
Genetic evolution of neural networks
Charles-Henri Gros

Masters Student
Computer Science Department

Stanford University

ABSTRACT
The purpose of this project will be to study several ways to evolve neural networks.
I will compare several methods of creating neural networks using GP. The function
set in the GP will be used to create a directed graph containing the inputs, the output
and any number of intermediate nodes. As a test, I will use the parity function (which
is a good test since changing a single input will always change the result). I will then
compare the performance of the neural nets to that of functions evolved with regular
GP.

1 Introduction
Neural nets are a way of doing computation. It is usually used for tasks where the function is not entirely known,
and needs to be approximated from sample data. However neural networks are very complex and difficult to program
directly. But despite this complexity, their structure usually has to be entered by hand.

Genetic programming is a kind of search whose main goal is to focus on the performance of the objects it tries to
create, instead of their components or structure. They are therefore well suited for the creation of neural networks.

2 Neural Networks
Neural networks are ways to define functions inspired by the human brain. They consist of a set of neurons, including
input neurons and output neurons. Each neuron is connected to one or several others, in a directed fashion. Each
neuron has an activation value and an activation function, and each link has a propagation coefficient. All the values
are real numbers, either positive or negative.

The way neural networks act as functions is the following: The input is entered as the input neurons’ activation
value. All other neurons have an initial activation value of 0.

Then there is a number of propagation rounds, in which the activation value of each neuron is changed according
to the weighted sum of its predecessors’ activation functions’ results, with regard to the weights on the links. The
activation function’s result is computed by applying the function to the activation value.

The output of the network is the activation value of the output neurons after a specified number of rounds, or until
convergence.

The most common type of neural network is a layered network (see Figure 1) In these there is an input layer, an
output layer and a number of intermediate layers, consisting of hidden nodes, and placed between the input layer and
the output layer. Each neuron may only have edges to neurons in the layer directly after theirs.

The advantage of this method is that, if the number of rounds is set to the number of layers minus one, the
evaluation time is linear in the number of neurons: it is possible to evaluate the activation levels one layer at a time. It
also avoids the need to consider the previous activation level of each neuron, since it’s always zero.

One of the most common type of activation functions is a threshold function. This function, for a given threshold,
returns 0 if the activation level is below this threshold, and 1 if above. This is roughly what happens in real neurons,
which send a signal through their axon if they reach a certain excitation level.

In this example, I decided not to use layered networks, since their expressiveness is limited, and they are hard to
build with genetic programming. I used the threshold activation function, with a threshold of 1. Also, since the network



Figure 1: 3-layer neural network

is not layered, to deal with the activation level of previous rounds, I used an exponentially decreasing influence: the
previous activation level is divided by 2, and added to the external influence. The activation level of inputs is only set
at the first round, after which it evolves like any other neuron’s. The number of propagation rounds is set to be the
longest acyclic path from any input to the output.

The inputs used are the bits of the input to parity, plus an additional always-on input. Set bits give an initial
activation level of 1, while cleared ones leave it to 0. The output of the network is the activation function of the output
node.

3 Genetic programming
Genetic programming is a way to conduct search among a set of trees, which are usually used to represent functions.

The trees consist of nodes, which correspond to functions, and leaves, which correspond to terminals. A node
corresponding to a given function always has a predetermined number of children, which represent the function’s
arguments. Terminals are actually just functions with no arguments (which may be constants, or return some state).

The goal is to find a tree that optimizes a given function which is called the fitness measure.
The search is conducted in the following way: First, a predetermined number of random individuals is created,

forming the first generation. Then they are evaluated according to the fitness measure.
From these individuals, a new generation, consisting of the same number of individuals, is created by picking some

the best ones (selection), and then mixing them together (by exchanging compatible subtrees). The latter operation is
called crossover.

Another operation that may happen between generations is mutation, which randomly changes a subtree of an
individual. It is usually used rarely, as it is akin to a random search.

This process is repeated for a predetermined number of generations, or until an ideal individual is found.
There are lots of ways to conduct selection, one of which is fitness proportionate selection, in which the probability

of an individual being picked to create the next generation is proportional to its fitness.
Another popular one is tournament selection, where, to pick an individual from a generation to the next, a small

number of individuals is selected uniformly at random from the previous, and the best one is kept. This is the method
I used, with a size of 7 individuals.



Table 1: Random graphs with initial random constants
Objective Find a neural network that produces the same values as the parity func-

tion
Terminal set Stop
Function set LinkTo, LinkFrom
Fitness cases Output value on all numbers from 0 to 2n−1

Fitness Number of hits minus a thousandth the size of the network
Hits Number of points at which the network successfully computes parity
Wrapper Computation of the network from the description given by the functions
Parameters M = 5000 ; G = 50
Success predicate Fully matches parity (2n hits)

4 First method: random graphs
The first method I used to create neural networks was with functions allowing to create random directed graphs.

In this method, the functions allow to create edges between an existing node and either another existing one or a
new one, with a random propagation coefficient.

More precisely, there are three functions: LinkFrom, LinkTo and Stop. The Link functions are assigned a
random coefficient (from -10 to 10) and a random integer (from 0 to 10000) when the node is created.

During the construction of the graph, a current node is kept, which allows to specify one end of each link added.
This ensures that the graph stay connected.

LinkFrom creates a link from the current node to the one specified by the integer. To restrict the range of the
integer, it is taken modulo the current number of neurons, plus one (to allow adding a new neuron). The coefficient is
used as the propagation coefficient of the link. If this link already exists, the coefficients are added. Then the current
node is set to the destination of the link.

LinkTo does the same thing, except that it creates an edge in the reverse direction.
To create a random number of links, both Link functions have two children. The Stop function is used as a

terminal, and doesn’t do anything.
The GP evolves one tree for each input (which is set as the current node when each tree is evaluated). This has the

advantage of forcing each input to be used.
The initial network consists of each of the inputs, as well as the output, with no link. They are all available as

parameter of the Link functions, i.e. they can be reached after the modulo operation.
The fitness measure is the number of hits (inputs for which the output of the network matched the output of the

parity function), minus a small coefficient times the size (number of neurons) of the network (for an equal number of
hits, this favors smaller networks)

I started with a population size of 3000 and 150 generations, but most of the times the number of hits stopped
progressing after a relatively short number of generations, so I changed it to 5000 individuals and 50 generations.

This technique gives surprisingly good results, as I was able to get a perfect fit for 5-way parity in about 30
generations (Figure 2).

5 Second method: DAGs
The previous method worked rather well, but I wanted to do better. For that, I decided to concentrate on acyclic
graphs, since back-feed (cycles in the graph) is not necessary for something as simple as parity. I also wanted to make
subgraphs more stable after crossovers.

Also, the fact that all coefficients were created at the first generation was a problem, since the available coefficient
pool was only decreasing generation after generation, so I decided to replace them with genetically evolved ones.

Lastly, for simplicity, I replaced one tree per input with a single tree representing the output.



Figure 2: Solution to 5-parity

The new method uses typed genetic programming, with two types of values, numbers and graph functions. The
new function set can be divided into two subsets:

1. Functions on numbers: Add, Neg, X2, D2 and Cons. Add takes two numbers as children, and evaluates the
addition of these two’s values. Neg has one child number, and represents the negation of the child’s value. X2
and D2 also have one child number, and represent respectively multiplication and division by 2. Lastly, Cons is
a terminal representing a constant. I used 1 and -1 as constants. These functions allow to create numbers biased
toward 1.

2. Graph creation functions: Input, Link, and Fork. Input represents the input nodes. One such terminal
is used for each of the inputs. Link creates a link to the current node from another. This time, it is no more
acceptable to limit it to either an existing one or a single new one. To maintain a DAG structure, the target
node has to be ranked higher than the current one. To do that, and also to allow more stability of structure
during crossover operations, the target is specified relatively to the current node, as a strictly positive number.
To maintain connectivity as much as possible, while keeping expressiveness, this number is chosen with a
probability distribution favoring small numbers. More precisely, a real number d is chosen uniformly at random
between 0 and 1, and then the number is taken to be the integer part of − log(1−d). Since a node with only one
incoming edge is practically useless, each Link has two children, whose destination will be the origin of this
link. Lastly, Fork is used to allow a random number of inputs to a given node: it has two children, and before
each one resets the current node to the one it was at the beginning of its evaluation.

Alas, this technique didn’t work as expected; it actually performed much worse than the previous one: I was never
able to get a perfect individual for more than 2 inputs!

I first blamed this lack of results as a consequence of using only one tree, since any functions that doesn’t use all
the inputs matches exactly half the cases of parity. So I went back to one tree per input, but this actually didn’t change
anything: the fitness stopped progressing after a relatively short number of generations.

Then I thought of another possible source of bad results: the destination of links is fixed at the first generation, so
variety is lost generation after generation. So I changed that by adding yet another type of functions, which generated
integer numbers.



Figure 3: Solution to 8-parity

This improved the results a bit, as I was usually able to get a higher number of hits after some generations, but I
still couldn’t get any perfect individual, even for very low arity.

All the same, augmenting the population size didn’t really help.
After looking more closely at the result of the first method, I realized that restricting the networks to DAGs is

actually a bad idea: although they can solve parity, they’re far from being as concise as the result I got from the
random graph method, which makes a lot of uses of back feed.

6 Third method: Random networks with relative links
To try and combine the features of the last two methods, I decided to go back to random networks. But since I wanted
to keep the structural stability, I kept the idea of relative links; except this time they’re allowed to go back. To try not
to favor some inputs with regard to the others, I added terminals for both the inputs and the output. However, to still
allow links among inputs, and since the corresponding functions are terminals, the relative links are still allowed to
land on inputs or output.

This method worked much better, with 5-parity solved in as little as 10 generations, and 8-parity in less than 30
generations (Figure 3).

The results are also surprisingly concise, with only one node beside the given input and output nodes, and no more
than a few outgoing links per node.

7 Fourth method: ADFs
Since parity is very regular, and relative links allow structural stability, I tried to see if I could use ADFs (automatically
defined functions).

So I added one tree to the set, which represents a two-argument function. I added this function to the other trees’
function set, and the ADF’s function set was set to consist of the Link, Fork and Nil functions, as well as terminals



representing its arguments, and of course the numeric functions required by Link for its coefficients.
However this didn’t improve the search, as in most searches, the ADF tree quickly became just a node with one of

its arguments, rendering it useless.
This isn’t too surprising either, considering how on the networks found as result by the previous methods, there

are almost no hidden nodes, which are the only ones which can be used inside of an ADF.

8 Fifth method: separate links and nodes
Since ADFs didn’t work when links and their destination were combined, because it only allowed ADFs to create links
going through hidden nodes, I decided to make separate functions for links and nodes.

So I separated the graph function type into two types, link and node.
Also, I allowed links taking two nodes (not necessarily preexisting) as parameters. This may allow for unconnected

graphs, but the network size part of the fitness should eliminate them quickly.
The new function set included the previous functions on numbers, and the following functions on graphs:

1. Link, which takes as parameter a node and a number, and creates a link from the current node to the parameter
node, with the parameter number as coefficient, in a predetermined random direction;

2. Link2, which takes as parameter two nodes and a number, and creates a link between these nodes (both
of which are evaluated with the same current node), with, as in the case of Link, the parameter number as
coefficient, and a predetermined random direction;

3. Fork, which takes as parameters two links, which are set to have the same current node;

4. Node, which takes as parameter a link, and returns a node; it is specified relatively to the previous current node
(as in the previous construction methods), and becomes the current node for the child link;

5. Input and Output, which are terminals of type node, that represent the input and output nodes;

6. Stop, which is a terminal of type link, which does nothing (the software I used actually requires terminals for
each type).

But, as many other methods I tried, this didn’t work well. I was still able to find a solution for 4-parity, but it was
much bigger than even the solution to 8-parity found by the previous method.

This is probably because separating the links and the nodes somehow dissolves the structure, and not enough of it
is kept during crossovers.

9 Comparison: parity with logic operators
To compare the efficiency of neural networks, I made a quick experiment to evolve simple propositional logic expres-
sions for parity, using only OR, AND and NOT operators. I also added a 2 argument ADF.

As could be expected, this works better, with 8-parity solved in less than 10 generations. However it is not that
much better, and boolean functions are much more limited than neural networks, especially for cases where the values
for the functions are not entirely known, in which case neural networks are much better at generalizing training data
than boolean functions.

10 Conclusion
Neural networks are very difficult to code by hand. It is therefore almost always better to let them learn in some way.
This is especially true of back-feed neural networks.



Although it is very difficult to find a good method to evolve working neural networks, genetic programming allows
to build very concise networks to solve the very sensitive parity problem, without needing to give any constraints to
the structure of the network, providing the “hands free” method which is the greatest strength of genetic programming.

Although this result is only valid for a toy problem, it still shows the versatility of neural networks combined with
genetic programming. It may be reasonable to think that it could solve some much more complicated problem, where
the generalization capability of neural networks could be put to use.


