
Genetic Programming on IXM

Eric Schulte

10 January 2010

Report

Introduction

A system of subpopulation Genetic Programming (GP) is implemented over Illuminato X Machina
(IXM)1 boards. The GP system is designed in the spirit of the IXM boards and attempts to explore
the intuitions2 which served as the impetus for the board's creation. A series of experiments assess
the e�ects of varying traditional GP parameters, of applying coevolution and of various physical
layouts on the relative success of the GP. The inherently redundant and distributed nature of
subpopulation GP is shown to be a natural �t for the IXM environment and directions for future
work are discussed. In the spirit of Reproducible Research3, all source code and experimental data
referenced in this work is made available to the reader (see reproduction) in the hopes of encouraging
further work in this area.

Illuminato X Machina � telos and construction

An IXM1 board is a small square board containing an ARM processor, memory, a button, led
lights, hardware timers, a power rail and four connectors arrayed around the perimeter of the
board. Although each board is in essence a small self-contained computer they are intended to be
used in groups. When boards are connected through their side connections they communicate and
share power with their neighbors.

One goal of the boards is to enable experimentation with software developed under a new set
of assumptions. On a grid of IXM boards the central single CPU, the shared memory and the
global clock of a traditional computer are relinquished in favor of a dynamic set of loosely coupled
peers, each equipped with its own personal clock processor and memory. In such an environment
robustness of operation is achieved through the abandonment of privileged points in space and time
and the duplication of functionality across a largely homogeneous populations of peers.

This work attempts to manifest these themes in a GP implementation which will run e�ectively
in the IXM environment.

GP � implementation and defense of deviations from the norm

In an e�ort to better align with the IXM platform the GP system employed in this work di�ers from
GP norms in a number of areas. These deviations will be defended as they arise. The source code for

1http://illuminatolabs.com/IlluminatoHome.htm
2http://livingcomputation.com/rpc/
3http://reproducibleresearch.net/index.php/Main_Page

1

http://illuminatolabs.com/IlluminatoHome.htm
http://livingcomputation.com/rpc/
http://reproducibleresearch.net/index.php/Main_Page

Figure 1: 37 IXM boards in operation

the GP implementation described below can be found in evolve-sketch.pde and coevolve-sketch.pde.
Both �les use the collector/ IXM library for communicating results back to a central source.

Representation and Fitness

This approach evolves individuals which are represented as variable length strings of integers and
arithmetic operators in Reverse Polish Notation (RPN). The individuals are evaluated by their
ability to match a �target� string also represented in RPN. The simplicity of the RPN stack machine
facilitated quick development on the IXM boards.

Figure 2: RPN stack machine

The only di�erence between the individual representation strings and the target strings is the
inclusion of the `sine' operator in the target strings. This unbalance encourages interesting behavior
of the individuals as attempt to approximate a trigonometric function using arithmetic operators �
where the ideal behavior would be evolving towards a Taylor Series.

2

file:///home/eschulte/research/gp4ixm/report/src/evolve-sketch.pde
file:///home/eschulte/research/gp4ixm/report/src/coevolve-sketch.pde

Genetic Operators

New individuals are generated in the following three manners. In each of the following when an
individual is needed as an input to the operation that individual is selected from the population
through using tournament selection.

injection A new individual is created from whole cloth. Each element in the individual's RPN
string is selected at random from the set of all valid RPN characters. This is the process used
to generated an initial population immediately after board boot-up.

char p o s s i b i l i t i e s [1 6] = BUILDING_BLOCKS;
ind . r ep r e s en t a t i on [0] = p o s s i b i l i t i e s [random (1 5)] ;
f o r (i n t i =0; i < random(IND_SIZE) ; ++i) {

ind . r ep r e s en t a t i on [i] = p o s s i b i l i t i e s [random (1 5)] ;
index = i ;

}

mutation An modi�ed copy is made of an existing individual. First an exact copy is made, then
each step of the copies RPN string is mutated with a probability equal to 1

mutation_prob where

mutation_prob is a parameter of the GP system.

char p o s s i b i l i t i e s [1 6] = BUILDING_BLOCKS;
f o r (i n t i =0; i<s i z e () ; ++i)

i f (random(s i z e ()) == mutation_prob)
r ep r e s en t a t i on [i] = p o s s i b i l i t i e s [random (1 5)] ;

crossover Single point crossover is used to combine two existing individuals to generate a new
individual. First a crossover point is picked for each parent, then the �rst half from one
parent is combined with the second half from the other parent as shown.

i nd i v i dua l c h i l d ;
i n t index = 0 ;
i n t mother_point = random(mother−>s i z e ()) ;
i n t father_point = random(fa ther−>s i z e ()) ;
f o r (i n t i =0; i<mother_point ; ++i) {

ch i l d . r e p r e s en t a t i on [index] = mother−>rep r e s en t a t i on [i] ;
++index ;

}
f o r (i n t i=father_point ; i<father−>s i z e () ; ++i) {

i f ((index+1) >= (IND_SIZE − 1)) break ;
c h i l d . r e p r e s en t a t i on [index] = father−>rep r e s en t a t i on [i] ;
++index ;

}
ch i l d . r e p r e s en t a t i on [index] = ' \0 ' ;
c h i l d . s c o r e () ;
i f (not ch i l d . check ()) pp r i n t f ("L from c ro s s ov e r \n") ;
r e turn ch i l d ;

3

sharing Sharing is how individuals propagate through a grid of IXM boards. During sharing an
individual is selected from the board's population and is sent to each of the board's neighbors.
Each of these neighbors then adds this individual to their own population. If the new individual
is better than the current population best this is indicated by blinking an LED.

i nd i v i dua l ind ;
i n t index = 0 ;
ind . f i t n e s s = −1.0;
char ch ;
i f (packetScanf (packet , " i ") != 2) {

pp r i n t f ("L bad i nd i v i dua l : '%#p '\n" , packet) ;
r e turn ;

}
whi l e ((packetScanf (packet , "%c" , &ch)) && index < IND_SIZE) {

ind . r ep r e s en t a t i on [index] = ch ;
++index ;

}
ind . r ep r e s en t a t i on [index] = ' \0 ' ;
ind . s c o r e () ;
i f (ind . f i t n e s s < pop . b e s t_ f i t n e s s ()) {
QLED. on (BODY_RGB_BLUE_PIN, 500) ;
QLED. o f f (BODY_RGB_BLUE_PIN, 100) ;

}
pop . i n co rpo ra t e (ind) ;

tournament selection Whenever an individual is selected from the population for one of the above
operations a �tournament� is held. In tournament selection tournament_size individuals
are selected from the population at random and the �ttest of these individuals �wins� the
tournament and is selected.

i n t winner = random(POP_SIZE) ;
i n t cha l l e n g e r = 0 ;
f o r (i n t i =0; i<tournament_size ; ++i) {

cha l l e ng e r = random(POP_SIZE) ;
i f (pop [c ha l l e n g e r] . f i t n e s s < pop [winner] . f i t n e s s)

winner = cha l l e ng e r ;
}

re turn & pop [winner] ;

Population Operations � avoiding privileged points

Up to this point the GP system we have introduced is largely standard and should be unsurprising.
Where our system di�ers from traditional GP is in the timing and distribution of operations on the
population of individuals. Since one of our goals is uniformity in both space and time we discard
the notion of a �xed population cycle and instead repeat all GP operations at constant frequencies.
As such there are no discrete �stages� or �steps� in our GP.

4

Using hardware timers included on the IXM boards we schedule the operations of mutation,
injection, crossover, and sharing to recur at �xed frequencies. The frequency of these operations are
parameters of the GP system. Whenever one of these operations returns a new individual (e.g. the
product of crossover, or an individual shared by a neighbor board) the new individual is incorporated
into the population and the current worst individual in the population is removed. The only time
an individual will be removed from the population is when it is displaced in this manner.

Given the above setup all of the GP operations are constantly acting on the population in a
semi-stochastic interleaved manner. No randomness is explicitly added to the operation scheduling
(although this would be sympathetic with our themes) however as the boards periodically become
too busy pending GP operations are delayed adding an element of randomness to the system.

Board Layout

The following illustrates the functional components of our GP framework as implemented out on a
single board.

Figure 3: Layout of a single IXM board

Properties

The GP system as described has the following properties which are desirable for the IXM environ-
ment.

5

• all boards are peers

• any number of boards can be used e�ectively � including a single board

• increasing the number of boards increases the e�ectiveness of the GP system

• boards can be added to the GP system during execution and incorporated on the �y

• the system degrades gracefully as boards are removed from the system

Experimental Methodology

A laptop side Ruby script (either experimenter.rb or coexperimenter.rb) communicates with an
attached group of IXM boards using the libixm Ruby library and the sfbprog command distributed
with the core IXM software. The Ruby scripts take a series of parameters and for each combination
they

1. input parameters to the boards

2. initiate board execution

3. collect and save raw data output by the boards

4. timeout overrunning experiments

5. repeat

The experiments presented below had running times between 1 hour and close to 30 hours. The
scripts are executed using the gnu screen program to allow persistent execution while the user is
not logged into the machine.

The boards report all results using the collector/ IXM library. The collector library allows
each board in a group to report parameters back to a central �collector� appending a �path� to the
returned results. The path can be used to uniquely identify the board and assign it coordinates in
the 2D geometry of the board layout.

All graphs generated as part of this report used the collector output as saved by the above Ruby
scripts along with the group.rb and board.rb scripts. These scripts translated the raw path data
into 2D information in a form suitable for input to gnuplot.

Results

GP Parameters

Initial experimentation was aimed at ensuring both that our GP system was able to solve simple
tasks and that both GP operations (`mutation' and `crossover') improved GP performance.

These results were generated running evolve/sketch.pde on a single IXM board. Mutation
and crossover frequencies of 10 milliseconds and 100 milliseconds (m.10, b.10, m.100, and b.100
respectively) were tested resulting in the runtimes shown below. Times shown are the average time
taken to generate an ideal individual over 5 runs. The results indicate that both mutation and
crossover reduce the runtime required for the GP to solve problems. In addition it appears that
crossover is more e�ective against harder problems (e.g. �xxx**xxxx***+�) while mutation is more
e�ective against simpler problems (e.g. �7xxx**+�).

6

http://www.ruby-lang.org/en/
http://github.com/eschulte/gp4ixm/blob/master/experimenter.rb
http://github.com/eschulte/gp4ixm/blob/master/coexperimenter.rb
http://github.com/mixonic/libixm
http://www.gnu.org/software/screen/
http://github.com/eschulte/gp4ixm/tree/master/collector/
http://github.com/eschulte/gp4ixm/blob/master/group.rb
http://github.com/eschulte/gp4ixm/blob/master/board.rb
http://www.gnuplot.info/
http://github.com/eschulte/gp4ixm/blob/master/evolve/sketch.pde

Figure 4: runtime by GP parameters

Sub-populations and Sharing

After the basic GP operations had been veri�ed we investigated the e�ect of distributing the GP
over multiple boards. An series of runs were performed using sharing frequencies of 100 milliseconds
and mutation and crossover frequencies of 10 milliseconds. Times shown are the average time taken
to generate an ideal individual over 5 runs. Although the e�ect of adding a second board was not
dramatic there is clear evidence that the addition of a second board and a second population did
increase the e�ectiveness of the GP.

Sharing and Layout

Next the e�ects of di�erent sharing rates run over a large group of 15 boards was investigated. The
sharing experiments were run over two di�erent board layouts � a straight line and a near �gure
eight. The results for each layout are presented as well as a comparison between the two. In all
experiments below the following three target functions were used.

Target 0 Target 1 Target 2

�xxx**xxxx***+� �7xxx**+� �xs55+55+**�

Each GP parameter combination was allowed 10 minutes to attempt to �t each target. 10 runs
were performed in each setup and all reported results are the average of the 10 runs.

• line
The runtimes for each sharing rate by goal. All sharing rates are reported in milliseconds. In
general the results seem to illustrate the a sharing rate of 1000 milliseconds performs best.

� "xxx**xxxx***+"

7

Figure 5: sharing individuals across two boards

sharing rate ave. time to completion

10000 3.8355099
1000 3.2090558
100 3.2239733

� "7xxx**+"

sharing rate ave. time to completion

10000 4.9986461
1000 3.1983512
100 2.1230925

� "xs55+55+**"
This goal is equivalent to 100sine(x) which is not possible for our GP individuals to
match as they do not have the sine function as one of their operators. The average best
score for each sharing rate is reported.

sharing rate ave. time to completion

10000 invalid
1000 156.743
100 164.008

the reason that the above results for 10000 are labeled �invalid� is that is appears that
some boards did not successfully have their goal reset from �7xxx**+� to �xs55+55+**�
in these runs, so no data is available.

although no individuals exactly matched 100sine(x) some did come close, most notably
the following whose RPN representation of x2*x6-/3x7+*x3x-*/+7* expands to the fol-
lowing algebraic expression ((((x * 2) / (x - 6)) + ((3 * (x + 7)) / (x * (3 -

8

Figure 6: line layout

x)))) * 7) which does a very good job of matching the target function over the test
values of x with a best score of 136.07.

although globally the �t is less impressive

• �gure eight
The runtimes for each sharing rate by goal. All sharing rates are reported in milliseconds. In
general the results seem to illustrate the a sharing rate of 1000 milliseconds performs best.

� "xxx**xxxx***+"

sharing rate ave. time to completion

10000 3.6102906
1000 2.8806907
100 6.4068757

� "7xxx**+"

sharing rate ave. time to completion

10000 24.0118271
1000 3.1030883
100 1.9693912

� "xs55+55+**"
This goal is equivalent to 100sine(x) which is not possible for our GP individuals to
match as they do not have the sine function as one of their operators. The average best
score for each sharing rate is reported.

9

Figure 7: �gure eight layout

sharing rate ave. time to completion

10000 255.311111111111
1000 183.966666666667
100 253.433333333333

although no individuals exactly matched 100sine(x) some did come close, most notably
the following whose RPN representation of 0757x/3-x+3x-/**x/x+x* expands to the
following algebraic expression ((((7 * (5 * ((((7 / x) - 3) + x) / (3 - x)))) /

x) + x) * x) which does a very good job of matching the target function over the test
values of x with a score of 254.35.

although globally the �t is less impressive

• video results
The following videos are provided to better illustrate the dynamic �tness levels across multiple
boards during the previous runs. In these videos each board is represented as a bar in a 3d
histogram. The placement of the bars mirrors the physical placement of the boards and the
height of the bar is equal to the most �t individual on the board. Recall that �tness is
calculated as the di�erence between an individual and the goal, so a lower �tness score is
better.

note: If the following don't begin playing automatically they can be download from here
and saved to your desktop. On a mac you may need to use VLC if your default video player
doesn't understand these �les.

Coevolution

Coevolution was implemented by evolving a Genetic Algorithm (GA) over the x values to be checked.
The coevolution task was signi�cantly more di�cult than the related evolutionary task as a much

10

http://cs.unm.edu/~eschulte/classes/cs591-rpc/gp4ixm-report/videos
http://www.videolan.org/vlc/

Figure 8: best individual in range

wider range of possible x values was used. While all pure evolution experiments were run over
the static range of integers between 0 and 10 the coevolution x values ranged from -100 to 100.
Each x-range coevolution �individual� consisted of 5 x values taken from this range. Mutation of
coevolution individuals consisted of changing an x value by +-1 with a chance of 1/5. Single point
crossover was used to breed two coevolution individuals. Since coevolution frequently found no
perfect solution only the average best score is reported.

• line
The runtimes for each sharing rate by goal. All sharing rates are reported in milliseconds. In
general the results seem to illustrate the a sharing rate of 10000 milliseconds performs best.

� "xxx**xxxx***+"

sharing rate ave. time to completion

100000 29366.703
10000 5.0
1000 10.8

� "7xxx**+"
No results are reported for this range, as many runs did not return any results. The
only plausible reason for this result is that the reported scores for these runs were so
large (bad) as to over�ow the c++ double type, returning non-integer values which the
Ruby scripts could not parse. Future sections with this same problem will be indicated
as insu�cient data.

� "xs55+55+**"
insu�cient data

11

Figure 9: best individual out of range

• �gure eight
The runtimes for each sharing rate by goal. All sharing rates are reported in milliseconds. In
general the results seem to illustrate the a sharing rate of 1000 milliseconds performs best.

� "xxx**xxxx***+"

sharing rate ave. time to completion

100000 89985.059
10000 16.624
1000 5986.421

� "7xxx**+"

sharing rate ave. time to completion

100000 9.075
10000 10.81
1000 6651.732

� "xs55+55+**"
insu�cient data

• videos
same disclaimer/instructions as above. . .

Conclusions

A subpopulation GP system was shown to be e�ective in the IXM environment. The GP operators
of mutation and crossover were both shown to improve the e�ectiveness of the GP to varying degrees

12

Figure 10: best individual in range

depending on the di�culty of the target problem. Distribution of the GP system over multiple IXM
boards was shown to improve the speed with which the GP solved problems although the ideal
speedup of runtime

number of boards was not achieved.
In normal evolution with mutation and crossover rates of 10 milliseconds or 100 Hz a sharing

rate of 1000 milliseconds or 1 Hz was shown to outperform sharing rates of 100 milliseconds 10 Hz
and 10000 milliseconds 1

10 Hz. This was true in both the straight line board con�guration and the
�gure eight con�guration. This indicates that a sharing rate of roughly 100 times the mutation and
crossover rate is near ideal.

There was no signi�cant or consistent di�erence in performance between the two board layouts
of a �gure eight and a straight line. While it is possible that further experimentation with more
tightly packed formations could reveal some statistically signi�cant di�erence in layout performance
this work indicates that such di�erences will not be dramatic.

Coevolution was added to the existing GP system. While the coevolutionary runs performed
poorly it is not immediately clear if this is due to an inherent feature of coevolution in this domain,
to a failure of implementation, or to the fact that the problem space of the coevolutionary runs
was so much larger than that of the initial GP runs. In those coevolutionary runs where reliable
numbers were returned the line formation seemed to outperform the �gure eight formation, and the
sharing value of 10000 milliseconds or 100 times the evolutionary individual sharing rate seemed to
perform best.

Future Work

This work could be expanded upon in a number of interesting manners. Each of the following
sketches a possible path for future work.

13

Figure 11: best individual out of range

meta-evolution

The GP parameters of mutation, crossover, and sharing rate can be set on a per-board level. With
a large collection of boards it would be plausible to vary the GP parameters with each board and
perform meta-evolution of the GP parameters simultaneously with the GP.

This work has a number of interesting features.

• The meta-evolutionary system would have a one-to-one mapping between individuals and
boards. This means that each individual in the population has a static physical address and
can only communicate with its physical neighbors. This limitation means that no global GP
operations (e.g. best/worst individual or random selection of individuals) could be applied
to the boards. Rather the GP would need to be distributed s.t. each GP action (crossover,
mutation, selection, death) acts on a limited horizon.

• When applied over a running GP system this meta-evolution could help to re�ne parameters
more quickly than the exhaustive battery of runs used in much of this report.

• When applied over a running GP system it is plausible that the meta-evolution would adapt
the GP parameters to �t di�erent stages of a single run of the base GP. For example it
may emphasize exploratory operations in the early stages and then slowly switch to more
exploitative operations in that later stages of a run.

dynamic board group

While both the design of our GP system and information trials indicate that the setup would be
robust to a dynamic board environment where boards are being added and removed from the group
mid-run, we have presented no experimental evidence of these claims. It would be a relatively simple
extension of our current experimentation environment to allow experimentation in this area. Two
new scenarios would each require a small addition to the current software.

14

(videos/evo_line_100_0_0.mpg)

Figure 12: Formation: line Goal: "xxx**xxxx***+" Run: 0

(videos/evo_line_100_1_1.mpg)

Figure 13: Formation: line Goal: "7xxx**+" Run: 1

(videos/evo_line_100_2_1.mpg)

Figure 14: Formation: line Goal: "xs55+55+**" Run: 1

15

evo_line_100_0_0.mpg
Media File (video/mpeg)

evo_line_100_1_1.mpg
Media File (video/mpeg)

evo_line_100_2_1.mpg
Media File (video/mpeg)

(videos/evo_eight_100_0_1.mpg)

Figure 15: Formation: eight Goal: "xxx**xxxx***+" Run: 1

(videos/evo_eight_100_1_1.mpg)

Figure 16: Formation: eight Goal: "7xxx**+" Run: 1

(videos/evo_eight_100_2_1.mpg)

Figure 17: Formation: eight Goal: "xs55+55+**" Run: 1

16

evo_eight_100_0_1.mpg
Media File (video/mpeg)

evo_eight_100_1_1.mpg
Media File (video/mpeg)

evo_eight_100_2_1.mpg
Media File (video/mpeg)

(videos/coevo_line_10000_0_1.mpg)

Figure 18: Formation: line Goal: "xxx**xxxx***+" Run: 0

(videos/coevo_line_10000_1_1.mpg)

Figure 19: Formation: line Goal: "7xxx**+" Run: 1

(videos/coevo_line_10000_2_1.mpg)

Figure 20: Formation: line Goal: "xs55+55+**" Run: 1

17

coevo_line_10000_0_1.mpg
Media File (video/mpeg)

coevo_line_10000_1_1.mpg
Media File (video/mpeg)

coevo_line_10000_2_1.mpg
Media File (video/mpeg)

(videos/coevo_eight_10000_0_1.mpg)

Figure 21: Formation: eight Goal: "xxx**xxxx***+" Run: 1

(videos/coevo_eight_10000_1_1.mpg)

Figure 22: Formation: eight Goal: "7xxx**+" Run: 1

18

coevo_eight_10000_0_1.mpg
Media File (video/mpeg)

coevo_eight_10000_1_1.mpg
Media File (video/mpeg)

board removal In this scenario a board is removed mid-run. Rather than having a human exper-
imenter physically disconnect boards during the run, the ability of the boards to turn power
o� to their neighbors could be used by the computer-side Ruby scripts to simulate neighbor
loss through power o�s.

board addition In this scenario a new board would be added mid-run. To make this approach
practical the current goal and possibly the current individual population would need to be
shared with any new boards after they connect and/or after they have downloaded the GP
sketch. This example code-�ow-sketch.pde provided by Prof. Ackley demonstrates the relevant
core software functions required by a newly added board for acting immediately after it has
had its software updated. Alternately such a data pull could simply be added to the startup
routine � changing the default behavior of all newly booted boards to an attempted pull of
new goals or individuals.

splitting up the �tness space across the boards

By partitioning the �tness space across a connected group of boards it may be possible to �nd
partitions that outperform the default choice of testing over the entire space on each board. One
exciting aspect of this expansion is its incorporation of the physical properties of the group of boards
into the GP space.

For example, the �tness function used in this work of comparing individuals against a target
function at speci�c values of x could be partitioned by assigning each board its own range of x
values. There could be many interesting properties of this approach.

• investigate whether contiguous x values assigned to neighboring boards is more or less e�ective
than random assignment of ranges of x values

• evaluating an even stricter direct mapping of the 2D space in which the boards are arrayed
to the 1D space of possible x values, such that, the values present on a boards are strictly a
result of the physical placement of the board in the group

• evaluating the variety of di�erent 2D board layouts in combination with various x-value par-
titions

• investigate the behavior and interactions of subpopulations each of which may only be able
to �inhabit� some subset of the boards in the group

Reproduction and Expansion of this work

Both the pdf and html versions of this report were generated using Emacs Org-mode and Org-babel.
These tools allow source code and data to be interleaved with prose in the same documents. The
source documents as well as all supporting �les required to re-create this report can be obtained
as a .tar or .zip download or using git from http://github.com/eschulte/gp4ixm-report. A single
massive .tar �le including all graphs �gures and pictures can be downloaded from here.

See data-analysis for a collection of the tools used in collecting and analyzing experimental
results.

19

file:///home/eschulte/research/gp4ixm/report/src/code-flow-sketch.pde
http://cs.unm.edu/~eschulte/research/gp4ixm/gp4ixm.pdf
http://cs.unm.edu/~eschulte/research/gp4ixm/
http://www.gnu.org/software/emacs/
http://orgmode.org/
http://orgmode.org/worg/org-contrib/babel/org-babel.php
http://git-scm.com/
http://github.com/eschulte/gp4ixm-report
http://cs.unm.edu/~eschulte/research/gp4ixm/data-analysis.html

