit.
The way the circuit uses the rest of the logic is not
typical of a ripple carry adder, although terms equating
to the Generate functions and the inverse of the
Propagate functions of a carry look-ahead adder are

found throughout the circuit and directly used in the
generation of the final sum and carry signals. It is not
surprising that such similarities to traditional adders are
found in the evolved circuits as the adder problem
space is extremely well known to traditional designers.
So it is likely that evolution would discover designs
similar in style to traditional adders. However it is
important to realise that the evolution has managed to
discover these circuits without any explicit knowledge
or bias towards good designs, and while operating at a
low design abstraction that allows a large area of non-
traditional search space to be considered and rejected.

A more pertinent point to consider is whether
development might be of any engineering benefit for
other problems that are not so well understood. A
question that might provide some insight into this is
whether evolution decomposes the problem in the same
way as a traditional designer. If not, then it is likely to
search areas of space that are not searched by
traditional circuit design techniques, which could be of
great benefit when searching for innovative designs,
and present an advantage over other mechanisms have
been proposed to improve scalability including
function level evolution [1] and partitioned or
incremental learning [3, 10]. A common theme of these
mechanisms is that the problem must be decomposed
by a designer (or arbitrarily) and that this strict
decomposition might steer evolution away from areas
of design space that contained potentially innovative
circuits.

Traditional ripple-carry adders consist of modules of
full adders and communication between them is limited
to a single carry signal. Larger adders can be
constructed simply by adding full adder modules to the
most significant end of the adder. A larger adder
cannot be constructed from the evolved solution
presented here by translating a copy of the circuit to a
new 2x4 array to the north of the current circuit.
Neither can the circuit be cleanly decomposed into the
two stages of a traditional ripple-carry adder by
considering the southern four cells as a the first stage
and the northern four cells as the second stage, as a
carry signal is not the only signal to pass between these
sets of cells. None of the four optimal two bit solutions
studied could be considered a general solution in this
way. So it seems that development’s bias towards
design reuse comes at the expense of the partitioning
of communication between modules as a traditional
designer might do.

4.4 Seven Bit Adders
Figure 4.6 shows the first optimal circuit evolved for

the seven bit problem, which was verified using a logic
simulator. Again it shows a high level of reuse: only

three distinct LUT configurations are used. Again the
designs cannot be easily decomposed into a series of
full adders, suggesting that evolution does not merely
use development to decompose the problem in a
traditional manner.

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

Inp. 1

Inp. 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

A0

B0

A0

B0

A1

B1

A1

B1

A2

B2

A2

B2

A3

B3

A3

B3

A4

B4

A4

B4

A5

B5

A5

B5

A6

B6

A6

B6

0

0

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

1100 01 10
0

1

0 0 1 0
1 0 1 0

1
2 3

1100 01 10

0

1

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 0 1 0

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

0

C In

Sum
1

Sum
0

Sum
2

Sum
3

Sum
4

Sum
5

Sum
6

1 0 0 0
0 1 1 1

Inp.
1

Inp.
2

Inp.
3

1
2 3

0 0 1 0
1 0 1 0

1
2 3

Carry
Out

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10 1100 01 10

0

1

0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10

0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10

0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

1100 01 10
0

1

To North
Inp. 1

To North
Inp. 1

From South G
LUT

From South G
LUT

West East

North

South

Orientation
on FPGA:

Figure 4.6: The first optimal seven bit adder evolved

However this evidence is tentative. To support it the
scalability experiments using the developmental
system were repeated, this time providing evolution
with knowledge about how the problem would be
decomposed traditionally. To achieve this, an
incremental fitness function that decomposed the
problem according to output was used. Fitness was
calculated as in the earlier set of experiments, but a
fitness reward was only provided for a more significant
output if the less significant outputs were generated
perfectly. This means that evolutionary search was
biased towards finding solutions that solve the less
significant outputs first, much like a traditional
designer might create a ripple-carry adder. A plot of
the mean of the best fitnesses (scaled to 100) from 20
runs of incremental evolution against problem size are
shown in Figure 4.7 along with the non-incremental
experimental results for comparison.

The results show that when evolution is biased
towards decomposing the problem along traditional
lines, scalability is not nearly as great as when
evolution is free to decompose the problem as it sees
fit. This suggests that when there is no bias towards a
traditional decomposition, evolution decomposes the

problem in a non-traditional way, and that it has some
benefit to evolvability. Hence not only does a
developmental approach provide additional
opportunities for innovation over techniques that rely
on decomposition [1][3] or mechanisms that combine
development and decomposition such as [10], but also
the scalability of the design process can be greater.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Problem Size / Bits

M
ea

n
Fi

tn
es

s
of

 B
es

t S
ol

ut
io

ns

Incremental
Non-Incremental

Figure 4.7: Mean (best fitnesses) against problem size for

incremental and non-incremental evolution

Anecdotal evidence from the evolutionary history
suggests why this might be. For many runs the first
fitness improvement over a circuit with a fixed output
was to make a pass-through connection between input
B1 and output Sum1. As development is biased
towards a high level of design reuse it is possible that
this biased evolution towards searching designs that
connected many of the circuit inputs to the outputs, and
helped towards the discovery of the feedforward
design abstraction, which is useful for this problem.

5. Scalability and Even n-bit Parity

Section 4 presents strong evidence that scalability
can enhance hardware evolution. However this was
only demonstrated for the n-bit adder with carry
problem. Hence although the evidence detailed above
is strong, its scope, thus its significance to the research
community is limited. With this in mind, experiments
similar to those presented in section 4 were carried out
for the even n-bit parity problem.

This is a benchmark problem that is popular with
evolutionary computation researchers [11, 12]. An
even parity generator generates the modulo 2 of the
summed input bits. It has also been a popular target for
those exploring scalability [11,13] as it is easily
scalable, simply by increasing the number of bits in the
word for which parity is generated. Also just as with
the adder problem traditional designs tend to be
modular, so it is known that the problem space
contains modular solutions for development to exploit.

5.1 Experimental Setup
This section provides details of experiments to

evolve even n-bit parity circuits, ranging from a 2 bit
generator to a 12 bit generator. The experiments were

carried out using the same model of development,
chromosome, evolutionary algorithm, genetic and
developmental parameters as used for the adder
experiments. An n x 2 array of virtual CLBs was
evolved. Figure 5.1 shows the inputs and outputs for
the first three problem sizes. Task was to evolve a
circuit that mapped the inputs to outputs in accordance
with an even n-bit parity truth table [17], where n
ranged from 2 to 12. Fitness was measured as for the
non-incremental experiments of section 4, by summing
the total correct output bits across all input
combinations, giving a maximum fitness of 2n. 20 runs
were conducted for each problem size. The experiment
was then repeated using the same naïve representation
used for the adder experiments.

D1 P

P

2 Bit

3 Bit

4 Bit

D0 D0

D1

D2 P

D0

D1

D2

D3

Figure 5.1: Layout of the evolved areas for the first six

parity problem sizes

5.2 Results and Analysis
Table 5.1 shows the experimental results, and Figure

5.2 shows a plot of the percentage of runs reaching
optimal fitness against problem size for both the naïve
and developmental systems.

Parity
Size /
Bits

Max
Fitness

% Optimal
Runs

(Development)

%
Optimal

Runs
(Naïve)

Mean Best
Fitnesses

(Development)

(Dev bestf)

Mean Best
Fitnesses
(Naïve)

(Nv bestf)

2 4 75.00 100.00 93.75 100.00
3 8 90.00 95.00 96.25 97.50
4 16 85.00 20.00 94.38 60.00
5 32 70.00 0.00 91.88 50.00
6 64 90.00 0.00 96.33 50.15
7 128 90.00 0.00 96.29 50.05
8 256 65.00 0.00 88.22 50.02
9 512 85.00 N/A 96.25 N/A
10 1024 80.00 N/A 93.44 N/A
11 2048 80.00 N/A 95.49 N/A
12 4096 80.00 N/A 95.00 N/A

Table 5.1: Results of the even parity scalability
experiments

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12

Problem Size / Bits

%
 O

pt
im

al
 S

ol
ut

io
ns

Development
Naive

Figure 5.2: Percentage of optimal solutions found using
development and naïve systems for the parity problems

They suggest that just as with the adder problem, for
small parity problems (2 and 3 bit) the percentage of

runs reaching optimal fitness is greater with the naïve
system than the developmental system. However this
percentage decays rapidly for the naïve representation,
whereas there is little evidence of a trend towards
decaying percentages for the developmental system as
the problem size increases. (The Spearman correlation
coefficient calculated using data from all the
developmental runs suggested a small negative
correlation, but with only 58.2% confidence, meaning
that that zero or positive correlation is within the
margin of error.) For larger parity problems (four bit
and above) development outperforms the naïve system,
and the performance differential again appears to
increase with problem size. Hence just as with the
adder problem the results suggest that evolutionary
performance using development scales better with
problem size than performance with the naïve system.

6. Conclusions

It is vital that the scalability problem is tackled if
hardware evolution is to rival traditional techniques,
and development is one potential solution. However to
date it has never been shown that development can
actually enhance scalability for hardware evolution.

This paper has presented such a demonstration. A
series of experiments compared evolution’s
performance evolving adder circuits using both
development and a naïve mapping, for a range of
problem sizes. Analysis showed the performance of the
naive system decayed faster than the performance of
the developmental system as problem size increased.

Analysis of the circuits revealed a high degree of
design reuse. It was also shown that while they
contained elements of traditional designs, they differed
in many respects suggesting that development has not
prevented evolution from exploring non-traditional
areas of design space that might be rich in good
solutions for other problems.

It was also demonstrated that biasing evolution
towards a standard decomposition of the problem
lowered performance, suggesting that evolution
benefits from the freedom to discover and apply its
own design abstractions, a feature not present in other
approaches to scalability.

A second set of scalability experiments was
conducted for the even n-bit parity problem. It was
again observed that development enhanced scalability,
suggesting that developmental techniques might be
applicable to a larger set of circuit design problems.

7. References
1. Higuchi, T., et al. Evolvable hardware at function level.

1997 IEEE Int. Conf. on Evolutionary Computation.

1997. Indianapolis, IN, USA: IEEE. pp. 187-192.
2. Vassilev, V.K. and J.F. Miller. Scalability Problems of

Digital Circuit Evolution. The 2nd NASA/DoD Workshop
on Evolvable Hardware. 2000. Palo Alto, CA: IEEE
Comput. Soc. pp. 55-64.

3. Torresen, J., A scalable approach to evolvable hardware.
Genetic Programming and Evolvable Machines, 2002.
3(3): p. 259-282.

4. Gordon, T.G.W. and P.J. Bentley. Towards Development
in Evolvable Hardware. 2002 NASA/DoD Conf. on
Evolvable Hardware. 2002. Washington DC. p. 241-250.

5. Tufte, G. and P.C. Haddow. Building Knowledge into
Developmental Rules for Circuit Design. 5th Int. Conf.
on Evolvable Systems. 2003 Trondheim, Norway p. 69

6. Miller, J.F. and P. Thomson. A Developmental Method
for Growing Graphs and Circuits. 5th Int. Conf. on
Evolvable Systems. 2003. Trondheim, Norway: Springer-
Verlag. pp. 93-104.

7. Kumar, S. and P.J. Bentley. Implicit Evolvability: An
Investigation into the Evolvability of an Embryogeny.
Late breaker at 2nd Genetic and Evolutionary Comput.
Conf. 2000. Las Vegas, NV, USA: Morgan Kaufmann.

8. Roggen, D. and D. Federici. Multi-cellular Development:
Is There Scalability and Robustness to Gain? 8th Int.
PPSN Conf. 2004. Birmingham, U.K. pp. 391-400.

9. Koza, J.R., M.A. Keane, and M.J. Streeter. The
importance of reuse and development in evolvable
hardware. 2003 NASA/DoD Conf. on Evolvable
Hardware. 2003. Chicago, IL, USA: IEEE Comput. Soc,
Los Alamitos, CA, USA. pp. 33-42.

10. Shanthi, A.P., P. Muruhanandam, and R. Parthasarathi.
Enhancing the Development Based Evolution of Digital
Circuits. 2004 NASA/DoD Conf. on Evolvable Hardware.
2004. Seattle, USA: IEEE Press. pp. 91-96.

11. Yu, T. and J.F. Miller. Finding Needles in Haystacks is
Not Hard with Neutrality. 5th European Conf. on
Genetic Programming. 2002. Kinsale, Eire. pp. 13-25.

12. Koza, J., Genetic Programming II: Automatic Discovery
of Reusable Programs 1994, Cambridge MA: MIT Press.

13. Rosca, J.P. Towards automatic discovery of building
blocks in genetic programming. Proceedings of AAAI
1995. Fall Symp. Series. 10 12 Nov. 1995 Cambridge,
MA, USA. 1995: AAAI Press, Menlo, USA. pp. 78-85.

14. Xilinx_Inc., Virtex 2.5 V FPGA Data Sheet. 2001:
http://direct.xilinx.com/partinfo/ds003.pdf.

15. Gordon, T.G.W. Exploring Models of Development for
Evolutionary Circuit Design. 2003 Congress on
Evolutionary Computation. 2003. Canberra, Australia:
IEEE Press, Piscataway, NJ, USA pp. 2050-2057.

16. Guccione, S.A., D. Levi, and P. Sundararajan. JBits:
Java Based Interface for Reconfigurable Computing.
2nd Annual Military and Aerospace Applications of
Programmable Devices and Technologies Conf.. 1999.
Laurel, MD: Digital Eng. Institute.

17. Holdsworth, B. and C. Woods, Digital Logic Design.
2002, London: Newnes.

18. Sheskin, D.J., The Handbook of Parametric and
Nonparametric Statistical Procedures. 3 ed. 2003:
Chapman & Hall.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

