
Automatic Analogue Circuit Synthesis using Genetic Algorithms

James B. Grimbleby
Electronic Engineering Group
The University of Reading
PO Box 225
Reading RG6 6AY

Telephone: (0118) 9318586
Fax: (0118) 9318583
email: j.b.grimbleby@reading.ac.uk

pgp: EC18 B1B1 AACC 52E1 976C BFAC 6A20 27F8 BBFC DC94

December 1, 2000

Abstract

Most analogue systems are designed manually because automatic circuit synthesis tools are presently
available for only a limited range of design problems. This paper presents a new approach to circuit
synthesis based on Genetic Algorithms. Using this method it is possible in principle to synthesize
circuits to meet any linear or non-linear, frequency-domain or time-domain, specification. When
applied to existing filter design problems this circuit synthesis method produces design solutions that
are more efficient than those resulting from formal design methods or created manually by an
experienced analogue circuit designer.

Page 1

1 Introduction

Digital systems can now be synthesized
automatically on a computer but this is not the
case for analogue systems. Formal design
solutions do exist, but only for limited classes
of analogue design problems (for example
linear frequency-domain filters) and most
analogue circuit design is still performed
manually by skilled engineers.

These observations on analogue circuit
synthesis do not extend to circuit analysis, and
excellent analogue circuit analysis tools such
as SPICE have been available for many years.
It might be thought that in order to synthesize
circuits it is simply necessary to "close the
loop" around circuit analysis. Indeed this is
exactly what happens when a circuit is
subjected to numerical optimization.
Unfortunately, although numerical
optimization is a true design technique, its
application is severely limited by the fact that
it operates only on fixed circuit topologies.

If an optimization technique could be found
that modified both circuit topology and
component values then this could form the
basis of an analogue circuit synthesis method.
Genetic Algorithms (GAs) are just such an
optimization technique. Developed in the
1970s and '80s [1,2], GAs have been
successfully applied to a wide range of
numerical and non-numerical optimization
problems.

2 Genetic Algorithms

GAs operate on the principle of "survival of
the fittest", generating new design solutions
from a population of existing solutions, and
discarding those design solutions which have
an inferior performance or fitness. Each
member of the population has a "chromosome"
which consists of a number of "genes"; each
gene represents one part of the design solution.
New design solutions are created by "breeding"
from a pair of existing solutions. Parents are
randomly selected from the present population,
but with a bias towards the fittest individuals
and their chromosomes are merged to produce

the chromosome of the offspring. A
proportion of offspring is then subjected to
random mutation.

A related technique is Genetic Programming
(GP) in which the chromosome represents not
the design solution directly but a variable-
length expression containing terminals and
operators which, when evaluated, yields the
design solution [3]. In GPs it is this
expression, rather than the design solution
itself, that is subject to cross-over and
mutation.

3 Application of Genetic Algorithms to
Circuit Synthesis

One approach to circuit synthesis is to allow a
GA or GP to determine both the topology and
the component values. This approach has been
adopted by Koza, Bennett, Andre and Keane
[4,5], who use GP with a variable-length
expression containing topology modifying
operators, component-creating operators and
arithmetic-performing operators. In Koza's
approach the operators that modify the circuit
topology and select component values are
inseparable, and all are under the control of the
evolutionary processes operating on the
expression. Circuit fitness is evaluated using a
SPICE simulator, the code for which has been
incorporated into the synthesis program.

Circuit synthesis involves both the selection of
a suitable topology and choice of component
values, and as Koza has shown, these may be
optimized simultaneously. However there is
no reason why these operations should not be
performed separately, with different
optimization methods being used. Clearly the
circuit topology must be chosen first, and the
appropriate algorithm for this is a GA. For
each circuit topology generated the component
values can then be optimized, and the
performance of the circuit returned as the
fitness function to the GA.

The component values could also be optimized
using a GA but, for problems involving well-
behaved objective functions dependent on the
values of a fixed number of variables, it is well

Page 2

established that numerical optimization
methods converge much faster and involve
fewer objective function evaluations. No
optimization method guarantees to find the
global optimum, but it has been found [6] that
numerical optimization of component values
achieves a high proportion of results close to
the global optimum. This hybrid approach
using a GA to select a suitable topology and
numerical optimization to choose component
values is likely to be more efficient than using
a GA or GP to perform both functions.

4 The Hybrid Genetic Algorithm

The most important decision in applying GAs
to an optimization problem is how to represent
the design solution in the chromosome. A
circuit topology can be specified by a list of
component types together with their terminal
nodes and it is natural, therefore, to make each
gene of the chromosome represent a single
component. Chromosomes are normally of
fixed length and contain a fixed number of
genes whereas circuits can contain any number
of components. This problem can be avoided
by having, in addition to the standard
component types of resistor, capacitor and
inductor, an "empty" component type. Since
the GA operates on circuit topology only, the
genes do not contain component values. In
C++ the data members of the gene class are
defined:

enum component_type {resistor,
capacitor, inductor, empty};
typedef short int node;

class gene {
 private:
 component_type type;
 node n1, n2;
 public:

};

The data member of the chromosome class is
simply an array of genes:

class chromosome {
 private:
 gene genes[16];
 public:

};

The number of genes determines the maximum
circuit complexity so that this parameter
should be at least equal to the anticipated
complexity of the optimum circuit
configuration. In fact it should be somewhat
larger than this to allow the circuit to evolve
towards the optimum by component deletion.
Choosing too large a value, however, leads to
inefficiency because unrealistically complex
circuits will be generated, and will need to be
analyzed.

The input of the circuit is always node 1 and
the output is node 2; node 0 is the reference (or
ground) node. Figure 1 shows a bridged-T
filter with numbered nodes. A possible
chromosome (containing only 6 genes for
clarity) representing this circuit is shown in
figure 2.

New individuals are generated by uniform
genetic cross-over from two parents (with
probability typically 70%) or by mutating a
single parent. In either case further mutation
(with probability typically 50%) may then be
applied. The efficiency of the GA does not
depend critically on either of these
probabilities. Parents are selected by
tournament between two randomly-chosen
individuals.

The population size is normally 80-200; a
larger population would probably result in an
increased robustness of the GA, but would lead
to longer synthesis times. Each individual of
the initial population is created by repeatedly
generating random chromosomes until one is
found that corresponds to a viable (connected)
circuit. Steady-state replacement of the
population is used: a new individual replaces
the least-fit member of the existing population
provided that it has a superior fitness.

The crudest form of random mutation would be
to select randomly a gene in the offspring's

Page 3

chromosome, and replace it with a new gene of
random type and random terminal nodes.
Unfortunately this process generates a high
proportion of lethal mutations in which a
viable circuit is transformed into a non-viable
circuit. The success rate of mutation can be
improved by modifying the circuit only in
ways that are likely (but not guaranteed) to
lead to a viable result. One of the following
four circuit transformations, selected at
random, is applied to the offspring's
chromosome:

1. Replace an existing component by an
open circuit.
2. Replace an existing component by a short
circuit.
3. Connect a new random component in
parallel with an existing component.
4. Connect a new random component in
series with an existing component.

These operations alone would be sufficient to
transform any given circuit into any other
circuit, and it might be thought that cross-over
is therefore superfluous. This is in fact not the
case as the use of cross-over greatly improves
the efficiency.

Once a circuit topology has been generated its
fitness is evaluated after numerically
optimizing its component values using a quasi-
Newton algorithm based on the Davidon-
Fletcher-Powell (DFP) method. This calls an
objective function that returns the sum-of-
squares of the differences between the circuit's
response and the target response at a sequence
of logarithmically-spaced frequencies. To
reduce the amount of computation involved a
symbolic analysis of each new circuit topology
is performed before numerical optimization.
This involves constructing voltage and current
graphs (corresponding to the voltage and
current incidence matrices) from the circuit,
and after coalescing appropriate pairs of nodes,
finding all the common spanning trees of the
two graphs [7]. The result is two linked lists of
symbolic terms, corresponding to the
numerator and denominator of the voltage
frequency-response function. Substituting
component values into the symbolic form gives

the numerical frequency-response function;
substituting frequency into the numerical
frequency-response function gives the voltage
gain.

As the response approaches the target
response, the objective function tends to zero
and the reciprocal of the objective function for
the optimized circuit is returned as the fitness.
In the absence of any other constraints the GA
will generate successively more complex
circuits, because a complex circuit will in
general provide a better fit to a target response
than a simple circuit. To prevent this the
fitness is multiplied by a penalty function p(n)
that is unity for simple circuits, but which
rapidly becomes smaller as the complexity
(measured by the number of nodes n) exceeds
some predetermined level n_max:

max)_(1

1
)(

nna
np

−+
= 1.

where a is a constant, typically 8 and n_max is
set to the anticipated complexity.

This hybrid-GA circuit synthesis method is
remarkable for incorporating no design rules or
expert knowledge; it simply works towards
satisfying the design goals. It is the antithesis
of the traditional "expert system" approach to
analogue circuit design.

5 A Simple Frequency-Domain Filter
Benchmark

An obvious way of testing the effectiveness of
the hybrid-GA is to synthesize a circuit to a
specification for which a formal design method
exists. Consider the normalized low-pass filter
specification:

Pass-band edge: 1.0 rad/s
Stop-band edge: 1.5 rad/s
Maximum pass-band gain: 0 dB
Minimum pass-band gain: -1 dB
Maximum stop-band gain: -46 dB

Following the traditional filter design
procedure, the first stage is to choose a suitable
filter approximation. Provided that pass-band
ripples and a non-monotonic stop-band are

Page 4

acceptable, the most efficient filter
approximation is the elliptic. The lowest-order
elliptic approximation meeting the
specification is of 5th order, and the filter can
be implemented as an equally-terminated
ladder filter as shown in figure 3.

To allow for the fact that the maximum pass-
band gain of an equally-terminated filter is -
6 dB, all of the gains in the specification must
be reduced by 6 dB. The impedance levels in
this filter are around 1 Ω and any practical
implementation would require them to be
scaled to a more realistic level. For example,
the resistor and inductor values could be
multiplied by 10000, and the capacitor values
divided by 10000. Figure 4 shows the
corresponding frequency response.

The hybrid-GA circuit synthesis program
generated the circuit shown in figure 5. Using
a population size of 80 circuits and 100
generations the time taken to synthesize this
filter on a 300 MHz PII personal computer was
under 3 hours. The response of the hybrid-GA
design is shown in figure 6, and it is clear that
the design is fully compliant with the
specification.

Surprisingly the hybrid-GA design is not
simply as good as the elliptic filter, but with
only six reactive components is actually a more
efficient design. Although the hybrid-GA
design meets the specification, nevertheless it
is probably sub-optimal with respect to
performance factors (such as component value
sensitivity) that are not included in the design
goals. This difficulty can in principle be
overcome simply by modifying the objective
function to include these performance factors,
but this will certainly adversely affect the
speed of operation of the synthesis program.

As far as component value sensitivity is
concerned the synthesis program can be
modified to include an item of "expert
knowledge": equally-terminated ladder
configurations are known to have low
sensitivity. The synthesis program was
therefore constrained to generate only LC
circuits between equal-value termination

resistances and the result is shown in figure 7.
The response of this circuit is shown in figure
8. Again the synthesized circuit meets the
specification, while using fewer components
than the filter resulting from the traditional
formal design process based on an elliptic
response.

6 Nielsen's Filter Design Problem

In a paper describing a continuous-time filter
compiler Nielsen [8] uses as an example a
highly asymmetric band-pass filter
specification for a modem application:

Pass-band: 31.2 kHz to 45.6 kHz
Maximum pass-band ripple: 0.6 dB
Lower stop-band edge: 20 kHz
Lower stop-band gain: < -38 dB
Upper stop-band: 69.6 kHz to 84.0 kHz
Upper stop-band gain: < -73 dB
Gain above stop-band: < -55 dB

Unfortunately Nielsen's filter compiler is based
on traditional filter design methods and can
only generate filter responses that are of the
standard types (low-pass, high-pass,
symmetrical band-pass and symmetrical band-
stop). Although standard filter responses can
be found to satisfy asymmetric specifications
such as that given above, they are likely to be
of unnecessarily high order. For example, to
meet Nielsen's specification a 10th-order
elliptic filter is required, the response of which
is shown in figure 9.

This clearly achieves an unnecessarily high
degree of attenuation in the lower stop-band.
Nielsen was therefore forced to design by hand
a suitable passive prototype filter. His design
consists of an 8th-order doubly-terminated
filter containing 10 reactive components in
addition to the 2 termination resistances.

Koza [4] uses this filter specification as a
demonstration of the effectiveness of his GP
circuit synthesis program. After 199
generations a circuit emerged that meets the
specification, but which contains a total of 38
components and is clearly not a cost-effective
design.

Page 5

The hybrid-GA synthesis program described
here uses randomly-chosen component values
around unity as a starting point for numerical
optimization, and optimization is most likely to
succeed if the values corresponding to the
global optimum are also around unity. This
can be achieved by setting the impedance
levels to 1 Ω and by scaling the filter cut-off
frequencies to around 1 rad/s. In the case of
Nielsen's filter a frequency scaling factor of
h = 2π×45000 is used, and the scaled
specification is used as the target response for
the hybrid-GA circuit synthesis program.

Using Nielsen's specification, and constrained
to generate an equally-terminated
configuration, the hybrid-GA generates the
circuit shown in figure 10. It contains one
fewer component than Nielsen's manually-
designed filter. This 8th-order circuit would
not have resulted from any traditional design
procedure. Although it superficially resembles
a traditional equally-terminated ladder filter,
the series combination: Ld/Ch and the
series/parallel combination: Lg/Cj/Ll are non-
standard.

Of course the response of this circuit is
centered on 1 rad/s rather than the 45 kHz of
the specification. To convert the filter to a form
which meets the original specification the
capacitor and inductor values are divided by
the normalizing factor h. The impedances also
need to be brought up to a more practical level.
Figure 11 shows the filter response.

It is clear that this filter is fully-compliant with
the specification, while at the same time being
more efficient (in terms of the number of
components) than the traditional elliptic-
derived filter, Koza's GP circuit synthesis filter
and Nielsen's manually-designed filter.

7 A Time-Domain Design Problem

There is no reason why the hybrid-GA
synthesis method should be limited to
frequency-domain filters. Given a circuit
topology and component values it is only
slightly more complicated to calculate the

impulse or step response than the frequency
response.

Consider the following unit-step response
specification for an approximation to the ideal
averaging filter:

g(t) = t ± 0.02 for 0 ≤ t < 1
g(t) = 1 ± 0.02 for 1 ≤ t

This specification is compared with the
circuit's response at intervals of 0.05 s from 0 s
to 4.0 s and is the only design information
supplied to the synthesis program. The actual
unit-step response of the circuit under
consideration is calculated by the matrix
exponential method. Each circuit topology is
analyzed to give the symbolic transfer
function. To calculate the response the
component values are substituted into the
transfer function, the state equations derived,
and the transition matrix calculated for the
required time step. Only a single matrix
multiplication is then required to calculate the
response at each time point.

Using a population size of 80 circuits and 200
generations the filter shown in figure 12 was
synthesized in around 10 hours. Figure 13
shows the unit-step response of this filter and it
is clear that the synthesized filter meets the
required time-domain specification.

8 Conclusion

The design examples presented above indicate
that the hybrid-GA method of circuit synthesis
is practical on widely-available personal
computers, and generates circuits that are
efficient and fully meet the design goals.
Driven purely by the specification, the circuit
synthesis program incorporates no expert
knowledge of circuit design (except in some
cases where the topology is constrained to be
of equally-terminated form).

Circuits generated by the synthesis program
are often novel, and would not have been
generated by any established design technique.
Indeed the synthesis program appears to be
creative in a way that is not often associated
with computers. In some cases the circuits

Page 6

generated are more efficient than those
resulting from traditional design methods (as
the example of the sharp cut-off filter
demonstrated).

In principle the hybrid-GA approach can be
applied to any circuit design problem for which
a means of evaluating potential circuits against
the design goals is available. Computational
effort is the only limiting factor.

Almost all the computational effort goes
towards calculating circuit responses. Each
new circuit must be optimized numerically to
obtain the component values, and this will
involve many thousands of response
evaluations. Linear circuit analysis is fast and
efficient, and synthesizing circuits with up to
16 components is possible on standard
personal computers. Non-linear analysis, by
contrast, involves the solution of non-linear
differential equations and absorbs far more
computational effort than linear analysis. At
the present time it is impractical to synthesize
non-linear circuits of any complexity on PCs
using the hybrid-GA method.

References

1. HOLLAND, J.H.: 'Adaptation in Natural
and Artificial Systems' (University of
Michigan Press, Ann Arbor, Mich., 1975).

2. GOLDBERG, D.E.: 'Genetic Algorithms in
Search, Optimization, and Machine Learning'
(Addison-Wesley Publishing Company,
Reading, Mass., 1989).

3. KOZA, J.R.: 'Genetic Programming: On the
Programming of Computers by Means of
Natural Selection', (MIT Press, 1992).

4. KOZA, J.R., BENNETT III, F.H., ANDRE,
D. and KEANE, M.A.: 'Automated
WYWIWYG Design for Both Topology and
Component Values of Electrical Circuits using
Genetic Programming', Genetic Programming
1996: Proceedings of the First Annual
Conference, July 1996, Stanford University,
Cambridge MA, pp. 123-131.

5. KOZA, J.R., BENNETT III, F.H., ANDRE,
D., and KEANE, M.A.: 'Four Problems for
which a Computer Program Evolved by
Genetic Programming is Competitive with
Human Performance', Proceedings of the 1996
IEEE International Conference on
Evolutionary Computation, May 1996,
Nagoya, Japan, pp. 1-10.

6. GRIMBLEBY, J.B.: 'Hybrid Genetic
Algorithms for Analogue Network Synthesis',
IEE/IEEE International Congress on
Evolutionary Computation (CEC99), July
1999, Washington DC, pp 1781-1787.

7. GRIMBLEBY, J.B.: 'Algorithm for finding
the common spanning trees of two graphs',
Electron. Lett., 1981, 17, pp 470-471.

8. NIELSEN, I.R.: 'A C-T Filter Compiler –
From Specification to Layout', Analog
Integrated Circuits and Signal Processing,
1995, 7, pp. 21-33.

Page 7

Figure 1: Bridged-T filter

Figure 2: Chromosome representing bridged-T filter

Figure 3: Equally-terminated elliptic filter

Capacitor
3
0

Gene 3

Empty
-
-

Gene 2

Resistor
3
2

Gene 1

Empty
-
-

Gene 6

Resistor
1
3

Gene 4

Capacitor
2
1

Gene 5

Type
n1

n2

Page 2

Frequency

Figure 4: Frequency Response of elliptic filter

Figure 5: Hybrid-GA designed filter

Gain

Page 3

Frequency
Figure 6: Frequency response of hybrid-GA designed filter

Figure 7: Hybrid-GA designed equally-terminated filter

Gain

Page 4

Frequency

Figure 8: Frequency response of hybrid-GA designed equally-terminated filter

Frequency

Figure 9: Frequency response of 10th-order elliptic band-pass filter

Gain

Gain

Page 5

Figure 10: Hybrid-GA designed Nielsen filter

Frequency

Figure 11: Frequency response of hybrid-GA designed Nielsen filter

Figure 12: Hybrid-GA designed averaging filter

Gain

Page 6

Time

Figure 13: Unit-step response of hybrid-GA designed averaging filter

Unit-step
response

