
Evolvable Mathematical Models: A New Artificial

Intelligence Paradigm

by

Paul Grouchy

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Aerospace Engineering
University of Toronto

c© Copyright 2014 by Paul Grouchy



Abstract
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2014

We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents

as mathematical models of behaviour. Agent/environment inputs are mapped to agent out-

puts via equation trees which are evolved in a manner similar to Symbolic Regression in

Genetic Programming. Equations are comprised of only the four basic mathematical opera-

tors, addition, subtraction, multiplication and division, as well as input and output variables

and constants. From these operations, equations can be constructed that approximate any

analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared

to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the

double-pole balancing without velocity information benchmark and the challenging discrete

Double-T Maze experiments with homing. The results from these experiments show that

EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability

to produce agents that demonstrate learning behaviours. To further explore the capabilities

of EMMs, as well as to investigate the evolutionary origins of communication, we develop

NoiseWorld, an Artificial Life simulation in which interagent communication emerges and

evolves from initially noncommunicating EMM-based agents. Agents develop the capability

to transmit their x and y position information over a one-dimensional channel via a complex,

dialogue-based communication scheme. These evolved communication schemes are analyzed

and their evolutionary trajectories examined, yielding significant insight into the emergence

and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld

are successfully transferred onto physical robots, demonstrating the transferability of EMM-

based AIs from simulation into physical reality.
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Foreword

Ever since I can remember, I have been fascinated by the natural world. Such enormous

complexity and diversity! Even a relatively simple organism such as an Earthworm has a

fascinating range of behaviours. Not only are they able to dig through the ground, find food,

survive through harsh winters and escape predators (sometimes...), they are also able to use

materials around them to produce offspring, bringing new life into our Universe. This seems

nothing short of miraculous, and yet it is only the tip of the iceberg when it comes to “Life.”

As I grew older and moved through the education system, my path took me away from

Nature and into the world of Human accomplishments: Mathematics, Digital Computation,

Engineering, Robotics. I learned that while we have achieved much as a species, we still seem

quite far from creating our own Earthworm. Obviously technological progress takes time, but

perhaps we are approaching such challenges from too human-centric a point of view (as is

often the case). Humanity seems to view itself as outside of Nature, almost as Gods. We can

level mountains, kill any beast, reach any depth and height and even bend DNA to our will,

and so we think that we too can create our own version of “Life.” And so we set to designing

robots and artificial intelligences, taking what we know about the Universe and applying it

in increasingly complex ways with great success. However, this “intelligent design” approach

is most certainly not how the Earthworm came to be.

After completing my undergraduate studies at Queen’s University in Kingston, Ontario,

Professor Gabriele M. T. D’Eleuterio introduced me to the concept of Evolutionary Robotics.

This class of design and optimization methods looks to create Artificial Intelligence and

Artificial Life by applying what we know about Natural Evolution, the process that produced

the Earthworm, and all other life that we know of. Here then was my opportunity to steer my

education path back towards Nature: my graduate studies were to be about Mathematics,

Digital Computation, Engineering, Robotics, and Evolution.
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Chapter 1

Thesis Introduction

Since the dawn of the digital age, Humanity has looked to reproduce intelligence in silico.

Indeed, much progress has been made in the field of Artificial Intelligence (AI), with com-

puters now able to beat the best living humans at several games requiring a high level of

intelligence, such as chess and Jeopardy! AI has quietly crept into many facets of our lives,

giving us personalized book and movie recommendations, keeping spam out of our inboxes,

finding meaning within our troves of data, and soon, driving our cars. And yet, Artificial

General Intelligence (AGI)—machine intelligence comparable to our own—has remained elu-

sive. So, while we have AIs that can play chess and AIs that can drive cars, we have yet to

produce an AI that can play chess and drive cars (and hold a conversation and make music

and design spacecraft, etc.). In fact, we have yet to produce an AI with capabilities on par

with lower lifeforms, such as a dog or even a mouse.

At the crux of the problem is our lack of a formal understanding of “intelligence,” let

alone how such a thing might arise from electrical and chemical signals such as those in a

brain. The scientific and engineering discipline known as Machine Learning [13] looks to

side-step this issue, however, by developing computer programs that can in turn design other

computer programs to produce a desired behaviour. So, instead of having to understand the

inner workings of a human’s brain as she attempts to distinguish spam from legitimate emails,

one can simply give a Machine Learning algorithm many examples of both (as determined

by a human), and this algorithm will in turn produce an “intelligent” spam filter program

[6]. Typically, a Machine Learning algorithm works in this fashion; solutions are produced

via training on data sets, which may or may not require human-generated labels [69].

An alternative Machine Learning paradigm, Evolutionary Robotics (see Section 3.5), uses

artificial evolution to “train” autonomous computer programs. AIs are evaluated on how well

they perform on a given task (either in simulation or on hardware), receiving data inputs

via sensors and having their outputs interpreted as behaviours, which influence themselves

1



2 Chapter 1. Thesis Introduction

and their environment. By repeatedly selecting and reproducing (with variation) AIs that

perform relatively well on the prescribed task, intelligent mappings from sensor inputs to

agent outputs can be evolved, without the need for prespecified training data. In Artificial Life

experiments (see Section 7.2), lifelike behaviours can emerge directly from the interactions

between AIs within a simulated world, without the need for experimenter-defined tasks.

A crucial component of any AI is its representation in silico. If a computer programmer

were to design and build an AI by hand, the AI might be represented as a computer program

directly, written in one of the many available programming languages. AIs represented in

this fashion can also be created autonomously via Genetic Programming (see Section 3.3).

Another potential representation for an AI is a Cellular Automaton [112], a spatial lattice of

“cells” that each change state depending on its current state and the states of its neighbours.

Cellular automata are capable of computation [89] and can be trained as binary classifiers

using artificial evolution [105]. More complex classifier AIs can be represented and trained as

probability distributions [80]. One of the most common types of AI representation, however, is

the Artificial Neural Network (ANN), which is a computational model based on the biological

neural networks of animal brains. There exists a plethora of methods to train an ANN using

data sets and/or artificial evolutionary techniques such as Evolutionary Robotics.

When looking to design autonomously an AI capable of robust and adaptable behaviour,

one must first choose from a variety of biologically inspired ANNs. While certain ANNs, such

as Continuous-Time Recurrent Neural Networks (see Section 3.4.3) can theoretically approx-

imate any dynamics, in practice it can be difficult to evolve artificially complex behaviours

using these structures. Much of Evolutionary Robotics research focuses on further improving

the evolvability and capabilities of the ANNs undergoing evolution by drawing inspiration

from biology and neuroscience. The problem with this approach, however, is that we do not

yet have a solid scientific understanding of the inner workings of biological neural networks.

Furthermore, with greater biofidelity comes greater complexity, adding to the already high

computational costs of ER algorithms while further obfuscating the inner workings of the

evolved agents. Thus, we look to avoid models of neural networks altogether by instead

representing and evolving AIs as abstractions of neural networks. We introduce Evolvable

Mathematical Models (EMMs), a novel AI paradigm that uses artificial evolution to create

state equations autonomously that map an agent’s inputs to its outputs.

Our thesis statement is as follows:

Using powerful artificial evolutionary techniques, it is possible to evolve math-

ematical models that modify controller outputs based on current and previous

agent/environment information in such a way as to demonstrate learning, adapt-

ability and generalization capabilities similar to those seen in biological agents.
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The work presented here is heavily inspired by the groundbreaking work done by Dario Flo-

reano and Stefano Nolfi [114]. Their work has demonstrated the capacity for Evolutionary

Robotics to produce AIs with significant learning and generalization capabilities. Further-

more, they have simulated the emergence and evolution of interagent communication and

demonstrated that ANN-based agents can be transferred successfully into robotic hardware.

This work is also influenced by Kenneth Stanley’s NEAT and CPPN/HyperNEAT algo-

rithms, as they have shown that artificial evolution can produce remarkably lifelike patterns

[137] and behaviour [28]. The freely available NEAT source code has been an important

and influential resource. Finally, the implementation of our EMMs is based on the work on

Genetic Programming and Symbolic Regression by J.R. Koza [85], Riccardo Poli, William

B. Langdon and Nicholas Freitag McPhee [126], and Michael Schmidt and Hod Lipson [135].

The ultimate goals of this research are twofold. First, artificial lifeforms can be produced

for scientific purposes, such as the study of their evolution and behaviour. This can then be

used to inform the study of the evolution and behaviour of life on Earth. The second goal is to

create robust AIs that can solve complex problems and adapt to novel scenarios. Applications

include space exploration and hazardous work environments on Earth, as a strong AI could

perform complex tasks requiring human-like intelligence without the requirements engendered

by having to sustain biological life. Furthermore, AI can aid humanity in scientific discovery,

a capability that is already being demonstrated by Schmidt and Lipson’s Eureqa algorithm

(see, e.g., [136]). Eventually, an AGI could help in the design of better AGIs, potentially

producing a beyond human intelligence.

Part I of this thesis will begin with a literature review covering artificial evolutionary

techniques, Artificial Neural Networks and Evolutionary Robotics. Our novel Evolvable

Mathematical Models will then be presented and subsequently tested and compared to ANN-

based algorithms on two common benchmarking tasks. Part II of this thesis arose out of

the desire to demonstrate the capabilities of our paradigm to produce lifelike behaviour by

evolving complex artificial organisms. For this task we chose to simulate the emergence and

evolution of communication, as it is a notoriously hard problem with a wide gap between

simulation results and observed behaviours in nature. Current results in the simulation of

the emergence and evolution of interagent communication will first be reviewed. We will

then present our simulation world, NoiseWorld, in which simulated robots live, reproduce,

communicate and die. The emergence and evolution of complex communication schemes

from initially noncommunicating EMM-based agents is observed, providing the first, albeit

digital, fossil records for the evolution of communication. Furthermore, these evolved agents

are embodied in e-puck robots, demonstrating that the evolved behaviours of our EMMs can

be successfully ported from the simulation world into our physical reality.



Part I

Evolvable Mathematical Models
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Chapter 2

Introduction

The first part of this thesis pertains to employing our novel approach, called Evolvable

Mathematical Models, in autonomous tasks previously solved using ANN-based approaches.

The field of Evolutionary Robotics studies methods for automatically generating the ar-

tificial brains and/or morphologies of autonomous robots via artificial evolution [114, 50].

These artificial brains are the autonomous robots’ controllers and are typically represented

as Artificial Neural Networks (ANNs), a class of computer programs that are inspired by the

neural networks of biological brains. In its simplest form, an ANN is composed of a collection

of identical nodes, or “neurons,” where each performs the same computation on its numeri-

cal inputs, yielding a numerical output. These nodes are connected via weighted directional

edges. The behaviour of an ANN is fully described by the calculation performed by its nodes,

how these nodes are interconnected, and the weights of these connections. Data arrive at

input nodes, are propagated through the network, and finally reach the output nodes, whose

numerical values are interpreted as behaviours.

When evolving controllers for robotic applications, the most obvious metric of success

is how well the final controller solves the given task. However, researchers and developers

are also very interested in robustness, adaptability and the ability to generalize. Evaluating

controller fitness on hardware is usually infeasible owing to time and hardware constraints.

Thus, the fitness of individuals, which is usually their ability to accomplish the specified

task, is most often evaluated in simulation. This is one of the reasons why the ability for

an evolved controller to generalize is so important, as it is very difficult to predict perfectly

and simulate the environmental and hardware conditions that the evolved controller will

eventually see during real-world applications. Thus, a good algorithm should be able to

produce a controller that can be applied successfully in never-before-seen scenarios.

With these goals in mind, researchers have been looking to nature for inspiration as so far

it is nature, and not human design, that has produced the most adaptable controllers. How-

5



6 Chapter 2. Introduction

ever, natural systems are extremely complex and poorly understood, and so initial research

tried to distill the most important elements of the evolution and operation of modern lifeforms

in an attempt to reproduce nature’s successes. This has yielded the core idea behind Evolu-

tionary Robotics: Use a Genetic Algorithm to evolve the weights of a fixed-structure Artificial

Neural Network. Further research then worked to increase the biofidelity of this approach by

adding in components inspired by neuroscience, such as neuroplasticity and neuromodulation

(see Section 3). We propose a new paradigm that evolves abstractions of neural networks,

thus allowing the programmer to safely ignore their inner physical workings. Humanity’s best

tool for abstraction is mathematics, therefore we present our Evolvable Mathematical Models

(EMMs) as a novel paradigm in Artificial Intelligence. EMMs are mathematical equations

that directly map numerical inputs to numerical outputs. Using only the four basic mathe-

matical operators (addition, subtraction, multiplication and division1), these equations can

approximate any analytic function. A function is analytic on an interval of the real line iff its

Taylor series converges to the value of the function in question at each point on the interval.

The thesis statement of Part I is:

Evolvable Mathematical Models can be used to evolve robust, learning-capable con-

trollers for autonomous agents.

2.1 Objectives

The objectives of Part I of this thesis were to develop, program and test (in simulation) a

novel type of controller. This evolvable controller should be highly robust and capable of

learning.

2.2 Methodology

We attempt to evolve mathematical abstractions of natural neural systems. The method

developed is based on Symbolic Regression algorithms in Genetic Programming (see Section

3.3). A controller is a series of mathematical equations, represented as an equation tree.

There is one equation for each controller output, and equations can be composed of four

basic mathematical operators (addition, subtraction, multiplication and division), as well as

input and output variables and constants. A population of such equations is tested on a given

task, and those controllers that perform well relative to others in the population are chosen as

parents. Offspring equation trees are generated from the parent trees using genetic operators

1More sophisticated operations, such as sine and cosine, can be used as well, although the work presented
here uses only the four basic mathematical operators.
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such as various types of mutation that modify different aspects of the equation trees and two

types of sexual recombination that combine elements from the trees of both parents to form

a single offspring’s equation trees. Extra equation trees and corresponding extra internal

state variables can be added via mutation as well. A new population comprised entirely of

the offspring of the previous generation are again tested on the given task. This generational

loop continues for a fixed number of generations, and top solutions undergo further testing

to determine which are the best overall.

These controllers are tested in two simulation experiments that require adaptability, ro-

bustness, generalizability and learning. The first is the most common benchmark in Evolu-

tionary Robotics, the double-pole balancing without velocity information benchmark. Here,

controllers are required to keep two poles of different sizes upright by applying a force to

the cart which they are attached to, using only pole angle information (pole velocity infor-

mation is withheld). A solution to this problem is defined as a controller that can balance

both poles for 100,000 timesteps from a fixed initial state, and can balance both poles for

1,000 timesteps from at least 200 of 625 other predetermined initial states (this tests gen-

eralizability). Algorithms are compared on the number of simulation runs needed to find a

solution (i.e., population size × number of generations) and on the ability of top solutions

to generalize.

The second benchmark is the discrete Double-T Maze with homing. This task was chosen

for its difficulty and learning requirements. It has previously only been solved using special

artificial neural networks with connection weights that can change over the course of a simu-

lation run. Agents must navigate a maze with four ends, three of which contain a low reward,

with the fourth containing a high reward. Agents must return home after reaching a maze

end. Successful controllers should forage for the high reward and then repeatedly return to

the maze end containing the high reward once it is discovered. If the high reward is moved,

a successful controller should return to foraging behaviour until the high reward location

is rediscovered. This task requires that agents adapt their behaviours as conditions change

throughout their lifetime, and thus requires a form of learning. We use this benchmark to see

if our method can solve this difficult task, and thus whether or not our algorithm is capable of

producing learning behaviours and solutions comparable to those evolved using ANN-based

algorithms.

The two described tasks are typically used to compare and contrast Artificial Neural

Network based approaches. In this case, we supplant these neural networks with evolvable

mathematical models. This one algorithm can solve both of these problems, whereas pre-

viously these two different problem domains were solved using different simulated neural

network structures. This also demonstrates that these evolved mathematical equations can
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abstract a variety of artificial neural networks.

2.3 Outline of Part I

Chapter 3 gives a literature review encompassing the fields of Evolutionary Computation,

Genetic Algorithms, Artificial Neural Networks (ANNs), and Evolutionary Robotics. Our

novel paradigm, Evolvable Mathematical Models (EMMs), will be introduced and described

in detail in Chapter 4. This chapter will also present two benchmarking experiments, includ-

ing one requiring that agents develop learning capabilities. The performance of EMMs on

these tasks will be compared to results from ANN-based experiments. The solutions found

by the EMM approach will be compared to the solutions found using ANN-based approaches.

Finally, some concluding remarks will be given in Chapter 5.



Chapter 3

Literature Review

The following literature review will present the algorithms and data structures that are most

commonly used when applying artificial evolution to the development of artificial intelli-

gence. A full review of the fields of evolutionary computation, artificial neural networks, and

nonevolutionary training methods for ANNs are outside the scope of this thesis.

3.1 Evolutionary Computation and Genetic Algorithms

Genetic Algorithms are a type of Evolutionary Computation (EC), where computer simu-

lations of Darwinian evolution are used to solve optimization problems [37]. The idea of

simulating evolution in a computer dates back to Alan Turing [153], with some of the first

algorithms being implemented by Nils Aall Barricelli soon after [11]. This class of algorithm

did not become popular until the late 1970s and 1980s however, owing to a lack of cheap

computational power. Since the digital revolution, EC has been used to solve a variety of NP-

Hard problems, including the Travelling Salesman Problem [91] and the Knapsack Problem

[27, 62] and has produced a myriad of human-competitive results [87].

Genetic Algorithms (GAs) are usually attributed to John Holland [71]. A typical GA

proceeds as follows (adapted from [37, 126]):

1. Randomly generate a population of solutions.

2. Evaluate the “fitness” (solution quality) of each solution in the population.

3. Select “parent” solutions from the population using a method based on fitness values.

4. Create “offspring” solutions from selected parents using stochastic genetic operators.

5. Replace current population with offspring population.

9
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Figure 3.1: An example bit flip mutation for a binary genome containing 5 genes. The
mutation point is chosen randomly.

6. Loop back to Step 2 unless stopping condition is met.

7. Return best (i.e., highest fitness) solution.

The key elements here are selection (Step 3), which allows for the algorithm to search the

solution space around relatively high quality solutions, and the mutation and crossover op-

erators (applied at Step 4), which allow for local and global jumps in the solution space,

respectively.

There are several design decisions to be made when using a GA to solve a given problem.

One needs a “genome” that can encode potential solutions. A fitness function is also required

to give a numerical value representing how good a particular genome/solution is at solving

the given problem. Furthermore, a selection method is needed to choose parents based on

fitness values (see [56] for a comparison of popular selection methods). A variety of genetic

operators are also required to produce offspring genomes from selected parents. Stochastic

mutation operators are needed to produce and maintain variation within the population,

while also allowing for incremental hill-climbing within the solution space. A stochastic

crossover operation is required if sexual recombination (i.e., where two parent genomes are

combined to form one or more offspring genomes) is desired.

Crossover is an important element of a GA, as it improves the rate of convergence to a

solution and can help find better solutions overall by allowing for larger jumps through the

search space [37]. The types of mutation and crossover operators that can be used depend

on how the genome is constructed. For a fixed-length genome (i.e., a fixed number of genes),

a mutation is usually accomplished by randomly selecting a gene and changing it to a new

randomly selected value (see Figure 3.1 for an example), whereas crossover produces an

offspring genome by taking one or more randomly chosen segments from the first parent’s

genome and combining it with the remaining segment(s) taken from the second parent’s

genome. An example is shown in Figure 3.2. A stopping condition needs to be provided by

the experimenter to choose when to terminate the evolution loop. This usually comes in the

form of a fixed number of generations, but could also incorporate solution quality or time

since the fitness “high score” was usurped. Programmers must also choose a population size
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Figure 3.2: An example of a single-point crossover operation creating an offspring genome
from two parent genomes. The crossover point is chosen randomly.

(with a trade-off between average solution quality and convergence speed) and mutation and

crossover rates (which need to be tuned to the GA being used) [37].

3.2 Parallel Genetic Algorithms

Genetic algorithms are considered to be “embarrassingly parallel” [22], as it is straightforward

to parallelize fitness function evaluations (which are the most computationally expensive part

of the algorithm) to utilize the full power of multicore processors. Recently, researchers have

been achieving massive speed-ups using off-the-shelf graphics processing units (GPUs) which

have hundreds of on-board processors running in parallel (e.g., [65], [162] and [7]).

While these speed-ups are important, especially considering that GAs are often computa-

tionally expensive, parallel GAs can also provide improvements in solution quality over their

serial counterparts. As GAs are stochastic algorithms, runs with the same parameter settings

but different initial conditions can produce vastly different results. Experimenters must run

a GA multiple times when looking for the best possible solution to their problem. Thus,

the simplest way to parallelize a GA is to run several independent instances of the same

GA with different initial populations simultaneously. However, if one introduces “migration”

into this parallel paradigm, whereby genomes from one instance of the GA can move to a

different instance, better solutions can be discovered [21]. This “Island Model” [30] allows

for the parallel GA to search multiple regions of the solution space simultaneously, with

the combination of migration and crossover allowing for the algorithm to reach new areas

of the search space that a single population GA might never attain. Unfortunately, Island

Models add more parameters to the already parameter-heavy GA, such as number of islands,

migration rate and size of migration groups [139]. Furthermore, there are a multitude of

different migration schemes (i.e., topologies) to choose from, although their influence, if any,

on final result quality remains unclear [47]. Recent work suggests that different optimization

algorithms prefer different topologies [134].
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Figure 3.3: An example genome of a GP program. This tree represents the program
max(x,min(y,z)).

Finally, more complex parallel GAs have emerged that utilize the concept of “species” to

further improve results, e.g., [64, 62].

3.3 Genetic Programming and Symbolic Regression

Genetic programming (GP) is the application of Genetic Algorithms to the design of computer

programs [85]. Potential solutions (i.e., genomes) are usually stored as tree structures, with

nonterminal nodes being selected from a user-defined set of operators and terminal nodes

being selected from a user-defined set of operands (see Figure 3.3 for an example). These

programs are executed and given a fitness value based on how well they do on a user-specified

task. The manner in which mutations and crossover are implemented in GP will now be

described (adapted from [126, 60]). Possible mutations fall into two main categories: point

mutations and subtree mutations. Point mutations affect a single node in the genome tree.

If the mutation is applied to a terminal node, the current operand is replaced with a new,

randomly selected operand from the user-defined operand set. If a point mutation is being

applied to a nonterminal node, the current operator is replaced with a new, randomly selected

operator from the user-defined operator set with the same arity1 as the current one.

A subtree mutation selects a node at random on the current tree and replaces it (and all its

subtrees) with a new, randomly generated subtree. Random subtrees are usually generated

using the ramped half-and-half method, which is a combination of two methods, the “full”

and “grow” methods. For both methods, a maximum depth (i.e., the maximum number of

1By “arity” we mean the number of arguments that an operator accepts. For example, the “sine” operator
has an arity of 1, as it operates on a single argument. Therefore, if a point mutation is changing a node that
is currently a sine operation, it could mutate to other operators of arity 1, such as cosine or absolute value,
but not operators of other arities, such as addition, which has an arity of 2.
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edges that need to be traversed to reach a node, starting from the root node) is specified.

In the “full” method, nonterminal (i.e., operator) nodes are randomly generated until the

maximum depth is reached. At the maximum depth, only terminal (i.e., operand) nodes are

created. In the “grow” method, as in the “full” method, only terminal nodes are created at

the maximum depth. The difference is that before the maximum depth is reached, randomly

generated nodes can be either terminal or nonterminal nodes, allowing for a wider range of

potential tree shapes. The ramped half-and-half method chooses to create a random subtree

using either the “full” or “grow” method with equal probability. The ramped half-and-half

method is also usually used to generate initial populations.

Crossover between two parent genome trees is implemented in a similar manner to subtree

mutation. An offspring genome tree is taken as a clone of one parent, with a randomly selected

subtree from the second parent overwriting a randomly selected node on the offspring genome

(see Figure 3.4 for an example). Genetic programming has a wide range of applications,

including image processing [74], finance and economics [24, 81], data mining [138] and even

engineering design, e.g., an antenna for deployment on NASA’s Space Technology 5 Mission

[93].

One of the most common applications of GP is Symbolic Regression (SR), to which a

lot of the aforementioned examples can be reduced. In SR, the GP algorithm is tasked

with finding a mathematical function that best fits a data set. At its most basic, the set of

operators could be addition, subtraction, multiplication and division, although a large variety

of other mathematical operators can be used. The set of operands would include constants

and user-selected independent input variables. The fitness function is usually calculated using

absolute difference or squared error between known data values at certain input vectors and

the output values of the function tree in question when evaluated using these same input

vectors.

The best example of SR is the Eureqa algorithm which can automatically discover phe-

nomenological rules from experimental data [135, 136]. For example, Eureqa was able to

discover the Hamiltonian of a double pendulum using only data recorded from the pendu-

lum’s movements. Eureqa has also been used to model a robot’s dynamics autonomously

[110].

3.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computer programs loosely based on biological neural

networks (brains). An ANN is a collection of connected nodes (analogous to neurons in the

brain), with each node performing the same calculation on its numerical inputs, yielding
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Figure 3.4: An example crossover operation to produce an offspring GP tree. Parent 1 is the
same tree as in Figure 3.3 above. Parent 2 represents the program sin(θ)+y . The offspring
is a tree randomly created by copying the tree of Parent 1 and replacing a randomly chosen
subtree on this copy with a copy of a randomly selected subtree from Parent 2. The resulting
program is max(x,sin(θ)). Note that subtree mutations occur in a similar manner, except
that the randomly selected subtree from Parent 2 would instead be a randomly generated
subtree.

a numerical output value. A commonly used node calculation (known as the activation

function) is the logistic sigmoid:

φ(uj) =
1

1 + e−uj
= vj (3.1)

where uj =
∑n

i=1
viwij , with n being the number of nodes in the network, vi being the output

of the ith node and wij being the weight of the connection from node i to node j (set to 0 if

node i is not connected to node j). An example ANN is shown in Figure 3.5.

Data enter an ANN via input nodes, propagate through the network via the directional

weighted connections and nodes, eventually reaching one or more output nodes, whose nu-

merical values are interpreted as the output of the ANN. Thus the behaviour of an ANN
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Figure 3.5: An example of a fully connected feedforward Artificial Neural Network. This
network has two input nodes, four hidden nodes and two output nodes. Each connection from
a node i to a node j has an associated connection weight wij . Two such connection weights
are labelled in this diagram.

is fully defined by the calculation the nodes perform, the topology of the network, and the

weights of the connections. An ANN is considered to be “fully connected” when all possible

network connections have nonzero weights.

3.4.1 Feedforward Neural Networks

The simplest type of ANN is the feedforward neural network. Nodes are organized into

an input and output layer, with zero or more “hidden” layers in between. All network

connections run between layers in the forward direction (i.e., from the input layer towards

the output layer with no connections allowed between nodes on the same layer). Figure 3.5

shows a simple example of a fully connected feedforward neural network.

To evaluate this type of network for a given input vector, one propagates the input values

through the network’s node layer(s) sequentially, yielding an output vector.

These types of networks can only be reactive. They have no memory and thus will always

produce the same output vector for a given input vector. Furthermore, if the set of possible

input vectors is finite, a feedforward neural network can be reduced to a fixed set of if...then...

rules [8].
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Feedforward neural networks have been shown to be capable of approximating any Borel

measurable function from one finite-dimensional space to another with any degree of accuracy

[73]. Thus, ANNs are a class of universal approximator.

3.4.2 Recurrent Neural Networks

Recurrent neural networks are neural networks that allow connections between any two nodes

regardless of their locations in the network, while also allowing for connections from a node

to itself. In a fully connected recurrent neural network, each node’s output is an input to

every node in the network, including itself. Recurrent connections allow the network to have

an internal state and thus a form of memory, yielding a much more diverse set of potential

behaviours than the feedforward networks.

These networks are evaluated in discrete timesteps, with a node performing its computa-

tion at the current timestep using the results (modified by connection weights) of the node

computations done at the previous timestep. Nodes can also incorporate current data input

values if there is a direct connection between input nodes and the node in question.

3.4.3 Continuous-Time Recurrent Neural Networks

So far, we have discussed examples of ANNs comprised of neurons (nodes) with static func-

tions (e.g., logistic sigmoid). Continuous-Time Recurrent Neural Networks (CTRNNs) [12]

are an example of dynamic neuron models. Here, the output vi of a node i is defined as

(adapted from [49])

dvi(t)

dt
=

1

τi
(−vi(t) +

n
∑

j=1

wijφ(vj(t)) + ui) (3.2)

where τi is a time constant, n is the number of neurons in the network, and ui is an external

input to the system, e.g., from a sensor. The neurons in this paradigm resemble biological

neurons more closely than in the static neuron cases, as the firings of biological neurons are

modelled as a time-series [70] instead of as discrete events.

An important trait of CTRNNs is that they can theoretically approximate any dynamics

with arbitrary precision [54].

3.4.4 Spiking Neural Networks

Further biological fidelity is added to the CTRNN model by using spiking neurons. The

“Integrate and Fire” neuron is the simplest form of spiking neuron. It is an extension of the

neurons of a CTRNN where the output value of (3.2) is fed into a threshold function. If the
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output is above the user-defined threshold a spike is emitted, otherwise there is no output

[49]. To use a Spiking Neural Network, one must translate numerical inputs into spikes (e.g.,

using spike frequency) and then translate the output neurons’ spikes into usable numerical

values [51].

3.5 Evolutionary Robotics

The field of Evolutionary Robotics (ER) uses genetic algorithms to design autonomous con-

trollers (typically represented as Artificial Neural Networks), and sometimes robot morpholo-

gies, for experimenter-defined tasks requiring physical or simulated autonomous robots [114].

In its simplest form, an ER algorithm is used to tune the weights of a fixed structure feedfor-

ward ANN for a given task. In this case, the genome will be of fixed length, with one “gene”

location for each (usually real-valued) weight of the ANN. The size and topology of the ANN

will be chosen by the programmer before running the ER algorithm. A “population” will

consist of a collection of genomes, each with their own values for the weights of the ANN.

To give a fitness value to each genome, a computer simulation of the required task is often

devised, as evaluating each genome in hardware could be prohibitively time-consuming and

poor solutions could damage the hardware.

As an example, consider a simple task where we need a two-wheeled robot to drive along

a straight line that the robot can detect. The ANN in this case would have one input (a

binary input that indicates whether or not the robot is on the line), a layer of hidden neurons,

and two outputs that encode the two motor speeds. The simulation would then continually

have to evaluate the ANN (while providing the correct input value corresponding to whether

the simulated robot is on the line) and simulate the two-wheeled robot’s movements based

on its motor speeds. One could then assign a fitness value to a genome based on how well

that genome’s ANN drives the simulated robot, e.g., the fitness could be the total distance

travelled while on the line. Higher fitness genomes do a better job of driving the robot

along the line and will be more reproductively successful than those genomes that miss the

line. After generations of simulated evolution, a successful ANN will be produced for this

task (assuming a good selection of ANN topology and algorithm parameters). The next

step would be to test this evolved ANN on a physical robot to see if the evolved solution is

transferrable to the real world.

In ER algorithms, as in Darwinian evolution, selection operates on variation. Obviously

if all genomes have the same fitness, the algorithm will have no way to differentiate between

good and bad solutions and thus the generational loop will be unable to tune the ANNs for

the task. This issue occurs most often at the beginning of the simulation, when all the ANNs
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have random weights and thus all perform very poorly on the given task. This is known

as the “Bootstrap Problem” and it requires careful consideration and special techniques to

overcome, especially when attempting to evolve for complex tasks [111].

While the approach outlined above works well for simple tasks, it does not scale well

to more complex tasks requiring larger neural networks. For difficult tasks, there is no

easy way to choose an appropriate network topology. Furthermore, with complex ANNs,

the number of weights and thus the size of the genomes can be quite large, creating very

large search spaces that a GA might have difficulty searching efficiently. Finally, there is a

trade-off between computational efficiency and simulation fidelity. Regardless of how well the

simulation represents reality, there are always unexpectedly relevant properties of the real

world that are omitted from the simulation. Therefore, it can be very difficult to successfully

transfer an ANN that operates well in the simulation environment to the real world. A

variety of algorithms have been developed to attempt to alleviate the aforementioned issues.

3.5.1 AGE

Analog Genetic Encoding (AGE) is an encoding method based on biological gene regulatory

networks [101]. By using AGE to represent ANNs, one can evolve both network topology

and weights simultaneously [44]. A genome consists of a variable-length string of characters.

Certain combinations of characters, called device tokens, signal the beginning of a section of

the genome defining a neuron, while one or more terminal tokens denotes the end of such

a section. The characters between a device token and the final terminal token are used to

determine which other neurons this neuron will connect to, as well as the connection weights.

Characters that come after the final terminal token but before the next device token are

ignored, as are the characters that appear after a device token that has no corresponding

terminal token (see Figure 3.6 for an example). Thus, any character string is a valid genome.

This allows for a variety of mutations, including permutations of random substrings. A

mutation to add in a new device token is also implemented, which when combined with the

fact that the genome strings are variable-length gives AGE the capability to produce ANNs

of any shape and size.

3.5.2 NEAT

Another method that allows for the simultaneous evolution of both network structure and

connection weights is NeuroEvolution of Augmenting Topologies (NEAT) [148]. As with

AGE, NEAT uses a variable-length genome. There are two components to a genome, a

“node” component and a “connection” component (see Figure 3.7 for an example). Both
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Figure 3.6: An example encoding of a two neuron neural network using AGE; from [44].
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Figure 3.7: An example encoding of a neural network using NEAT; from [148].

of these are variable-length, as the algorithm has mutations that insert new nodes into the

genome (and thus into the ANN that it represents) as well as mutations that can add new

connections between existing nodes in the network. Connections have associated weights

which are also subject to mutation. NEAT also has the capability to produce ANNs of any

shape and size.

3.5.3 HyperNEAT

In the methods described thus far, each and every weight of the ANN is encoded in the

genome. This becomes problematic when evolving large networks, as a large number of con-



20 Chapter 3. Literature Review

nections will require large genomes and thus very large search spaces. As was previously

mentioned, this can negatively impact the GAs performance. An alternative class of encod-

ings, called developmental or generative encodings, uses genomes that contain “programs”

for building ANNs. This allows for compact representation of large genomes and is there-

fore much more scalable. To construct an ANN, one executes the program encoded in the

genome. This allows for the reuse of previously evolved ANN substructures, as a simple

“loop back” gene on the genome can cause the program to reexecute an earlier section, thus

regenerating that section’s ANN substructure [72]. Biological systems are a great example

of developmental encodings, as each individual neuron of an animal’s brain is not encoded

in its DNA. Instead, DNA encodes a program whose execution (through the developmental

process) produces biological neural networks.

A popular example of a generative encoding is HyperNEAT [147]. In this approach,

the original NEAT algorithm is used to evolve a Compositional Pattern Producing Network

(CPPN) [145], which is then used to generate the weights of an ANN. CPPNs are basically

neural networks where each node is one of a set of user-defined functions (e.g., f(x) = x,

g(x) = |x|, h(x) = sin x, j(x) = x mod 1, etc., see Figure 3.8 for an example). As in ANNs,

the connection weights in CPPNs multiply the output values that are travelling through the

connection in question and if multiple connections feed into the same node, that node’s func-

tion is applied to the sum of the incoming values. In its typical form, HyperNEAT generates

a neural network from a CPPN that has four input nodes, x1, y1, x2 and y2. The nodes of the

ANN are arranged on a 2D grid called the substrate. The experimenter defines which nodes

are the input and output nodes. Each connection weight in the ANN is then determined

by inputting the substrate coordinates of the starting node (x1, y1) and destination node

(x2, y2) into the CPPN. By propagating these four values through the CPPN, a single out-

put value is generated that corresponds to the connection weight between those two nodes.

Experimenters must define the substrate structure beforehand, as it does not have to be a

2D grid. Furthermore, the placement of the input and output nodes within the substrate

is crucial, as the performance of HyperNEAT is significantly affected by geometric repre-

sentation [29]. Users must also determine the placement of hidden nodes in the substrate,

although Evolvable-Substrate HyperNEAT can automate this task [130]. Finally, the set of

user-defined functions available for use in the CPPN must also be defined a priori.

HyperNEAT has been successful at evolving large ANNs for difficult tasks involving regu-

larity, such as gaits for quadrupeds [28], simulated driving tasks [42], and autonomous players

for the game of Go [55]. A slightly modified version of HyperNEAT can be used to evolve

heterogeneous multiagent teams on a single genome [33, 32].

HyperGP [15] is an alternative approach to HyperNEAT that replaces the CPPN with a
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Figure 3.8: A high-level view of a CPPN. The values that traverse the connections are mul-
tiplied by the associated connection weight. If multiple connections feed into the same node,
that node’s function is applied to the sum of the incoming values; from [145].

mathematical function evolved using Genetic Programming.

3.6 Learning

In all of the algorithms discussed thus far, when evaluating an ANN, either in simulation

or hardware, the ANN’s connection weights are fixed. It is only when generating offspring

genomes for the next generation of the GA that genetic operators such as mutation can

modify the ANN’s weights. This is contrary to biological neural networks where “neuroplas-

ticity” allows for connections between neurons to change during the lifespan of an organism

[124]. Neuroplasticity (or “plasticity” for short) is a mechanism that plays a role in an an-

imal’s ability to learn, modifying the way it reacts to certain inputs from the environment.

For example, it was found that learning to juggle induced changes in the brains of human

participants that were detectable through brain scans [41].

When using ER algorithms to evolve controllers for real-world automation tasks, it is

difficult to transfer the controller from simulation to real-world hardware. This is due to the

fact that no matter how high the fidelity of the simulation, there will always be environmental

and hardware details that are not simulated. The real world is notoriously unpredictable.

Without the capability for online adaptation, an evolved controller that fails once in a novel

scenario will always fail in this scenario. To incorporate successful behaviours for this situ-

ation into a controller, the ER algorithm will have to be rerun to reevolve controllers in a
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simulation environment that incorporates this novel scenario. This is less than ideal, espe-

cially considering the computational complexity of a typical ER algorithm. Therefore, a big

component of ER research is the exploration of methods to incorporate “learning” behaviours

into evolved controllers.

One of the first attempts to evolve learning was by Stefano Nolfi and Domenico Parisi in

[116], where two simple neural networks with no hidden units were evolved simultaneously.

The first network was tasked with controlling the motors of a robot, while the second network

was considered a teaching network. The outputs of this teaching network were used to modify

the network weights of the first network through backpropagation. Thus, the weights of the

first network were plastic. The task was for a robot to forage through a 60 × 20 cm area to

find a randomly placed circular target area with a diameter of 2 cm. The robot, which had

proximity sensors on all sides, operated in one of two environments. In the first, its proximity

sensors were activated when the robot was within 1 cm of a wall, while in the other scenario

the proximity sensors were activated when the robot was within 6 cm of a wall. Thus, to

search the experimental area fully, the robot had to learn which environment it currently

inhabits and adapt its behaviour accordingly.

3.6.1 Hebbian Learning

The most common type of learning used is Hebbian learning, which is based on how learning is

thought to occur in biology [68], although some aspects of Hebbian theory are oversimplified

(see, e.g., [106]). With this type of learning, rules for adjusting the connection weights of

the ANN are evolved; however, initial weights need not be (they can instead be set to small

random values at the beginning of a network’s lifetime, as in [48]). These evolved Hebbian

rules adjust the weights of connections based on the activity level of the nodes at either end

of the connection in question.

Hebbian learning was first introduced to Evolutionary Robotics in [48], where the GA

could select one of four learning rules ∆wij for each network connection weight wij . At each

timestep t of an ANN’s lifespan, each of its connection weights is updated using its associated

learning rule:

wt+∆t
ij = wt

ij + η∆wt+∆t
ij (3.3)

where 0 ≤ η ≤ 1 is the evolvable learning rate and ∆wij is one of four possible learning rules.

The “plain Hebb rule” is defined as

∆wt+∆t
ij = (1− wt

ij)v
t
iv

t
j (3.4)
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where vti is the output of node i at the current timestep. The other three learning rules

are more complex but they are all functions of only the current weight of the connection

wt
ij and the output values of the two nodes in question (i.e., vti and vtj). Agent connection

weights were not evolved, instead they were set to small random values at the beginning of

an agent’s lifetime. Top evolved agents were able to learn a wall-following behaviour within

their lifetimes to allow them to solve a simple navigation task.

The experiments in [53] used Hebbian learning to evolve controllers on miniature Khepera

robots (evolution occurred sequentially on hardware instead of in simulation). Agents had

to drive to an area marked in black to activate a light at the opposite end of the arena, and

were then rewarded for the amount of time spent underneath this activated light source. It

was shown that agents with plastic connection weights significantly outperformed their fixed-

weight counterparts. Furthermore, top evolved plastic agents were successfully transferred

to a different robot, the Koala robot, whereas the top fixed-weight agents performed much

worse on the different hardware. Another experiment demonstrated that when evolution

could choose between fixed and plastic connection weights, artificial evolution systematically

selected plasticity.

In [146], the NEAT algorithm was modified to allow for plastic connections, as well as

the previously implemented fixed-weight connections. Here, the four learning rules from [48]

are combined into a single learning rule:

∆wt+∆t
ij = η1

(

W − wt
ij

)

vtiv
t
j + η2Wvti

(

vtj − 1.0
)

(3.5)

where W is the maximum weight magnitude in the network. The experiment used to demon-

strate this algorithm was a foraging task where a mobile agent gains fitness by finding food,

but loses fitness if it finds poison. Whether or not the environment is populated with food

or poison is determined at the start of a simulation run. Agents could feel pleasure and pain

and thus must evolve to use this information to determine if their environment has food or

poison, and thus whether or not to forage. While NEAT with learning rules was able to

solve this task, it is interesting to note that a relatively simple fixed-weight recurrent neural

network could also be evolved to solve the task [146].

HyperNEAT can also be modified to allow for plasticity [131]. Three different possible

learning rules were compared on a T Maze problem where an agent must visit one of two

maze ends. One of the maze ends contains a high reward while the other contains a low

reward (T Mazes are described in detail in Section 4.3.2). Agents must try to maximize the

number of times they reach the large reward, which is moved once over the course of the

series of trials. Successful agents were able to learn where the large reward was located and
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then repeatedly visit that part of the maze. They were also able to change their behaviours

when the reward was moved.

Hebbian-like learning has also been implemented in evolutionary robotics experiments

using spiking neural networks, e.g., [40, 75].

3.6.2 Neuromodulation

In all of the learning paradigms described above, connection weights are adjusted at every

timestep throughout the lifetime of an agent. This differs from biological systems which are

theorized to use “neuromodulation” to control and stabilize learning [9].

The AGE algorithm was modified to allow for Hebbian learning which could be enabled

and disabled via neuromodulatory signals [143, 43, 142]. In this approach, a generalized

Hebbian rule from [113] is modified to include a modulatory signal mt:

∆wt+∆t
ij = mtη

(

Avtiv
t
j +Bvti + Cvtj +D

)

(3.6)

where A, B, C and D are evolvable parameters that determine the importance of the different

types of Hebbian learning and 0 ≤ mt ≤ 1 is the current strength of the signal produced by

one or more special modulatory neurons. These modulatory neurons operate in a manner sim-

ilar to regular neurons, taking inputs from previous nodes through network connections and

generating their output value mt using an activation function. AGE with neuromodulated

Hebbian learning has been used to solve a single and Double-T Maze learning problem (see

Section 4.3.2 and Figure 4.6 for more details on these problem domains), outperforming fixed-

weight networks in all cases, and outperforming learning networks without neuromodulation

in the Double-T Maze experiment [142]. It should be noted that a few of the fixed-weight

evolutionary runs achieved good results in the Single-T Maze, displaying learning-like be-

haviours with the help of recurrent connections, although fixed-weight networks were unable

to solve the Double-T Maze. Furthermore, several of the runs with unmodulated learning

were successful at the Double-T Maze task.

3.6.3 Learning in Fixed Weight Neural Networks

As was already noted in several of the experiments described above (e.g., [146, 142]), fixed-

weight recurrent neural networks seem to be able to accomplish certain tasks requiring learn-

ing, as the recurrent neural connections can act as a sort of memory.

The work in [23] demonstrates how a fixed-weight Locally Recurrent Neural Network

(LRNN) can outperform a fully connected recurrent neural network in a dynamic simulation
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Figure 3.9: A real-world setup of the simulation world used for the experiments in [78]; from
[78].

environment. Simulated agents must visit a food location, then their nest, then a water

location, then their nest again. Evolved agents with LRNN structures (basically modular

versions of fully connected recurrent neural networks) could adapt successfully to changing

food and water locations, finding better solutions than the fully recurrent neural networks.

Strictly feedforward neural networks could not solve the task, owing to a lack of memory

capabilities. Top LRNN controllers were successfully transferred to robotic hardware.

CTRNNs are also capable of demonstrating learning behaviour. In [161], Yamauchi and

Beer were able to evolve CTRNNs that could learn which three-bit sequence to output based

on an external reinforcement signal. In [78], CTRNNs are compared to fully recurrent neu-

ral networks with plasticity (as in [48]). It was found that the fixed-weight CTRNNs could

perform just as well, if not better, than the neural networks with plastic weights on a simple

reinforcement learning task. Simulated robots with infrared sensors needed to discover and

remain in a goal zone. The goal zone was randomly placed either under a light bulb or a black

stripe and was moved once per simulation run (see Figure 3.9). In a second experiment that

was the simulation counterpart of the evolution on hardware experiments in [53], simulated

robots had to first reach a target zone to activate a light, and then find and remain near

this activated light. CTRNNs seemed to perform better on this task, although the networks

with plasticity could also solve it. The authors claimed that the difference in performance

was owing to the random initialization of weights in the plastic network case, requiring sev-

eral timesteps to reach beneficial values. It is interesting that the best CTRNNs that were

evolved in simulation on this second task could not solve the task when transferred to real

robotic hardware, while the plastic neural networks were successfully able to adjust to the

real world implementation. However, a method of evolving hardware-ready CTRNNs was

proposed in [14]. It was found that by taking an evolved solution and then further evolving

with 10% sensor noise, motor noise and variable starting positions and orientations, the final

best evolved CTRNN could be successfully transferred to robotic hardware. The experiments

in [152] also compared CTRNNs to fully recurrent neural networks with plasticity, although
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the problem was more challenging than the one in [78]. In this experiment, robots must

learn which direction of a continuous grayscale gradient (positive or negative) to follow to-

wards the goal zone, while in [78] the robot had to decide between driving towards or away

from a discrete (on/off) light source. Out of 20 runs, the fully recurrent neural networks

with plasticity never found a solution, while the CTRNNs were successful in 14 of their 20

evolutionary runs.

Further experiments requiring learning in a continuous domain were performed in [77].

Here, CTRNNs that can learn to perform a reward-generating behaviour at a given “tem-

perature” value were successfully evolved. Agents could learn and relearn to perform this

behaviour for a variety of different temperatures. “Incremental evolution” [57] was used to

produce these networks, where populations of agents are evolved on increasingly difficult

problems until they can accomplish the final goal task.

Other experiments in [14] have shown that CTRNNs are capable of solving a Single-T

Maze problem with varying reward locations. However, the evolutionary algorithm failed

to find a solution to the Double-T Maze problem using CTRNNs. It should be noted that

the fitness function in this case only rewarded agents if they reached the correct goal zone,

whereas in the Double-T Maze experiment in [142] agents were penalized for hitting walls

and received at least some reward for reaching any corner of the maze, regardless of whether

or not it was the “goal” corner. Therefore, the lack of success for CTRNNs on the Double-T

Maze problem may be an issue with the fitness function in the experiments instead of an

issue with the neural-network paradigm being used. The experiments in [142] were simplified

in a variety of other ways as well, compared with those in [14]. The most notable of these

simplifications is that agents in [14] control the simulated robot’s two actuators directly,

requiring two outputs and the use of proximity sensors to avoid walls. In [142], however,

agents simply control the discretized orientation of the simulated robot (0, +π
2
, −π

2
) requiring

a single output and no wall sensors.

3.7 Genetic Programming for Robot Control

Genetic Programming can be applied to Evolutionary Robotics to evolve autonomous con-

trollers as computer programs. Koza and Rice were the first to attempt such an experiment

[88]. Controllers were represented as trees containing sensor inputs and four preprogrammed

macros, such as “if-less-than-or-equal.” Programs that could control a simulated robot to

find a box in an irregularly shaped world and push it to a wall from four different starting

configurations were evolved.

Nordin and Banzhaf used a linear implementation of GP to evolve machine code to control
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a Khepera robot [117, 118]. Each 32-bit node contained a machine code instruction, such

as a=b+c, which adds the values from registers b and c and stores the result in register a.

The types of operations that could be employed were addition, subtraction, multiplication,

or, xor, and, and left and right bit shift operations. Integers in the range [0,8192] could

also be used. The evolutionary process occurred on a real robot and machine code programs

were evolved for object avoidance and object following. This work was recently extended

by Burbidge, Walker and Wilson who evolved machine code using Grammatical Evolution

[16, 17]. Here, the agent genomes are binary strings that are mapped to their machine code

phenotypes via a prespecified generative grammar. Simulated Khepera robots are tasked

with driving towards a light source while avoiding obstacles.

GP has also been used to evolve competitors for the RoboCup robotic soccer tourna-

ment. Andre and Teller evolved team “Darwin United” using GP with a variety of possible

operations, including basic mathematical operators, reading and writing to memory locations

and executing a variety of programmer-designed subroutines [5]. Adorni, Cagnoni, and Mor-

donini used a simple GP approach to evolve robot goalie behaviours [3]. Strong simulation

results were obtained by evolving controllers using only addition, subtraction, multiplication,

division and sine and cosine operators. Agents had access to the position of the ball relative

to the goalie’s current position, as well as the current speed and direction of the ball (or, in

a second experiment, the ball’s position at the previous timestep) and evolvable constants.

This work is the most similar to our Evolvable Mathematical Models paradigm presented

below, as it is evolving mathematical equations as trees for robot control. However, these

experiments were performed on a relatively simple task (especially considering the amount of

information provided to the controller), had only one equation tree/agent output, used sine

and cosine, and did not allow for extra state variables/equation trees to be evolved.
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Evolvable Mathematical Models

4.1 Introduction

We develop a new Artificial Intelligence paradigm with a heavy focus on applicability. Arti-

ficially evolved agents should be capable of the complex learning behaviours demonstrated in

their ANN counterparts, as adaptability is an essential property of both autonomous robots

and complex lifeforms. Furthermore, agents that have been evolved in simulation should be

readily transferrable to physical robotic hardware. Advanced ANNs often act as black boxes,

as their internal workings are complex and difficult to fully comprehend. An autonomous

controller meant for real-world deployment should be readily examinable and amenable to

mathematical analysis. Finally, we hope to develop an AI paradigm that is highly reusable,

in the sense that it should be capable of being applied to a wide variety of tasks with little

to no tuning/reworking.

Our new Evolvable Mathematical Model (EMM) paradigm focuses on evolving mathe-

matical equations as controllers for autonomous agents. The idea of evolving mathematical

equations originated with Symbolic Regression (see Section 3.3), which has been used since

the early 1990s to discover automatically mathematical functions that accurately model data

sets. In Symbolic Regression, candidate functions are tested on fixed training data sets com-

posed of input and corresponding output values, with fitness being assigned based on how

closely a function’s outputs match the training outputs when evaluated using the training in-

puts. In the EMM paradigm, however, candidate functions are used to control autonomous

agents. Therefore, the inputs to the EMM vary depending on the (potentially variable)

properties of the agent and the (potentially variable) environment in which it finds itself.

Furthermore, an EMM’s outputs can influence its inputs, as its outputs influence properties

of its agent and/or environment, thus modifying the inputs it receives via its agent’s sensors.

Instead of comparing an EMM’s outputs to a fixed training data set, fitness is assigned based

28
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on how well an EMM’s agent performs on a given task. Complex behaviours can even emerge

from the EMM paradigm without any explicit fitness function whatsoever (see Part II).

Despite a focus on applicability, biological plausibility and scientific benefits have not

been abandoned. This new paradigm can produce complex artificially evolved artificial intel-

ligences. By simulating the evolution of such intelligent behaviour, one can examine digital

snapshots over time to lend evidence to, as well as inspire the development of, theories on the

evolution of these behaviours in nature (see Chapter 9). Furthermore, while experiments run

within this paradigm cannot contribute to the understanding of the physical inner workings of

biological neural networks, they can contribute to understanding the evolution, organization

and behaviours of a brain.

4.2 The Algorithm

Our Evolvable Mathematical Models algorithm is based on Symbolic Regression in Genetic

Programming (see Section 3.3) and is similar to the algorithm presented in [135]. An earlier

version of this algorithm was presented in [60] and implemented in [61]. The core idea is that

one can use mathematical equations as a mapping from an agent’s inputs to its outputs.

An EMM-based agent is represented as a system of equations, with one equation for each

of the N experimenter-defined outputs vi in the simulation. Additional “extra” equations

that modify a corresponding extra state variable can be added through an “add equation”

mutation. An agent’s N ′ extra equations, 0 ≤ N ′ < ∞, do not have associated agent

outputs; however, they modify agent outputs indirectly via the incorporation of their extra

state variable into those equations that affect agent outputs directly. These extra equations

and the mutations that create them are similar to Koza’s Automatically Defined Functions

and Architecture-Altering Operations [86], respectively. An agent is fully specified by its

system of equations:

vt+∆t = f
(

ut,vt
)

(4.1)

and its evolvable initial conditions vt=0.

Here, v = [v1, v2, ..., vN , vN+1, ..., vN+N ′ ]T where N is the number of agent outputs and

N ′ is the number of extra equations, u = [u1, u2, ..., uM ]T where M is the number of exper-

imenter defined inputs to the agent and f (u,v) = [f1 (u,v) , f2 (u,v) , ..., fN+N ′ (u,v)]T are

the agent’s genetically encoded mathematical functions.

4.2.1 Evaluating an EMM

An EMM-based agent’s behaviour over the course of its lifetime is determined as follows:
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1. Set t = 0

2. Set vi = vt=0
i , i = 1, ..., N, ..., (N +N ′)

3. Update ut with current agent inputs (i.e., current sensor values)

4. Evaluate f (ut,vt)

5. Update agent output and extra state variables vt+∆t = f (ut,vt)

6. Run agent for ∆t timesteps using agent output values vt+∆t
i , i = 1, ..., N

7. Set t = t+∆t

8. Go to step 3 (unless the end of the agent’s lifespan has been reached)

The above steps apply to agents operating in a simulation environment as well as to embodied

robotic agents operating in the real world. Steps 4-5 are equivalent to propagating agent

inputs through an ANN to produce agent outputs for a single timestep of an agent’s lifetime.

4.2.2 Evolving an EMM

The genetic operations used for creating and modifying EMM genomes will now be described.

As was mentioned above, one of the goals of this paradigm is to minimize parameter tuning.

In this document, a total of three different experiments are described. The first two are stan-

dard benchmarking experiments (Sections 4.3.1 and 4.3.2), while the third uses EMMs in an

Artificial Life simulation (Part II). Many parameters related to EMMs in the various experi-

ments were kept constant to demonstrate the transferability of the core paradigm to a variety

of different applications. Note that this does not imply that these were necessarily the best

settings for a given experiment. It should also be noted that a certain amount of parameter

tuning between experiments is unavoidable owing to varying search space properties.

The EMM paradigm itself is representation-independent. In the work presented here, our

implementation of the EMM paradigm uses a representation based on Symbolic Regression in

GP (see Section 3.3), where equations are represented as nonlinear trees. Alternative genetic

representations, such as those used in [135], where equations are represented as acyclic graphs

or those compared in [123], where genomes are linear strings that encode nonlinear equation

tree phenotypes, are left to future studies.
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Figure 4.1: An example EMM for an agent with N + N ′ = 2. The two trees, along with
the two initial values vt=0

1 and vt=0
2 (not shown), are how the agent’s EMM is encoded in its

genome.

Genetic Representation

For all experiments presented here, tree structures are used as genomes to represent the

EMMs, as in GP. Only the four basic mathematical operators are allowed (addition, subtrac-

tion, multiplication and division), from which any analytic function can be approximated.

A genome contains N +N ′ equation trees, one for each output and extra state variable of

the system. Each tree contains a collection of terminal (“leaf”) and nonterminal (“internal”)

nodes. The set of possible terminal nodes is comprised of all potential constants C and

variables (i.e., input, output and extra state), while the set of possible nonterminal nodes is

composed of addition, subtraction, multiplication and division. The number of “child” nodes

(subtrees) of a nonterminal node is two, as all four of the basic operations have an arity of

two. An example genome for an agent with N +N ′ = 2 is shown in Figure 4.1.

Initialization

The random initialization of the N initial equation trees in each initial genome (i.e., at

generation or time 0) is done using the ramped half-and-half method as described in Section

3.3. Half of the trees are generated with a maximum depth of 1, while the other half have a

maximum depth of 2. When generating trees using the “grow” method, each node below the

specified maximum depth has a probability of 0.5 of being a terminal node, with a terminal

node being set to a random variable or a random constant with equal probability. Initial

genomes do not contain any extra variables, i.e., N ′ = 0. Initially, constants are randomly

selected, as are initial output values vt=0.
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Sexual Recombination

Sexual recombination is an important element of all Genetic Algorithms, as it allows for

large jumps in the search space through combining two partial solutions. Any such genetic

operation requires two parents to produce an offspring genome. Otherwise, a single parent’s

genome is cloned to produce an offspring genome. In EMMs, there are two levels of sexual

recombination, tree level and equation level.

If an offspring genome is being produced via equation-level recombination, the two par-

ents’ equation sets are compared. For each equation that the two parents have in common

(the equations have unique identification tags), either the equation from parent 1 or parent

2 will go to the offspring, along with that equation’s associated initial value vt=0
i . Which

equation is inherited is decided randomly for each equation in common. An offspring must

receive at least one equation from each parent. Obviously, this operation can only occur if

the two parents have more than one equation in common (which is always the case if agents

have at least two outputs). If an offspring receives an equation that contains an extra state

variable modified by another equation that is not common to both parents, the offspring will

inherit that equation as well. Several examples of equation-level sexual recombination are

shown in Figure 4.2.

If a tree in the offspring genome is selected to undergo tree-level recombination, one of

its nodes is selected at random and replaced with a randomly selected subtree (this is very

similar to crossover in GP, see Section 3.3 and Figure 3.4). If there is a subtree below the

selected node, it is discarded. If the tree undergoing recombination originated from the first

parent, the subtree is selected from any of the trees of the second parent and vice versa. This

allows for partial solutions to be reused and to be copied to different equation trees. This

subtree grafting operation is similar to the subtree mutation operation described below. If

an offspring receives a subtree containing an extra state variable modified by an equation

that is not common to both parents, the offspring will inherit that equation as well.

Offspring genomes that are produced via equation-level recombination are not exempt

from tree-level recombination. An offspring genome is still subject to a variety of genetic

mutations, even if it has been produced via sexual recombination.

Mutation

Tree mutations (as well as extra equation mutations and sexual recombination, see below

and above) can occur when a parent genome is being copied to its offspring. This means that

mutations can only occur between generations. Agent genomes remain fixed throughout an

agent’s lifetime.
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Figure 4.2: Several potential offspring genomes that can be produced from Parent 1 and Par-
ent 2 reproducing. This diagram assumes that the agent controllers have one output. Each
rectangle represents a genetically encoded equation and its ID. Lighter coloured rectangles are
extra state variable equations that do not affect the output directly. Arrows show which equa-
tions depend on which extra state variables. Note that if there are no equations that depend
on an extra variable in an offspring genome (excluding the extra variable’s own equation),
that extra variable and its corresponding equation are discarded.

These mutations are implemented in a manner similar to GP. If a tree is selected to be

mutated, one of a variety of mutations is applied:

• Point Mutation. A point mutation performs one of several operations on a single

randomly selected node in the tree:

– Perturbation of a constant. This operation can only be performed if the tree in

question contains one or more constants. The operation adds a random value to

a randomly selected constant.

– Mutation of a nonterminal node. This operation is performed if a perturbation of

a constant was not done and if a randomly selected node is a nonterminal. A new

nonterminal function is randomly selected from the set of addition, subtraction,

multiplication and division.

– Mutation of a terminal node. This operation is performed if a perturbation of a

constant was not done and if a randomly selected node is a terminal. One of two

mutations occurs, with equal probability. The chosen terminal is either mutated

to a randomly chosen variable or it is mutated to a randomly chosen constant.
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• Subtree Mutation. Occurring if there was no point mutation, this operation selects a

random node on the original tree and replaces it with a new random subtree. This new

subtree is generated in an identical fashion to initial trees (see “Initialization” above).

A small variation to the standard subtree mutation was also added. With a small

probability, the roles of the subtree and the original tree are swapped, i.e., a random

node on the randomly generated subtree is replaced with the entire original tree and

this becomes the new tree of the offspring. Our results in [60] suggest that this may

improve solution quality.

Add Equation/State Variable Mutation

An offspring is subject to “add equation” mutations, as well as those mutations described

above. This mutation produces a new equation tree of depth 1 or 2 using the “ramped half-

and-half” method described previously. A new variable vj , j > N is added to v. This is

the extra state variable that the new equation tree will be modifying. The new variable vj

is also randomly incorporated into a randomly selected existing equation, either through a

point mutation or a subtree mutation (with equal probability), as described above. Finally,

vt=0
j is set to a random value.

Initial Value Mutation

An offspring’s initial values vt=0 are subject to mutation as well. If an initial value is to be

mutated, it will either be set to a new random value or perturbed by a random value. These

two types of initial value mutations occur with equal probability.

Equation Reduction

When an offspring genome is produced, it may be checked for possible equation simplifica-

tions. We demonstrated in [60] that equation reduction can improve average solution quality

while decreasing wall clock running times. The equation reductions implemented for all

experiments presented here are as follows:

• The subtraction, addition, multiplication or division of two constants is reduced to a

single constant by performing the encoded operation.

• The sum of two identical subtrees is reduced to 2× a single version of the subtree.

• The subtraction of two identical subtrees is reduced to 0.

• The multiplication of a subtree by 0 is reduced to 0.
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• The division of 0 by a subtree is reduced to 0.

Note that if there are no equations that depend on an extra variable in an offspring

genome, that extra variable and its corresponding equation are discarded.

4.3 Benchmark Experiments

Now that the algorithmic details have been presented, we look to compare the performance

and capabilities of EMMs to their ANN counterparts. As EMMs are abstractions of neural

networks, it is expected that the same base algorithm using only addition, subtraction,

multiplication and division should be able to solve basic ANN benchmarks that require

recurrent neural networks, as well as more difficult benchmarks requiring ANNs with neural

plasticity.

The two EMM-based algorithms used for the following two benchmark tasks have several

details in common. In both instances, parent selection is done using “tournament selection.”

For each parent needed, a collection of agents is generated by randomly selecting (without

replacement) from the current population. The agent with the highest fitness within this

collection, or tournament, is selected as a parent. The parameter controlling the number of

agents in such the tournament is called the tournament size. Tournament sizes need to be

tuned for each specific task and algorithm, as different population sizes and solution search

spaces are best exploited with different tournament sizes.

Whenever random constants are needed, they are selected from the uniform distribution

[−5, 5]. Random initial values vt=0 are chosen from the uniform distribution [−1, 1].

For both benchmark experiments, offspring genomes were produced through sexual re-

combination with a probability of 0.7, with equation-level recombination (denoted as “eqn-lvl

xover” in result tables) occurring if the two selected parents have at least two equations in

common and tree-level sexual recombination occurring on one or more of the offspring’s

N + N ′ trees with a probability of 0.5/ (N +N ′) per tree. Whenever a subtree needs to be

chosen during a tree-level recombination operation (i.e., either as the subtree to be replaced

or the subtree being grafted), there is a 10% chance that the root node will be a terminal

node, otherwise it will be a nonterminal node.

Tree mutations happen with a probability of 0.1 per tree, whereas an extra equation/state

variable tree is also added to a genome with a probability of 0.1 per previously existing tree.

Offspring are required to undergo at least one tree or add equation mutation. Elitism, where

the best performing agent in the current generation is cloned into the next generation, is

used in both experiments as well.
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If a tree mutation is to occur, it will be a point mutation with a probability of 0.5;

otherwise, it will be a subtree mutation. If a point mutation is to occur and the tree in

question contains at least one constant, a perturbation of a constant mutation will happen

with a probability of 0.5, adding a random value taken from a Gaussian distribution with

mean 0 and standard deviation 0.5 to a randomly selected constant. During subtree mutation,

the original tree and the randomly generated subtree are swapped with a probability of 0.05.

If an initial value is to be perturbed, the perturbation value will be randomly drawn from a

Gaussian distribution of mean 0 and standard deviation 0.25. Offspring have a 10% chance

of undergoing equation reductions.

Output values vi, i = 1, ..., N are capped to the range [−1, 1], however extra state variables

vj, j = (N + 1) , ..., N ′ are unbounded. If there is a zero divided by zero operation, or if any

variable exceeds the minimum or maximum allowable values of the programming language

and hardware being used (in all cases here, ±1.79769×10308), the current trial is terminated.

A maximum genome size of 200 nodes is imposed across all experiments.

The differences between the algorithms used for the different benchmarks will be discussed

in their respective sections below.

4.3.1 Common Benchmark: Double-Pole Balancing without Ve-

locity Information

The Double-Pole Balancing without Velocity Information benchmark was chosen as the first

benchmark as this seems to be the most reported benchmark in Evolutionary Robotics [148,

44, 58, 63, 79, 76, 82]. A controller must balance two poles by controlling the cart that they

are attached to, using only current pole angle information, i.e., no pole velocity information

is provided.

Problem Definition

A 1-kg cart has one degree of freedom, x. Two poles of different lengths l1 = 1 m and l2 = 0.1

m are mounted on the cart. The poles have masses m1 = 1 kg and m2 = 0.1 kg. The task

is for the controller to balance both poles for a given number of timesteps by outputting

a force −10 N ≤ Fx ≤ 10 N on the cart, using only the angles of the two poles θ1 and θ2

and the position of the cart x as inputs (Figure 4.3). The cart cannot move past ±2.4 m.

The movements of the cart are evaluated via a numerical simulation based on a 4th-order

Runge-Kutta integration with timestep ∆t = 0.01 s. Rigid body dynamics are assumed and

friction is ignored. Pole i is considered to have fallen over if |θi| > 0.63. For the experiments

reported here, the cart evaluation code from [148] was used, as it is freely available.
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Figure 4.3: The double-pole balancing problem. Agents must balance both poles via a single
output, −10 N ≤ Fx ≤ 10 N.

Agents are given a fitness value f based on a single trial with a maximum of 1,000

timesteps and initial conditions θt=0
1 = 0.07, θ̇t=0

1 = θt=0
2 = θ̇t=0

2 = xt=0 = ẋt=0 = 0. A special

fitness function that was originally introduced in [63] is used. The fitness function penalizes

oscillations in an effort to prevent controllers from solving the task by moving the cart back

and forth quickly, which would not require computing the missing velocity information. Thus,

an agent’s fitness f is calculated as f = 0.1f1 + 0.9f2, where

f1 = t/1000 (4.2)

and

f2 =







0 if t < 100

0.75
∑t

i=t−100(|xi|+|ẋi|+|θi1|+|θ̇i1|) otherwise
(4.3)

with t being the number of timesteps that both poles remained balanced during the 1,000

total timesteps.

Controllers have access to three scaled inputs at each timestep (u1 =
θ1
0.52

,u2 =
θ2
0.52

,u3 =
x
4.8

, as in previously reported experiments) and have a single output v1 ∈ [−1, 1] that is

multiplied by 10 at each timestep to give the force applied to the cart.

At the end of each generation, a single top individual is selected for further testing. If

the selected agent can keep the poles balanced for 100,000 timesteps using the same initial

conditions as above, it is subject to a “generalization test.” This test consists of 625 unique

sets of starting conditions (with θt=0
2 = θ̇t=0

2 = 0 and θt=0
1 , θ̇t=0

1 , xt=0, ẋt=0 variable, details

can be found in [63]). The agent is tested using each set of starting conditions and a point
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is awarded for each time the agent balances both poles for 1,000 timesteps. Thus, an agent’s

maximum generalization score is 625. An agent is considered to be a solution if it has a

generalization score of 200 or more.

This benchmark tests first and foremost whether or not a given ER algorithm can solve

this challenging task. Successful algorithms are compared on their average generalization

scores and on the average number of fitness function evaluations required to find a solution.

Issues with this Benchmark

As has been previously pointed out (see, e.g., [44] and [82]), high fitness values f do not

necessarily correlate with high generalization scores, while low fitness agents can sometimes

perform quite well on the generalization tasks. In an attempt to address this issue, an

alternative fitness function was proposed in [79] that incorporated the original fitness function

as well as generalization performance. Unfortunately, since the point of a generalization test is

to see how well agents perform in novel scenarios, evaluating each agent on the generalization

set defeats the purpose of such a test.

Thus, we will stick with the original experimental setup owing to the fact that it was used

by all previously reported results. However, one must be cautious when drawing conclusions

from these data, especially considering that several algorithmic modifications were made

solely to deal with this highly unusual search space.

EMM Algorithm Details

For all experiments reported here, a tournament size of 6 is used and initial values are mu-

tated with a probability of 0.5/(N +N ′). Populations are initialized with 1,000 individuals,

but subsequent generations are reduced to 100 individuals. A similar approach to initializa-

tion was used in [44] to combat the bootstrapping problem. When producing an offspring

population of 100 individuals from a parent population of 1,000 individuals, a tournament

size of 60 is used. Furthermore, if no improvements in fitness are seen in 15 consecutive

generations, the population is discarded and reinitialized. Again, this was also done in [44].

Agents in [148] were all initialized with network connections from each of the three inputs

to the output, therefore the EMM initialization method described above is modified to force

the output equation v1 = f1 (u,v) of all initial agents to contain all three input variables.

Preliminary experiments showed that top solutions contained only addition and subtraction,

so for the results reported here only addition and subtraction are allowed during evolution.

This greatly reduces the search space allowing for significantly faster evolution. Note that the

canonical EMM algorithm described in Section 4.2.2 can solve this benchmark task, however
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the tuning described above produces better performance.

As in all previously reported results only one agent per generation was tested for gener-

alization capabilities, such testing had to be done wisely. An agent with a new top fitness is

tested in the generation in which it first appears if it can balance the poles for the full 1,000

timesteps. If the top agent hasn’t changed (i.e., through elitism) or it cannot balance the

poles for the initial 1,000 timesteps, a randomly selected agent that can pass the original

balancing test is subjected to the generalization tests. This was found to work better than

selecting alternative agents to test based on fitness values, owing to the issues described

above. The algorithm in [148] divides a population into subpopulations, or “species,” based

on genetic distance. Once per generation, the best previously untested elite agent of a species

is subjected to the generalization tests. This allows for the testing of a variety of genetically

diverse solutions within a single evolutionary run. Our EMM- based algorithm uses only a

single population, i.e., there are no subpopulations nor speciation algorithms.

Results

Table 4.1 shows the reported results for various ANN-based ER algorithms, as well as the

results obtained evolving EMMs in the manner described above. All results are averaged

over 20 runs. The EMM runs restarted an average of 11.65 times. For the AGE results, an

average of 10 restarts was reported [44]. Results from the canonical EMM, i.e., with ramped

half-and-half initialization and all four mathematical operators allowed, are also reported,

as well as results from the EMM algorithm as described above, but with equation-level

sexual recombination disabled. Significant improvements have been reported using different

evolutionary algorithms [82, 79, 76]; however, these results are omitted as these algorithms

can only be applied to fixed-structure ANNs and not to the evolution of variable-size ANNs

[44], ANNs with learning, or EMMs.

Table 4.2 shows how results vary depending on the stopping criterion (stop after 2,000

generations and record how many fitness evaluations it took to find the best test score or

stop when we find a solution with a generalization score of 200+) and how many agents

we subject to the generalization tests (test only one per generation or test all agents who

balanced the poles for the full 1,000 timesteps during their fitness evaluation).

The simplified equations (one output equation and five extra variable equation, i.e., N = 1
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Table 4.1: Fitness evaluation and generalization test results for various ER algorithms on the
double-pole balancing without velocity information benchmark. All results averaged over 20
runs. We use µ to denote mean and σ to denote standard deviation.

Method # Fitness Evaluations Generalization
µ σ µ

EMMs - canonical 894,716 884,145 298
Cellular Encoding [63] 840,000 N.A. 300
Enforced Subpopulations [58] 169,466 N.A. 289
EMMs - no eqn-lvl xover 117,350 173,206 313
EMMs 80,895 66,719 317
NEAT [148] 33,184 21,790 286
AGE [44] 25,065 19,499 317

Table 4.2: Fitness evaluation and generalization test results for various EMM algorithm runs
on the double-pole balancing without velocity information benchmark. All results averaged
over 20 runs. We use µ to denote mean and σ to denote standard deviation.

Stop Test # Fitness Evaluations Generalization
µ σ µ

Score 200 One 80,895 66,719 317
2000 Gens One 103,800 71,808 346
2000 Gens All 113,540 71,084 399
Score 200 All 48,935 34,944 314

and N ′ = 5) of an evolved agent with a generalization score of 456 are

vt+∆t
1 = −vt1 − vt2 − vt3 − 7θt1 + 6θt2 (4.4)

vt+∆t
2 = −vt4 + 4xt − 1.75 (4.5)

vt+∆t
3 = −vt2 + xt (4.6)

vt+∆t
4 = −vt5 + 3.14 (4.7)

vt+∆t
5 = vt6 + 0.11 (4.8)

vt+∆t
6 = 3θt1 + 2.80 (4.9)

The current force applied to the cart is calculated as F t+∆t
x = 10.0vt+∆t

1 with vi, i ∈
{2, 3, 4, 5, 6}, being extra state variables with no associated agent output. Evolved initial

values are omitted, and any multiplication operators are the result of hand-performed sim-

plifications (e.g., x+ x = 2x).
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Figure 4.4: Output values of vi over 1,000 timesteps of double-pole balancing without velocity
information.

Figure 4.5: θ1 and θ2 values over 1,000 timesteps of double-pole balancing without velocity
information.

The vi values of this EMM are shown in Figure 4.4 for the original 1,000 timestep training

run, with the corresponding pole angles θ1 and θ2 shown in Figure 4.5.

Discussion

The main take-away from these results is that EMMs can successfully produce solutions

to the challenging double-pole balancing without velocity information task. Furthermore,

solutions are found using a similar, if somewhat higher, number of fitness evaluations as in

the top ANN experiments while yielding comparable generalization scores. The differences in
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fitness evaluations are most likely owing to EMMs effecting larger search spaces than ANNs

by having two types of nodes (addition and subtraction) instead of a single type of neuron.

Other contributing factors could be genetic algorithm implementation and parameter tuning.

EMM solutions use equations with references to previous output and extra variable states.

This is analogous to the recurrent connections found in the top ANN solutions in [148] and [44]

and is necessary owing to the lack of velocity information. The EMM solutions are compact

and bloat-free, again comparable to the compact solutions found in the ANN experiments.

Equation-level sexual recombination provides performance benefits on this benchmark task.

Further analysis is difficult, owing to the issues with the experimental setup. As was shown

in Table 4.2, better solutions did exist within EMM populations; however, the technique used

to test one agent per generation often missed them. Future work should look to improve

EMM results by implementing NEAT-like speciation, which would allow for more diversity

(and thus potentially better solutions) within the evolving population while improving the

effectiveness of top agent testing. Furthermore, this benchmark should be redesigned in

future studies to improve the correlation between fitness and test scores.

4.3.2 Learning Benchmark: Double-T Maze

In its simplest form, a T Maze test consists of a series of trials where an agent starts in the

home position, chooses one of the two “arms” of the maze to visit and collects the reward

at the end of that arm. In some cases, the agent is automatically returned home once the

end of the maze is reached, whereas in others part of the task is for the agents to find their

own way home. For each trial, one arm of the maze contains a high reward, while the other

contains a low one. The purpose of this task is to demonstrate learning. A successful agent

should search both arms for the high reward, and then return to the high reward arm of

the maze in subsequent trials. If the reward is moved, the successful agent should search

for and relearn its new position. A Double-T Maze has four arms instead of two, while

still only having one high reward (see Figure 4.6). T Mazes have been used to demonstrate

and test learning for a variety of algorithms that evolve ANNs with plasticity (see, e.g.,

[142, 129, 43, 133, 131, 144, 132, 141]) as well as CTRNNs [14].

An important distinction between various T Maze experiments is whether the environment

is continuous (e.g., [14, 132]) or discrete (e.g., [142, 129]). In the continuous environment,

the agent is a simulated robot with proximity sensors to detect walls and has direct control

of two wheels (i.e., two output variables). In the discrete environment however, agents must

simply decide to move straight for one unit, or turn left or right 90◦. This only requires a

single output variable.

The specific T Maze chosen for this benchmark was the discrete Double-T Maze with
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Figure 4.6: A discrete Double-T Maze. “A” is the agent, “r” are low rewards and “R” is the
high reward.

homing requirements used in [142]. This version was selected for several reasons. This

problem domain has only been solved with plastic ANNs: fixed-weight ANNs have so far

been unsuccessful. Furthermore, the Double-T Maze is very difficult, requiring agents to

repeatedly choose one of four different movement patterns depending on where they find the

high reward. If agents have yet to discover the location of the high reward, they must search

up to four different maze arms (requiring four different movement patterns) sequentially.

Adding to the difficulty is the requirement that agents must return home after reaching an

end of the maze. This doubles the size of each of the four movement patterns. For example,

to get to the top left part of the maze an agent must turn left then right. To then return

home, the agent must turn left, then right again. There is a unique four-turn pattern for

each of the four arms (LL-RR, LR-LR, RL-RL, RR-LL).

The main point of this benchmark is to demonstrate that a given algorithm can solve this

challenging task. However, for the sake of comparison, we attempt to tackle this problem

using the same number of fitness evaluations as in [142].
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Problem Definition

The Double-T Maze used here is the same as the one in [142] (see Figure 4.6). Agent fitness

is evaluated over a series of trials. For each trial, the agent is evaluated for a maximum of 35

steps, with each step consisting of one evaluation of the agent’s equations and the execution

of one move (forward or turn 90◦) based on the agent’s output v1. A trial begins with the

agent at the “home” position. If an agent executes a turn command while not on a “turn”

position (i.e., while on the home position, one of the four reward positions or in a corridor) or

executes a “move forward” command on a turn position, this is considered a crash. Crashes

end the current trial, returning agents to the home position and subtracting 0.4 from their

total fitness. If an agent completes a trial without returning to the home position, a penalty

of 0.3 is applied to their total fitness. If the agent reaches one of the three low reward arms

of the maze, a score of 0.2 is added to their fitness. The high reward arm yields a fitness

boost of 1.0. When an agent reaches the end of a maze arm, it is automatically turned 180◦.

Corridors and turn points last for three forward steps each.

Agents have access to four inputs, “turn,” “maze end,” “home” and “reward.” The turn

input is set to 1.0 when the agent is on a turning point, 0.0 otherwise. The maze end input

is set to 1.0 when the agent is at the end of one of the four maze arms, 0.0 otherwise. The

home input is set to 1.0 when the agent is at the home position, 0.0 otherwise. Finally, if

the agent collects a low reward, the reward input is set to 0.2 for one step. Collecting a high

reward sets the reward input to 1.0 for one step. The reward input is 0.0 at all other times.

Note that these input values were chosen to be identical to those used in [142].

Agents have one output v1. If v1 < −0.33, the agent performs a 90◦ left turn and then

moves forward one unit. If v1 > 0.33, the agent performs a 90◦ right turn and then moves

forward one unit. Otherwise, the agent moves forward one unit in its current direction.

All inputs and references to variables vi, i = 1,..., (N +N ′) are subject to noise by adding a

random value taken from the uniform distribution [−0.005, 0.005] at each equation evaluation.

Agent fitness is evaluated on a set of 200 trials, with the high reward randomly positioned

for the first trial. The high reward is randomly repositioned after a randomly selected number

of trials Ht, with 35 ≤ Ht ≤ 65. Reward repositioning happens three to four times per 200

trial run, with Ht being regenerated after every repositioning. During the evolutionary runs,

the first four high reward positions are forced to be distinct. This is not enforced for the 100

sets of 200 trials used for testing top agents.
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Table 4.3: Double-T Maze results from 50 evolutionary runs. A “successful run” has occurred
if an agent scores 189.4 or higher on the test set. Note that all results from algorithms
marked with an asterisk are provided for reference only as they are estimates taken from
visual inspection of graphs and were calculated on a different test set with significantly fewer
agents tested. We use µ to denote mean and σ to denote standard deviation.

Algorithm Test Score # Successful
Median µ σ

EMM - 10 isls (canonical) 177 170 21 4
EMM - 10 isls (no eqn-lvl xover) 177 172 18 9
EMM - 40 isls (canonical) 186 183 10 17
EMM - 40 isls (no eqn-lvl xover) 187 186 5 18
ANN - modulatory* 190 N/A N/A N/A
ANN - plastic* 117 N/A N/A N/A
ANN - fixed-weight* 21 N/A N/A N/A

EMM Algorithm Details

For this task, an island model is used (see Section 3.2). Each of the 10 islands has a population

of 100, giving a total population size of 1,000. Islands are organized in a ring shape, with

the top agent from each island migrating to the left or right island every 20 generations. The

direction of migration is constant across all islands and switches after each migration. Each

island population is tested on its own set of 200 trials, with all 10 sets being regenerated after

each generation. The tournament size used is 15 on each island, and each island’s top agent

is cloned for the next generation (elitism). Initial values are mutated with a probability of

0.1/ (N +N ′). All four basic mathematical operators (addition, subtraction, multiplication

and division) are allowed, and random initial genomes are generated using the ramped half-

and-half method.

At the end of every generation, the top agent from each island is tested on a fixed test

set of 100 randomly generated 200 trial runs. Each experiment is run for 1,000 generations,

and the final result is taken to be the agent that performed the best on the test set.

Each island is implemented as a separate process so that the algorithm can take full advan-

tage of the parallel architectures of modern CPUs. A Master/Slave parallel implementation

is used, where a “master” process handles the synchronization of “slave” processes (i.e., the

islands). Islands are synchronized and migrants exchanged after every 20 generations.

Results

A solution’s quality is determined by its average score on the test set of 100 randomly gen-

erated 200 trial runs. A perfect score of 200 is not theoretically possible as a top solution
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Figure 4.7: Relationship between variables within a successful EMM agent’s evolved equations.
Inputs are shown in blue, the agent’s output v1 is red and the extra state variables are orange.
Data require one timestep to traverse an orange arrow, whereas input data traverse blue
arrows instantaneously. The state variable v3 is emphasized in green as it plays the role of
neuromodulator. The calculations performed at each node are shown in (4.10) to (4.19).

will have to collect occasionally a low reward to detect that the high reward has been moved.

Practically, top agents will not be able to predict the new location of the high reward after

a move and therefore may have to collect several low rewards as the T Maze is explored.

The best observed score on our test set was 193.344. For the test set used in these exper-

iments, the “worst-case perfect test score” was calculated to be 189.4. This value is the

average score of a perfect agent across the 100 test runs, assuming the agent always searches

each low reward arm once before finding the high reward (hence “worst-case”) and always

returns to the high-reward arm once it is discovered (hence “perfect agent”). Thus an agent

with a test score of 189.4 or higher is considered to be a solution to this Double-T Maze.

Table 4.3 shows the results from 50 runs using the same test set, but with different initial

populations and different training sets. The runs with 10 islands use the same number of

fitness evaluations as in [142]; however with significantly more agents tested. This is because
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we test the top agent from each island at each generation, while in [142] only the top agent

from the final generation was tested. Experiments with 40 islands are also reported, demon-

strating performance improvements given more fitness and test evaluations. Experiments

with equation-level sexual recombination disabled are reported as well, demonstrating slight

improvements over the canonical runs. This suggests that equation-level recombination is

not always beneficial (although it was beneficial in the double-pole balancing benchmark, as

well as in the communication experiments reported in Part II). Note that all results from

[142] are provided for reference only as they are estimates taken from visual inspection of

graphs and were calculated on a different test set with significantly fewer agents tested.

The full system of equations (with rounding and simplifications) of a top agent with a

test score of 191.884 is

vt+∆t
1 = ut

1v
t
2v

t
4 (4.10)

vt+∆t
2 = 5.92vt3/v

t
2 (4.11)

vt+∆t
3 = ut

2 − ut
4 − 0.69 (4.12)

vt+∆t
4 = −0.41ut

1v
t
7 (4.13)

vt+∆t
5 = −0.33vt6 (4.14)

vt+∆t
6 = 0.65− vt8 − (1.18/vt3) (4.15)

vt+∆t
7 = vt5 − 0.48 (4.16)

vt+∆t
8 = vt9(0.02v

t
9 + 0.05vt10 − 0.23)

− vt5 − 0.14vt10 + 0.48

(4.17)

vt+∆t
9 = 56.11ut

2 (4.18)

vt+∆t
10 = 0.80− vt4 (4.19)

Note that v1 is the agent’s output variable, u1 is the “turn” input, u2 is the “maze end”

input, u4 is the “reward” input and evolved initial conditions vt=0 are omitted. Figure 4.7

shows the relationships between variables within this agent’s evolved equations.

The only equation containing the variable u4 (the “reward” input) is (4.12)1, and its

corresponding state variable v3 seems to be modulating learning. By examining these equa-

tions and their behaviour (see Figure 4.8), it is apparent that this equation plays the role of

learning modulator. The value of v3 is −0.69 at all times, except for when a small reward is

collected. A small reward causes v3 to spike (as in this case ut
2 = 1.0 and ut

4 = 0.2, therefore

vt+∆t
3 = 1.0−0.2−0.69 = 0.11), which in turn causes the agent to change movement patterns

(v1 patterns). Of the 48 successful runs across the Double-T Maze experiments, 20 had top

1note that it also appears in v1 but is divided by ∞
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Figure 4.8: Values of v1 and v3 of a top agent during a test set of 200 trials.

Figure 4.9: Position of high reward and position visited by a top agent during a test set of
200 trials.

agents that contained functions similar to the right hand side of (4.12), including the agent

described above.

Figure 4.9 shows which arm of the T Maze contains the high reward, as well as which arm

the agent described above visits for each trial in the same 200 trial test run as in Figure 4.8.

When the agent receives a low reward, it visits a different arm on the next trial. When the

agent receives a high reward, it returns to the same arm on subsequent trials until it receives

a low reward. The “forage” pattern of the agent seems to be constant: arm 1, arm 3, arm 2,

arm 0, then back to arm 1 and the pattern repeats.
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Discussion

These results demonstrate that EMMs can successfully solve a difficult task requiring learn-

ing, namely the discrete Double-T Maze with homing requirements. The EMMs performed

significantly better than plastic ANNs without neuromodulation, and slightly worse than the

plastic ANNs with neuromodulation. There are numerous factors that could contribute to

these variations in performance, including differences in test sets, evolutionary algorithms

and implementations. Differences in evolvability may again be playing a role as well. Re-

gardless, EMMs were able to produce several top solutions to this challenging task, using

the same number of fitness evaluations as were used to evolve solutions with ANNs. An

interesting result was seen in a top EMM agent with a test score of 191.884 as it contained

an extra equation that produced neuromodulation-like behaviour, without the experimenter

having to explicitly implement it. A similar mathematical function appeared in over 40% of

all successful top agents. This provides further evidence that neuromodulation may indeed

play a role in learning in biological brains. It seems as though neuromodulation is not re-

quired to solve this Double-T Maze, however, as many successful solutions did not employ

it. Several ANNs with neuroplasicity enabled but neuromodulation disabled also solved the

Double-T Maze in [142].

These results demonstrate the abstraction power of EMMs: complex learning with neu-

romodulation can be evolved using only the four basic mathematical operators, requiring

no a priori development and programming of special artificial neural structures and their

associated behaviours.

4.4 Conclusions and Future Work

Thus concludes the description and benchmark testing of our novel AI paradigm, Evolvable

Mathematical Models. This algorithm evolves artificially mathematical abstractions of neural

networks. Testing on the double-pole balancing without velocity information benchmark

demonstrated that EMMs could achieve comparable solutions to their ANN counterparts on

a difficult task, albeit requiring roughly three times more fitness evaluations. It was shown

that better results could be achieved by testing all potentially successful solutions. Even in

the best case scenario however, the EMM algorithm as described still required more fitness

evaluations to find a solution than the top results using ANNs. This is likely due to EMMs

employing more types of nodes than standard ANNs (i.e., addition and subtraction in the

best EMM solutions versus a single type of neuron in the ANN experiments), which produces

a larger search space. Another factor that might contribute to differences in required fitness

function evalutions is the differences between the evolutionary algorithms used to search
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for solutions, as the search method is not standardized for this benchmark. For example,

NEAT employs a complex speciation algorithm that requires additional parameter tuning and

computational complexity that is not taken into account by the fitness evaluation metric.

Future work should look to improve the evolvability of EMMs. One option would be to

use alternative genomic representations to produce and evolve the equations (a comparison of

the performance of several linear representations on Symbolic Regression tasks can be found

in [123]). Another option might be to modify an ANN-based algorithm, such as NEAT, to

produce EMMs.

The second benchmark was the discrete Double-T Maze with homing requirements. This

difficult task requires agent learning and has only been solved by a handful of ANN-based

algorithms using connection weight plasticity. Using the same number of fitness evaluations

as used to find the top ANN solutions, several EMM runs were successfully able to solve this

task. It is interesting that while the ANNs that solved the maze have variable structures

(as their connection weights vary over time), EMMs are able to accomplish this learning

task with fixed structures, as their equations do not change over the lifetime of an agent.

Furthermore, this benchmark demonstrates the abstraction power of EMMs, as the ANNs

that solve this task use connection weight plasticity and (sometimes) neuromodulation. As

was shown in the results above, neuromodulation-like behaviours emerged from the EMMs

in over 40% of successful runs, without the programmer having to specify the specific neural

mechanisms. Contrary to the results from the double-pole balancing experiments, disabling

equation-level sexual recombination slightly increases solution quality on the Double-T Maze

task, demonstrating that the usefulness of this genetic operation varies between problem

domains. Future work should look to extend these discrete Double-T Maze results into the

continuous Double-T Maze domain.

Finally, it should be noted that the canonical version of our EMM algorithm can solve

both benchmark tasks without needing any modifications or complexification (although ad-

justments to the GA and parameter tuning were required). On the other hand, ANN-based

algorithms such as AGE require the additional complexity of neuroplasticity in order to tackle

the Double-T Maze.
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Conclusion of Part I

The above experiments have proven our hypothesis correct. Evolvable Mathematical Models

can indeed be used to develop robust, learning-capable controllers.

We have demonstrated that evolvable mathematical equations can be used to abstract

a variety of artificial neural network structures using only the four basic mathematical op-

erators: addition, subtraction, multiplication and division. While these initial experiments

indicate that evolving EMMs requires more fitness function evaluations than evolving ANNs,

our results suggest that the benefit of using EMMs is that one need not worry about what

type of agent representation to use for a given problem, as the canonical EMM algorithm

was able to find solutions for both problem domains presented here. It should be noted,

however, that by deviating from the canonical implementation in the double-pole balancing

domain (by restricting potential mathematical operators to addition and subtraction only

and by changing the way populations of equations were randomly initialized), we were able

to discover solutions more rapidly. Since this is the first version of an EMM implementation,

it is hoped that future work will increase the evolvability of these equations and demonstrate

their applicability to other problem domains.

Some interesting questions arise from the presented results. If EMMs can successfully

abstract various types of ANN, which in turn are simplifications of what we know about bio-

logical neural networks, can EMMs then abstract what we don’t know about biological neural

networks as well? To put it another way, can EMMs model the behaviours of a biological

brain, despite our lack of scientific understanding of how such a brain physically operates?

If not, why not? What is missing in our mathematical toolkit? Or are complex brains, such

as those of humans, fundamentally unmodelable? These are big, exciting questions and it is

hoped that future work with EMMs will help to answer them.
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Part II

Simulating the Evolution of

Communication
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Chapter 6

Introduction

Now that Evolvable Mathematical Models have been presented and successfully tested on two

benchmark tasks, we look to demonstrate further the power of EMMs as evolvable artificial

intelligences in a novel simulation. For this task we choose to simulate the emergence and

evolution of communication, as it is a notoriously hard problem with a wide gap between

simulation results and observed behaviours in nature. For all results and discussion here, we

will be using the definition of communication from [96]:

Communication occurs when the action of. . . one organism is perceived by and

thus alters the probability pattern of behaviour in another organism in a fashion

adaptive to either one or both of the participants.

Simulations within this problem domain are an important precursor to the understanding

of the emergence and evolution of natural language, a highly controversial open problem

within the scientific community which has a notable lack of experimental data on which to

validate theories. The debate has heard from many researchers, including Darwin himself

who mused on the human faculty of language in The Descent of Man [34]. Other scientists

interested in the evolution of language include Hauser and Chomsky, who argue that human

language arose as a “spandrel” (a term coined by Gould and Lewontin [59]), with natural

selection promoting the evolution of language-ready neural pathways for reasons other than

language (e.g., reasoning and tool-making) [67]. Pinker and Bloom, on the other hand, argue

that language did indeed arise through direct natural selection [125], as natural selection is

the only mechanism that we know of that can produce such complexity without a designer.

Finally, there is a third notion, championed by Christiansen, Kirby and others, that sug-

gests that language itself is what is undergoing evolution, self-adapting to the human brain

(see, e.g., [25]). We wouldn’t be surprised if the truth contains elements of all three of the

aforementioned suppositions.
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Unfortunately, while there is an abundance of theories on the topic, there are few scientific

truths. This is largely owing to the fact that communication leaves no fossil record and thus

researchers must instead use cross-species comparative analysis [66, 67]. The study of the

evolution of language is so difficult that in their book Language Evolution, Christiansen and

Kirby titled the first chapter “Language Evolution: The Hardest Problem in Science?”

Within this chapter, Christiansen and Kirby describe one of the few consensuses of the

field [26]:

[An] area of consensus is the growing interest in using mathematical and com-

putational modelling to explore issues relevant for understanding the origin and

evolution of language.

Indeed, there have already been several notable computer simulations investigating the

evolution of language, including Kirby’s Iterated Learning Model [83] that demonstrates

how language itself can adapt (i.e., without biological evolution) via pressures arising from

language transmission and learning. The simulations and analysis by Cangelosi and Parisi

[19] suggests that language may have evolved as a byproduct of cognitive abilities, lending

evidence to the spandrel theory. Cangelosi also simulated the emergence of a simple syn-

tax [18] and simple nouns and verbs (with Marocco and Nolfi, [97]). Steels and Vogt [149]

studied language evolution via robotic agents playing language games. Finally, a mathemat-

ical framework for the evolutionary dynamics of grammar learning was developed in [119]

by Nowak, Komarova, and Niyogi. The reader is referred to Cangelosi and Parisi’s book

Simulating the Evolution of Language [20] for further reading on the subject.

A commonality among all the aforementioned theories, models, and simulations is that

there are a number of “preadaptations” that are assumed to have occurred prior to the

emergence of language. While Hauser and Chomsky do not require that such preadaptations

be communicative in nature, most other theories are based on the assumption that some

form of communication must exist before language can emerge.

We look to develop a simulation in which communication emerges from initially non-

communicating agents with the hope of not only demonstrating the strength of the EMM

paradigm, but also of helping inform the debate about the emergence and evolution of

communication—and ultimately language—in nature.

The thesis statement of Part II is:

It is possible to construct an artificial world populated with EMM-based agents

where complex, dialogue-based cooperative communication repeatedly emerges and

evolves from initially noncommunicating agents.
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The objectives of Part II of this thesis are to produce novel results in the simulation of

the emergence and evolution of a cooperative communication scheme using Evolvable Math-

ematical Models by evolving agents that use an evolved communication scheme to transmit

information about two independent variables over a one-dimensional channel, and to inves-

tigate the transferability of EMMs from simulation to robotic hardware.

6.1 Methodology

We look to develop a simulation of the emergence and subsequent evolution of interagent com-

munication. The results should be readily examinable, so that the communication schemes

and their evolutionary trajectories can be observed. Agents from this simulation world should

be transferrable to robotic hardware.

With these goals in mind, we develop an Artificial Life (ALife) simulation where EMM-

based agents are born, reproduce and die. To reproduce, two agents must meet with no in-

formation a priori on the whereabouts of each other. Only a one-dimensional, nondirectional

real-valued communication channel is available to them. This ensures that any information

that an agent has about its neighbour must have been received specifically via the interpreta-

tion of the content of the communication channel. Agents have two outputs: they can control

their own orientation and what values to communicate. Agents automatically move in their

current forward direction at each timestep. Agents can “hear” the communication output

value of their nearest neighbour. When two agents reproduce, they produce one offspring

agent and one randomly selected agent in the simulation is removed. Thus, selection pres-

sure arises not from a fitness function, but instead from the fact that reproductively viable

genomes remain in the simulation within offspring agents, while less reproductively viable

genomes are pushed out before reproduction can occur. Simulations are run for many mil-

lions of timesteps and the reproduction rates (number of reproduction events per timestep)

of agent subpopulations are tracked.

Digital snapshots of the populations are saved at fixed intervals over the course of a

simulation run. Once a run is complete, the snapshot from the interval with the highest

reproduction rate is examined. The top agent (in terms of number of offspring produced)

from this snapshot is isolated, its EMM is displayed and its behaviour and performance are

tested within a separate simulation. This test program is the same as the main simulation,

except that only two clones of the agent undergoing testing are present. These two clones

are run from a variety of initial positions to allow the experimenter to determine which

initial configurations lead to the agents successfully finding each other. It also allows for the

examination of the communication schemes employed by the agent, if any exists/emerges.
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Entire population snapshots are also tested within a different test simulation. Again,

the program is the same as the main simulation, except with reproduction disabled. This

allows for the properties of a given snapshot to be examined without evolution (i.e., without

these properties changing over the course of the test). Experiments run using this testing

framework are used to compare the reproductive viability of a population with and without

the use of its communication channel, as well as to generate communication data for further

analysis.

The evolutionary history of top agents is examined via digital snapshots of populations

that existed before these agents emerged. These snapshots are tested using the same test

simulations described above.

Finally, a top agent’s EMM is selected for hardware testing. A method for transferring

agent inputs and outputs from the simulation world to the real world is devised and the em-

bodied EMMs are run from a variety of initial configurations, as in the test simulation above.

These experiments are used to determine the reproductive viability of these evolved EMMs

when embodied in hardware and the overall amenability of EMMs to hardware transfer.

6.2 Results and Contributions

We developed a novel Artificial Life simulation called NoiseWorld in which EMM-based

agents evolve. The best agents to emerge from these simulations could communicate in-

formation to each other about both their x and y positions, allowing them to locate one

another from any starting configuration. As the provided communication channel was one-

dimensional and nondirectional, this implies that agents were encoding their 2D position in-

formation in some fashion prior to transmission and subsequently decoding it upon message

receipt to extract meaningful information about both position dimensions. The evolution-

ary trajectories leading to these top agents were examined, yielding several insights into the

emergence and evolution of cooperative, dialogue-based communication. A top agent was

embodied in robotic hardware, demonstrating a successful transfer of behaviours evolved in

simulation to real-world situations and highlighting the transferability of EMMs to physical

systems.

6.3 Outline of Part II

A literature review of previous work on the simulation of the emergence and evolution of

interagent communication is presented in Chapter 7. This will include experiments from

Evolutionary Robotics, as well as experiments from the related field of Artificial Life (ALife),
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which will be defined. After the literature review, our novel simulation world, NoiseWorld,

will be presented (Chapter 8). Details about the world itself, as well as the EMM settings

used and other experimental details, will be given. This will be followed by the presentation

and discussion of results from multiple NoiseWorld runs and additional test simulations

(Chapter 9). Chapter 10 will present the hardware experiments and results, and concluding

thoughts will be given in Chapter 11.
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Literature Review

The following literature review will cover the most common experimental paradigms used

in the simulation of the emergence and evolution of communication, as well as those that

are deemed the most relevant to our experiments. For a detailed comparison of previous

work (up until and including 2002), the reader is referred to a paper by Wagner et al. [156].

For an in-depth analysis of more recent experiments, as well as a comprehensive literature

review encompassing work up until and including 2009, the reader is referred to Evolution of

Communication and Language in Embodied Agents by Nolfi and Mirolli [115].

7.1 Communication in Evolutionary Robotics

A number of Evolutionary Robotics experiments have successfully simulated the emergence

of interagent communication.

The experiments by Floreano, Keller, and others described in [52], [107], [108], and [159]

are all based on a similar setup. A group of simulated robots must forage in a 2D environment

for food and are rewarded for the number of timesteps spent on or near the food source. In

some cases, a poison source was also included in the environment, and agents are penalized

for being near it. Each simulated robot can control an onboard light source and possesses

directional light detection capabilities. The connection weights of a fully connected feedfor-

ward neural network controller with a predetermined connection structure were evolved. A

signalling strategy emerged in a variety of experimental scenarios where agents signal to one

another via their light source when they find the food (or poison in some cases). Agents

evolve to be attracted to (or, in the case of poison signalling, repelled by) each other’s light

source. This type of behaviour is most likely to arise when groups are composed of clones of

a single agent and can be successfully transferred to physical robotic hardware [52].

A similar type of scenario as the one described above was used by Wischmann and Pase-
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mann in [160]. Simulated robots must find a food source and groups are composed of clones

of a single genome. The main differences from the runs above were that the neural network

structure was evolvable, and the agents used sound (with directional sound sensors) instead of

light for communication. Furthermore, an incremental evolution approach was used. Robots

evolved to emit sounds upon discovering the food source and to be attracted to these sounds

when not on a food source.

Another common experimental setup used by Marocco, Nolfi, and others appears in [100],

[154], [99], [98] and [36]. A team of simulated robots must coordinate between themselves so

that half of the team resides in one of two target areas, while the other half of the team stays

in the other target area. Variations include having two agents coordinate to be in the same

target area (e.g., [154]) and requiring that two agents occupy separate target areas while

earning additional rewards for swapping target areas [36]. Teams are composed of clones of a

single genome. Agents are recurrent neural networks with a predetermined structure and can

output numerical communication values. Agents also have four directional communication

inputs that can receive communication values from other nearby agents. A communication

scheme emerges in these simulations where several distinct signals are used for interagent

coordination. Results from [36] were successfully transferred to physical robotic hardware.

A commonality across all of the experiments described thus far is that agents have direc-

tional sensors for receiving potential communications. Thus, it is difficult to determine how

much information is being transmitted using an evolved communication scheme (i.e., via the

information content of the signal) versus how much information is being extracted from the

directional properties of the signal itself.

A binary, nondirectional communication channel was used in experiments by Trianni and

Dorigo [150] where four clones of a feedforward neural network with prespecified structure

were tasked with moving their physically connected simulated robots in a coordinated fashion

while avoiding holes in the terrain. A signal emerged that was used to indicate that one of

the robots had detected a hole, and thus the group should change directions. It was also

found that evolved solutions out-performed hand-coded communication protocols. Successful

controllers were ported to s-bot hardware.

In similar work by Ampatzis, Tuci, Trianni and Dorigo [4], a binary, nondirectional com-

munication channel was employed in an experiment where two clones had to adapt their

behaviour depending on which environment they found themselves in. Agents were CTRNNs

with prespecified structure that operated simulated robots. The environment contained ei-

ther a full painted circle on the ground, or one that was broken by a “way in.” Agents could

detect the colour of the ground and thus had to integrate their sensor inputs over time to

determine whether or not there was a “way in.” Agents evolved to signal if they have deter-
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mined that there was no way in, sharing this informing with the other agent (who had not

yet come to this conclusion). Furthermore, it was concluded that the evolution of signalling

was based on already evolved cognitive functions. Successful controllers were again ported

to s-bot hardware.

Experiments by Pugh, Goodell and Stanley in [127] compared the evolvability of commu-

nication using signals with and without directionality. A group of five clones evolved using

HyperNEAT were tasked with collecting food in a 2D world. Food would only be collected

if at least three agents were touching it simultaneously. The results demonstrated that com-

munication regularly evolves when the communication signal contains inherent directional

information, but no interesting communication schemes evolved in the cases without signal

directionality. This is not surprising, however, as the agents did not know their own locations

in the world, nor were they allowed recurrent neural connections, so they could not remem-

ber how far they have moved, nor in what direction. Thus, in the nondirectional cases, it is

difficult to envision what useful information the agents could communicate to one another.

In a separate set of experiments by D’Ambrosio et al. [31], however, a simple nondirectional

signal to determine when a group of clones should leave their positions at a wall (in an effort

to achieve synchronization behaviour) was evolved using HyperNEAT. Top solutions from

both papers were embodied on real Khepera III robots.

“Acoustic coupling” experiments were done by Di Paolo in [39]. Agents are simulated

robots controlled via fully connected CTRNNs with a prespecified structure. Sound is mod-

elled as an instantaneous, additive field with intensity that decreases with the square of the

distance from the source and agents possess two nondirectional, physically separated sound

sensors. The task is for two simulated robots to approach one another and remain within four

body radii of each other. Agents are given individual fitness values averaged over interac-

tions with 10 randomly selected partner agents. A behaviour emerges from these simulations

where an agent rotates while moving to determine the direction of a partner’s sound. After

determining sound direction and using this information to approach one another, the two

partner agents engage in “acoustic coupling” where their signals become phase-locked at

near anti-phase, with corresponding movement coordination.

Tuci, Ampatzis, Vicentini and Dorigo used the same model of sound as Di Paolo, described

above, in experiments where a heterogeneous team of three simulated robots were evolved

as one homogeneous controller [151]. A single fully connected CTRNN with prespecified

structure was copied into two robots that could detect obstacles but not light, and one robot

that could detect light but not obstacles. All robots could emit and detect sound. The team

was tasked with reaching a light source that was placed in one of two ends of a simple maze

and were penalized for collisions and for not staying close together. Teams evolved such
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that all three robots emitted high intensity sounds and then exploited the physics of the

simulation of these sounds to coordinate their actions.

In [128], Quinn devises a scenario where two simulated robots must move at least 25 cm

from their initial positions without straying more than 5 cm from one another and without

colliding. Agents are tested across many different initial conditions and many different part-

ners, with a fitness function penalizing collisions and timesteps where the distance between

the two robots exceeded 5 cm. A communication strategy based on the robots’ proximity

sensors emerged whereby agents would move towards and away from each other to determine

“leader” and “follower” roles. These experiments differ from many of the others in that no ex-

plicit communication channel was provided a priori. Instead, agents evolved to communicate

via proximity sensors whose primary purpose was maintaining interagent distances.

Other experiments in which communication emerges without a dedicated signalling mech-

anism are presented by Williams et al. in [158], with further work done by Manicka in [95].

Two agents, a sender and a receiver, are encoded on a single genome. Both agents exist on

a one-dimensional circular track and can pass through each other. Agents are represented

as CTRNNs with a prespecified structure and can detect each other through angular dis-

tance sensors. Only the sender can detect the target area on the circle, however the fitness

of the sender/receiver pair comes from the ability of the receiver to find and remain in the

target area. Distinct behavioural patterns emerge to allow the sender to communicate target

locations to the receiver via the agents’ proximity sensors.

Many of the experiments described above use explicit group selection; that is, the GA

selection mechanism is applied to groups of agents instead of individuals. Whether this form

of selection plays a part in natural Darwinian evolution is a hotly debated issue (see, e.g., the

article by Nowak, Tarnita and E.O. Wilson in [120] and the reply with 136 scientists listed

as authors in [1]).

7.2 Communication in Artificial Life

The field of Artificial Life (ALife) is broad and highly interdisciplinary. The term is attributed

to Chris Langton [90], who organized the first workshop on the topic in 1987. In announcing

the workshop, Langton defined Artificial Life as follows [10]:

Artificial life is the study of artificial systems that exhibit behaviour characteris-

tic of natural living systems. This includes computer simulations, biological and

chemical experiments, and purely theoretical endeavours. Processes occurring on

molecular, cellular, neural, social, and evolutionary scales are subject to investi-

gation. The ultimate goal is to extract the logical form of living systems.
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Here, we will focus on the computer simulations aspect of ALife.

The following ALife computer simulation experiments differ from the Evolutionary Robotics

simulations described above in two notable ways: There are no fitness functions and no dis-

crete generations. Agents are continually being born and dying off with reproduction inte-

grated directly into the simulation world. ALife simulations are generally more focused on

scientific rather than engineering results.

There have been a few ALife simulation experiments exploring the emergence and evo-

lution of communication. In the work of Werner and Dyer [157], blind but mobile “male”

agents and stationary but sighted “female” agents live in a grid world and must reach the

same grid location to produce one male and one female offspring. Two random agents are

removed from the simulation to make room for the new offspring. Agents are represented

as fully connected recurrent neural networks with prespecified structure. Female agents can

send three communication bits per timestep to nearby males and eventually a signalling

scheme evolved whereby females signal to a male to turn left or right based on his location

relative to hers. The signals are nondirectional and not attenuated by distance, so males

cannot extract any useful information from the properties of the signal itself; all information

must come from their interpretation of the content of the signal.

More recently, the AVIDA platform [92, 121] has been used by Knoester et al. to simulate

the emergence of communication [84]. The agents are evolvable computer programs (i.e.,

instruction sets) arranged in a grid pattern that must compete for virtual CPU cycles (which

can be used for reproduction) by accomplishing simple experimenter-specified communica-

tion tasks. Although no fitness function is used, the evolution is directed by the choice of

communication task.
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NoiseWorld

8.1 Introduction

We now present a novel simulation world, NoiseWorld. The idea behind NoiseWorld is to

develop a simple simulation within which complex communication emerges from populations

of initially noncommunicating agents. One of the key benefits of such a simulation would be

the ability to study the emergence and evolution of communication via digital fossil records,

making up for the lack of fossil records of the emergence of communication in nature.

The experiments reported here focus on simplicity, as it is only after determining the

fundamental mechanisms of the emergence of communication that more complex simula-

tions, e.g., involving predator/prey models, food and energy, and higher social capabilities,

should be attempted. NoiseWorld is provided as open-source software so that the effects of

additional complexities can be studied in the future.

The emergence and evolution of interagent communication is a complicated process, as a

mutation that increases the information content of a sender’s signal will only be beneficial if

a separate listener can interpret the new information in a reproductively beneficial manner.

This is especially complicated when communication has yet to emerge within a population.

What benefits can a sender receive from producing meaningful communications if no one is

listening? Conversely, it would likely be detrimental for an agent to react to what it is hearing

if no meaningful communications are being produced. In the words of John Maynard Smith,

“it’s no good making a signal unless it is understood, and a signal will not be understood

the first time it is made” [140]. Simulation experiments often avoid this issue by having

interacting agents be clones from the same genome. Thus, a mutation in a sender will

simultaneously appear in the receiver. This is not biologically plausible, however, as in

nature interacting agents are rarely genetically identical. Furthermore, in many results in

the literature (see Chapter 7), a certain amount of information is inherent in the signal itself,
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such as how far it has travelled from the sender. This makes it difficult to determine how

much information is being gleaned by a listener from the content of a signal and thus the

level of complexity of the evolved interagent communication scheme. Finally, most simulated

evolution thus far has occurred in discrete generations. This removes the requirement that

communication schemes evolve in a continuous fashion, as the communications of the offspring

need not be understood by their parents, and vice versa.

Biological plausibility is difficult to define and achieve when dealing with ALife simu-

lations. There is one obvious component, however, and that is the transferability of the

simulation world into physical reality. This is addressed through the embodiment of simu-

lated agents in physical robotic hardware (see Chapter 10). Unfortunately, the technology to

create self-replicating robots does not yet exist (although there have been some interesting

advances recently, see, e.g., [163, 164]), therefore physical replication cannot be implemented

at this time.

Another important element in the quest for biological plausibility is the minimization

of experimenter bias. This is achieved in several ways in NoiseWorld. There is no fitness

function, therefore the experimenter has no direct influence on the reproductive viability of

the agents. Furthermore, EMMs are used, thus removing the experimenter bias that arises

from prespecifying the artificial neural structures of the agents. The group selection debate

is also side-stepped in the NoiseWorld simulation, as agents are not forced to interact with

clones of themselves. Agents interacting within NoiseWorld are usually genetically similar (or

identical), which is similar to local subpopulations of biological agents and thus NoiseWorld

may help inform the group selection debate without explicitly choosing a side. Finally, the

lack of discrete generations offers another improvement over the biological plausibility of

the ER experiments, as the evolving communication scheme must remain simultaneously

understandable by both parents and offspring.

As we are creating an artificial world, some experimenter bias is unavoidable. For exam-

ple, we need to specify a coordinate system. Giving agents access to their absolute position

information is detrimental to the biological plausibility of the simulation, however, it is not

without precedent in nature. Honey bees, for example, are able to determine the distance

travelled from the hive and their direction relative to the sun [155]. Furthermore, we allow

for nondirectional signalling, a physical impossibility and thus another point against the bi-

ological plausibility of the simulation. This was deemed necessary to avoid having agents

home in on signals directly, and thus to encourage the emergence of a more complex commu-

nication strategy. We must also define the size of an agent and the speed at which they move.

Obviously, these and other parameters (see Section 8.3 below) will influence the evolution of

the agents within this environment. Avoiding these biases is not straightforward.
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The artificial world will now be described, followed by the simulation details and experi-

mental parameters chosen for the experiments presented here. Results from these experiments

will then be presented, with several top evolved agents that emerged from these simulations

being described and two different digital fossil records being examined. Embodiment (i.e.,

hardware) experiments will be presented in the following chapter.

8.2 The Artificial World

NoiseWorld is a two-dimensional toroidal simulation world containing a number of islands

(Figure 8.1), each with a fixed number of agents that can move freely in any direction on their

island. Islands are infinite in both directions in both dimensions (i.e., −∞ < x < ∞ and

−∞ < y < ∞) and are quasi-reproductively isolated, ensuring that agents are interacting

with kin, which is theorized to be important for the emergence and stability of cooperative

communication (see, e.g., [2, 122, 97, 103, 52], although Di Paolo warns against assuming that

this is owing to kin selection [38]). If two agents meet (i.e., come within a specified distance

of one another, the “reproduction distance”), they reproduce, yielding one offspring agent

(Figure 8.2). To keep the population sizes constant (which in turn keeps other simulation

parameters constant, such as expected distance between neighbours), one randomly selected

agent “dies” for each agent “born.” There is a small chance that offspring will be born on a

neighbouring island. Agents are born on the timestep after their parents reproduce (except

in the case of migration, see Section 8.3) and die when they are randomly chosen to be

replaced by a newly created agent. An agent is born at a randomly assigned position on its

parents’ island (or a neighbouring island in the case of a migration event) with an enforced

minimum distance between the new agent and its nearest neighbour (this distance is the

same as the “reproduction distance”). After a reproduction event, both parent agents are

moved to new random positions on their island and restarted. Selection pressure arises from

the fact that higher reproductive rates lead to lower average agent lifespans, since each birth

leads to a randomly selected agent’s death. This decrease in average lifespan will force less

reproductively viable genomes out of the population. Thus, there are no discrete generations,

no explicit fitness function and no explicitly enforced group selection.

Each agent is represented by an Evolvable Mathematical Model (EMM), a series of differ-

ence equations, embedded as an equation tree in its genome. Each agent is moreover aware

of its geographical position on its respective island, given by orthogonal coordinates x and

y, as well as its orientation θ relative to a specified direction, which defines its instantaneous

direction of motion. It has no information about any other agent. However, it can “listen”

on the real-valued communication channel from its nearest neighbour as well as emit a signal
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Figure 8.1: Arrangement of 100 islands in the toroidal NoiseWorld simulation. Arrows show
possible migration routes outward from a given island for the experiments presented here.
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Figure 8.2: A reproduction event on a single 50 agent island in a NoiseWorld simulation. The
distance between the centres of the two circled agents is less than the reproduction distance,
so the two agents become parents and produce one offspring. After the reproduction event,
all three agents (the two parents and their one offspring) are moved to new random locations.

ω on its own channel (Figure 8.3). Agents cannot determine the direction from which signals

are emitted nor are signals attenuated by distance. This is to prevent agents from being able

to home in on communication signals directly.

Time in NoiseWorld is discrete and, at each timestep, an agent moves one unit of dis-
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Figure 8.3: Details of the NoiseWorld simulation world. The robots shown in this diagram
are e-puck robots, which are used in the hardware experiments.

tance (modified by Gaussian noise) in direction θ (also modified by Gaussian noise). For

convenience, we define an era as 100,000 timesteps. Offspring are produced by randomly

combining the genomes from the two parents, with various mutations occurring with small

probabilities. These recombination and mutation operations, as well as the initialization

method, are the same as those described in Section 4.2.2 and will be summarized below.

Initial agents, as well as random subtrees for subtree mutations, are generated using the

ramped half-and-half method using maximum depths of 1 or 2 with equal probability. If

a tree mutation is to occur, it can be a point mutation or a subtree mutation. If a point

mutation is to occur and if the tree in question contains one or more constants, there is a

probability that the mutation will be a perturbation of a constant. In this case, a random

value will be added to a randomly selected constant. If a perturbation of a constant was

not performed, a random node in the tree undergoing mutation will be selected. If this

node is a nonterminal node, it will be changed to a new, randomly chosen operation (e.g.,

from addition to multiplication). If this node is a terminal node, it will either be changed

to a randomly selected variable from u and v or it will be changed to a randomly selected

real-valued constant.

If a subtree mutation is to occur, a randomly selected node on the tree in question is
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replaced with a randomly generated tree. With a small probability, the roles of the subtree

and the original tree are swapped, i.e., a random node on the randomly generated tree is

replaced with the entire original tree and this becomes the new tree of the offspring.

Every offspring is produced via equation-level sexual recombination, receiving at least

one equation tree from each of its two parents. This is always possible, as agents have two

outputs and thus always have at least two equations in common (the two equations that

modify these two outputs). This differs from the implementations in Part I where equation-

level sexual recombination would only occur with a certain probability and only if the two

parents had more than one equation in common. This modification was made to improve

biological plausibility in our NoiseWorld simulations, as offspring in nature contain genetic

material from both of their parents. Tree-level recombination cannot be employed for this

purpose, as it is a disruptive operation that is usually highly detrimental for the reproductive

viability of the offspring, and thus must be applied sparingly to maintain reproductively viable

populations.

Tree-level sexual recombination will occur in an equation tree with a given probability.

Here, a randomly selected node will be replaced by a subtree randomly selected from all

subtrees in a parent genome. When choosing subtrees during tree-level recombination oper-

ations, there is a chance that the root node will be a terminal node, otherwise it will be a

nonterminal node. Since this subtree can come from any one of a parent’s equation trees,

this operation allows for genetic material to travel between trees.

An offspring is subject to an “add equation” mutation with a certain probability. This

mutation produces a new randomly generated equation tree with a randomly generated initial

condition. A new variable vj , which is what this new equation tree will be modifying, is added

to v. The new variable vj is also randomly incorporated into an existing equation, either

through a point mutation or a subtree mutation, as described above. Finally, vt=0
j is set to

a random value.

An equation’s initial value vt=0
i is also subject to mutation. When such a mutation occurs,

the value is either set to a new random value, or it has a random value added to it.

A multiplier (β) is used to scale mutation and crossover probabilities to keep the expected

number of genetic operations per unit time on each island constant. Without using β, an

island population with a high birth rate will experience more mutations and tree grafting

operations per timestep than a neighbouring island with a lower birth rate, owing to the fact

that genetic operators are applied when creating offspring genomes.

An agent’s genome is allowed to have an experimenter-defined maximum number of nodes

across all of its equation trees. If an offspring is born with more than the maximum number of

nodes, it dies immediately. If one or more of an agent’s output variables exceed the minimum
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or maximum representable floating-point number, the agent will have that output set to a

random value and will be selected to die when the next birth occurs.

In the simulation world, agent controllers have three inputs and two outputs, all real-

valued and unbounded. The inputs are the agent x and y positions, and the communication

channel input ωin (i.e., the unbounded communication value from the agent’s nearest neigh-

bour). The two unbounded outputs are θ (in radians) and the communication channel output

ωout. All inputs and outputs have Gaussian noise applied to them at each timestep. Thus

at each timestep, an agent knows its current x and y position, as well as the communication

output of its nearest neighbour from the previous timestep. It can then use this information

to update its outputs (via its EMM) to determine its orientation for the next ∆t step, as

well as what it will “say” next on its communication channel. The new x and y positions of

an agent are determined from its outputs as follows:

xt+∆t = xt +∆t(S cos θt) (8.1)

yt+∆t = yt +∆t(S sin θt) (8.2)

where S is the fixed, experimenter-defined agent speed. Gaussian noise is applied to S and

θt for each agent at each timestep. Note that the agents do not have any information as to

the whereabouts of their neighbours; they are in essence “blind.”

8.3 Experimental Parameters

Hundreds of NoiseWorld simulation runs were executed to determine parameter settings

that would repeatedly produce high quality results. The parameters that we settled upon

will now be presented. Note that while high-level mutation and recombination rates are

different owing to the vast differences in the experiments, many of the parameters affecting

the internal workings of these operations are identical to those used in the benchmarking

runs (see Section 4.3).

For all experiments presented here, the NoiseWorld simulation contains 100 islands of 50

agents each. Thus, the total number of agents per NoiseWorld run is 100× 50 = 5,000. An

offspring is born on a neighbouring island with a probability of 0.001 (migrants are not born

until after an island synchronization/migrant exchange, see below). The island for migration

is randomly selected from the four islands that are connected to the island of the offspring’s

parents. Diagonal migrations are not allowed (see Figure 8.1). Whenever random positions

are assigned to agents, they are always in the range −1 < x < 1, −1 < y < 1 and the

position must be at least 0.139 units from all other agents. This distance of 0.139 units is
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the “reproduction distance,” i.e., if the centres of two agents are less than 0.139 units apart,

the two agents will reproduce. We set the speed of all agents in our simulation runs to be

S = 0.0005 perturbed with random values drawn from a Gaussian distribution with mean 0

and standard deviation 1.25× 10−5.

Random constants are chosen from the uniform distribution [−5, 5] and random initial

values vt=0 are selected from the uniform distribution [−1, 1]. When applying noise to in-

puts and outputs, random values are drawn from a Gaussian distribution with mean 0 and

standard deviation 0.025.

A mutation will occur in an equation tree with a probability of Pµ = β [0.0025/(N +N ′)],

where N+N ′ is the number of trees in the genome and β is independently calculated on each

island every 10,000 timesteps as 500/γ, where γ is the number of births in the past 10,000

timesteps on the island in question. The β multiplier has an enforced maximum value of 100

and no minimum value.

A tree mutation will be a point mutation with a probability of 0.5; otherwise, it will be a

subtree mutation. Assuming a tree chosen for a point mutation has at least one constant, the

point mutation will perturb a randomly selected constant with a probability of 0.5 and using

a random value drawn from a Gaussian distribution with mean 0 and standard deviation 0.5.

If a terminal node is to be mutated, it will be changed to a new variable or a new constant

with equal probability.

During subtree mutation, the roles of the two trees are swapped with a probability of

0.05.

Tree-level sexual recombination occurs with a probability of Pµ. When choosing root

nodes for this operation, there is a 10% chance that a root node will be a terminal node,

otherwise it will be a nonterminal node.

An offspring is subject to an “add equation” mutation with a probability of 0.0025β and

has a 10% chance of undergoing equation reductions.

An equation’s initial value vt=0
i is mutated with a probability of Pµ. When such a mutation

occurs, 50% of the time the value is set to a new random value, otherwise it has a random

value added to it. This random value is taken from a Gaussian distribution with mean 0 and

standard deviation 0.25.

Agents can have a maximum of 200 nodes across all of their equation trees.

All simulation experiments were run for 48 wall clock hours on a dedicated Linux server

with an Intel Xeon E5540 at 2.53GHz. Owing to the stochastic nature of the simulation

and to variable genome sizes (larger genomes take more computation time to evaluate), the

number of timesteps per 48 wall clock hour simulation varies. Each island is implemented as

a separate process so that the algorithm can take full advantage of the parallel architecture
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of the Intel Xeon CPU (8 cores/16 threads). A master/slave parallel implementation is used,

where a “master” process handles the synchronization of “slave” processes (i.e., the islands).

Islands are synchronized and migrants exchanged every 10,000 timesteps. Islands introduce

incoming migrants into their subpopulations at a rate of ξ/10,000 migrants per timestep,

where ξ is the number of migrants received at the previous synchronization. Computations

were performed on the GPC supercomputer at the SciNet HPC Consortium [94].
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Results and Discussion

9.1 Experimental Results

Three sets of 20 simulation runs were executed using the parameter settings described above.

Each of the 20 runs in a given set had different initial populations, but initial populations

were consistent across the sets of 20 runs (i.e., the initial population of run 1 in the first

set of experiments is the same as the initial population in the first run of the second set of

experiments, etc.). The first set of 20 runs was the canonical run, set up as described in

previous sections. The second set of runs was identical to the first, except that θ = 0 was

aligned with the positive y axis instead of the positive x axis. Finally, the third run is identical

to the first, except that equation-level sexual recombination was disabled. We call any given

simulation run a “successful run” if one or more islands achieve a maximum reproductive

rate of more than 22,000 births per era at some point within its allotted 48 wall clock hours.

Over the course of many simulation runs, only subpopulations that explicitly communicated

both their x and y positions were able to exceed this reproduction rate, i.e., a subpopulation

that only explicitly communicates about either its x or y position was never seen exceeding

22,000 births per era. Table 9.1 summarizes the results from these experiments.

Table 9.1: Summary of NoiseWorld experiments. All results are from 20 runs with different
initial populations. We use µ to denote mean and σ to denote standard deviation.

Experiment Best Repro. Rate # Eras # Success
µ σ µ σ

Canonical 20,949 2,205 1,341 247 4
θ = 0 aligned with +ve y 20,290 1,798 1,330 323 2
No Eqn-level crossover 18,057 3,233 1,090 194 2

While the runs using equation-level sexual recombination had high top reproduction rates

72
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on average, only 15% of them managed to be successful, i.e., to exceed a reproduction rate

of 22,000 births per era. This suggests that communication regularly emerges within Noise-

World, but that the transition from communicating about a single variable to communicating

about two variables is rare. This should come as no surprise, however, as agents are com-

municating over a 1D channel and thus significant complexification is required to transition

from simply broadcasting one of your position variables on your channel (see, e.g., snapshot

II from run 1 and snapshots IV and V from run 2, below) to being able to encode and decode

two-dimensional position information (see, e.g., snapshot III from run 1 and snapshot VI

from run 2, below).

Even though equation-level sexual recombination was implemented primarily for improved

biofidelity, these experimental results also demonstrate another benefit: smaller genomes and

thus lower computational complexity. Over the course of 48 wall clock hours, simulation runs

with equation-level sexual recombination disabled execute only about 81% of the number of

timesteps as the canonical runs, on average. Thus there is increased computational complex-

ity within these runs, and seeing as they average less reproduction events and perform less

operations per reproduction event (as no equation-level recombination is being performed),

the increased computational complexity must be coming from within the agents themselves.

This makes sense, as in the cases with forced equation-level recombination, if two parents

have large genomes and one or more different extra equation trees, their offspring could po-

tentially inherit a large genome as well as some or all of the extra equations unique to only

one of the parents. Thus, such offspring run the risk of exceeding genome size limits and

dying prematurely. This engenders a selection pressure for agents to have compact genomes

so that they can produce reproductively viable offspring. No such pressure exists in the runs

without equation-level recombination, as offspring will only inherit the extra equations of a

single parent. Agent genomes are thus free to grow to near the maximum allowed size.

9.2 Emergence and Evolution of Communication

We show data from two different simulation runs of NoiseWorld, one from a run with θ = 0

aligned with the positive x axis (which we will henceforth call “run 1”) and one from a run

with θ = 0 aligned with the positive y axis (henceforth called “run 2”). The reproduction

rates over the course of these two runs are shown in Figures 9.1 and 9.2, respectively. The

reproductive viability of the population is increasing over time; thus we have evolution.

Furthermore, the island populations seem to be evolving in manner consistent with the theory

of punctuated equilibria, which proposes that species will exhibit little evolutionary change

for most of their history, punctuated with rare speciation events that occur relatively rapidly
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snapshot I

snapshot II

snapshot III

Figure 9.1: The reproduction rate (number of reproduction events per era) of the top island
from run 1 over the course of the simulation. Note that all major plateaus (i.e., 1-49 eras,
50-591 eras, 592-1124 eras and 1125-1430 eras) are statistically distinct (pairwise Wilcoxon
rank-sum tests, all P < 0.00001). Also shown is the average and standard deviation of the
reproduction rate across all 100 islands in the simulation. The three red dots (I, II, III) show
the three population samples that were selected for further analysis.

snapshot II

snapshot I

snapshot III

snapshot IV

snapshot V

snapshot VI

Figure 9.2: The reproduction rate (number of reproduction events per era) of the top island
from run 2 over the course of the simulation. Also shown is the average and standard deviation
of the reproduction rate across all 100 islands in the simulation. The six red dots (I, II, III,
IV, V, VI) show the six population samples that were selected for further analysis.

[46]. This is contrary to the theory of phyletic gradualism, which proposes that speciation is

slow and uniform.

While increased reproductive viability demonstrates that the agents are evolving over

time, it does not necessarily indicate that communication has evolved. In Figures 9.3 and
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9.4, snapshots of the same island populations from various epochs (marked in Figures 9.1

and 9.2 with red dots) are run for an era during which evolution is suppressed (i.e., there

are no births or deaths, although to simulate the effects of births and deaths, there is a

small probability that an agent will be moved to a new random position and restarted)

and the communication channel is, by turn, disabled (signals are zero with Gaussian noise),

randomized (signals are randomly chosen from the range [−1, 1] at each timestep) and fully

enabled.

These data were collected from a test simulation. Test runs last for 1 era (100,000

timesteps) and use genomes from a snapshot of an island population (i.e., an island’s 50

genomes at a given timestep during the main NoiseWorld simulation). The agents are ini-

tially placed randomly in the test world and initialized. If during the test simulation two

agents encounter one another, the event is counted as a reproduction event, but no offspring

genome is created. Instead, the two parent agents are moved to new random locations and

reinitialized. This prevents any evolution during the test simulations. The effects of births

and deaths were simulated by moving an agent to new random position and reinitializing it

with a probability of 0.001 per agent per timestep.

For any given snapshot test reported, the above test simulation was run 100 times with

different random initial agent positions.

At snapshot I in run 1 (Figure 9.3), it is obvious that there is no communication on the

island, as an enabled communication channel does not provide any reproductive benefits.

However, as time progresses, the channel becomes significantly more important to the popu-

lation’s reproductive success. A beneficial communication scheme has emerged by snapshot

II and continues to evolve through snapshot III.

At snapshot I in run 2 (Figure 9.4), it is again obvious that there is no communication

on the island, as an enabled communication channel does not provide any reproductive

benefits. Interestingly, there are slight differences in reproductive success across the various

channel settings at snapshot II, indicating that some agents are modifying their behaviours

based on their communication input. By snapshot III, however, this listening behaviour

seems to have evolved away, as modifying the communication channel again produces no

changes in the island’s reproductive success. As time progresses, a beneficial communication

scheme emerges and the channel becomes significantly more important to the population’s

reproductive success.

In an attempt to quantify the amount of information being transmitted between agents,

Shannon’s information entropy of the top agent’s communication output variable was calcu-

lated for the various simulation snapshots. For these entropy calculations, the communication

outputs of the top reproducing agent in the snapshot are recorded throughout the test sim-
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Figure 9.3: Performance (in terms of reproduction rate) of the three population snapshots
from run 1 with the communication channel set to 0 with Gaussian noise, uniform random
values from [−1, 1] and with the communication channel enabled as in the original simulation.
Error bars show standard deviation across 100 runs with different initial agent configurations.

ulation described above, yielding 100, 000 × 100 = 10,000,000 real-valued communication

output values per test set. The equation for entropy H (Ω) is:

H (Ω) = −
∑

i

P (ωi) log2 P (ωi) (9.1)

where Ω is the set of all possible communication outputs and 0 log2 0 = 0.

To evaluate this equation using real data, one must create a probability distribution from

the real-valued communication outputs. To do this, a binning technique was used whereby

communication values were rounded down to the nearest tenth of an integer. For example, for

these calculations, 1.00 and 1.09 are considered the same communication output ωi, while 1.10

and 1.11 would both be considered communication output ωi+1. All recorded communication

output data are rounded in this fashion and then the number of occurrences of each ωi is

tallied. Finally, these tallies are divided by the total number of recorded communication

outputs to give the probability distribution P (Ω).

Figure 9.5 shows the results of these information entropy calculations for the three snap-
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Figure 9.4: Performance (in terms of reproduction rate) of the six population snapshots from
run 2 with the communication channel set to 0 with Gaussian noise, uniform random values
from [−1, 1] and with the communication channel enabled as in the original simulation. Error
bars show standard deviation across 100 runs with different initial agent configurations.

shots taken during run 1. The information entropy of the agent’s signals increases as the

communication scheme evolves. This indicates an increasing maximum information trans-

mission capacity, but does not yield insight into the content of the signal nor the amount

of information being extracted by the receiver [45]. Figure 9.6 shows a similar increase in

information transmission capacity of the communication signals of the top agent from the

snapshots taken during run 2.

9.3 Evolved Communication Schemes

Let us now examine more closely the evolved communication schemes. Figures 9.7–9.10 show

four different test runs with two copies of the top agent from run 1. The two agents are able

to find each other from all four starting configurations. In fact, these agents can find each

other from any starting configuration (see Figure 9.11). The equations of the agent’s EMM
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Figure 9.5: The Shannon information entropy of the communication output variable of the
top reproducing agent from each snapshot of run 1 using data gathered as it interacts with
other agents on its island.

Figure 9.6: The Shannon information entropy of the communication output variable of the
top reproducing agent from each snapshot of run 2 using data gathered as it interacts with
other agents on its island.
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Figure 9.7: A test run using two clones of the top agent from run 1. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

are

θt+∆t = −5.50yt + ωt
in (9.2)

ωt+∆t
out = 5.50yt − 1.39

(ωt
in − 5.50yt)(1.53 + xt)

(9.3)

As agents are provided with no direct information about the whereabouts of their neighbour,

any such information must be received via the one-dimensional communication channel. Fig-

ures 9.7 and 9.8 show successful test runs from vertically and horizontally aligned starting

configurations, respectively. This clearly demonstrates that the agents are able to interpret

both x and y position information about their neighbour via communication. The agent’s

evolved communication equation (9.3) corroborates this claim; it contains both the agent’s x

and y position inputs. Hence, agents encode information about their positions and transmit

it while the neighbouring agents decode it and use it in determining their motions. Further-

more, an agent’s output signal is affected by its input signal from its nearest neighbouring

agent. Note that ωin appears in the agent’s communication output equation (ωout). Thus

communication between neighbours is a dialogue.

The evolved communication scheme from run 1 appears to have two modes, “lateral” and
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Figure 9.8: A test run using two clones of the top agent from run 1. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

“longitudinal.” This reflects how the agents see their world; they locate themselves by a

rectangular coordinate system (x and y) and their orientation θ is determined relative to a

specified direction (in this case, θ = 0 is aligned with the positive x direction). The longi-

tudinal mode (see Figure 9.7) operates at a low order of magnitude and contains primarily

y position information. Furthermore, there is a high degree of symmetry in the communica-

tion and movement behaviours of the two agents. On the other hand, agent behaviours in

the lateral mode are highly asymmetrical (see Figure 9.8), with one of the communication

outputs operating at a different order of magnitude than the other. To better visualize these

two orders of magnitude simultaneously, 3
√
wout is plotted in all figures here, as it has the

effect of squashing the original signals while preserving their sign.

The two test cases with diagonal starting configurations (Figures 9.9 and 9.10) demon-

strate that agents start out in the longitudinal mode and transition to the lateral mode as

they converge upon a common y position. It is interesting to note that this is also the order

in which these behaviours evolved, as communication about y positions emerged first (see

Section 9.4). We also see successful agents that have evolved with the behaviours of their

longitudinal and lateral modes swapped (see Figures 9.14–9.17). This is clearly seen in the
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Figure 9.9: A test run using two clones of the top agent from run 1. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

top agent EMM from run 2:

θt+∆t = 3.06xt − ωt
in (9.4)

ωt+∆t
out = 3.06xt +

8.88

(3.06xt − ωt
in) (3.00y

t + 6.36)
(9.5)

which has a very similar structure as the top EMM from run 1 ((9.2) and (9.3)) but with

the positions of the x and y inputs swapped (there are differences in constants and signs as

well). The evolutionary trajectory towards this agent is also opposite to the one leading up

to the top agent of run 1, with communication about x positions emerging first (again, see

Section 9.4).

The behaviour of the ωout output of the top agent from run 1 is explored further in

Figures 9.12 and 9.13. Figure 9.12(a) shows that when ωin = 0, ωout outputs predominantly

scaled y values, except when y is close to 0, in which case x values begin to influence ωout.

Notice that in this case, lower x values produce exponentially higher ωout values. This is

consistent with the behaviours seen above (see, e.g., Figure 9.9), namely that the agent

with the lower x position outputs communication values on a higher order of magnitude

than the other agent when in “lateral” mode. Figure 9.12(b) shows that when a top agents
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Figure 9.10: A test run using two clones of the top agent from run 1. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

hears inputs at a higher order of magnitude, in this case ωin = 100, their ωout values are

scaled y values for all values of x. Why this occurs is obvious when examining (9.3 ), as

the second term goes to zero as ωin → ∞, leaving ωt+∆t
out = 5.50yt. The figures in 9.13 show

the behaviours of ωout at four other ωin values: -3, -1, 1, and 3. Notice that the y value at

which ωout begins to contain x information moves in the positive direction as the values of

ωin are increased. This is consistent with the behaviours described above, namely that agents

operate in “longitudinal” mode until they converge on a common y position (as determined

by comparing their y position to their ωin value), at which point they switch to “lateral”

mode and begin communicating x information.

Simplified top agent EMMs from three other NoiseWorld runs are:

θt+∆t = ωt
out + 0.91yt − vt3

ωt
out − ωt

in − 0.03
(9.6)

ωt+∆t
out = −0.06− yt − vt3

−0.06− yt − (2.29/vt4v
t
5)− ωt

in

(9.7)
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Figure 9.11: A visualization of 10,000 tests with one agent always starting in the middle and
the second agent starting from randomly generated positions. If the two agents manage to
reproduce within a 3,000 timestep test run, a blue dot is placed on the second agent’s starting
position, otherwise a red dot is placed. This figure shows such a test for two clones of the top
agent from run 1. All 10,000 test runs were successful.
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Figure 9.12: ωout values for the top agent from run 1 at various x and y input values and with
either (a) ωin = 0 or (b) ωin = 100.

θt+∆t = −1.59 +
−0.76 + 1.58 (yt − 1.40)− vt3 ((1.71− xt + vt4) /4.49v

t
5v

t
6)

8.57 (1.15 + xt) + ωt
in

(9.8)

ωt+∆t
out = −8.42

(

1.15 + xt
)

+
2.51 (yt − 1.22)

8.42 (1.15 + xt) + ωt
in

(9.9)
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Figure 9.13: ωout values for the top agent from run 1 for various x and y input values and
with (a) ωin = −3, (b) ωin = −1, (c) ωin = 1, or (d) ωin = 3,.

θt+∆t = −0.80 + 0.50xt

ωt
in + yt

(9.10)

ωt+∆t
out = −yt +

2.14 (0.80 + 0.50xt)

(ωt
in + yt) (−7.09 + 5.33xt − xtxt)

(9.11)

The equations for the extra variables vi, i = 3...N+N ′ are omitted. The reproduction rate on

the island from which the top agent from run 1 was extracted was 23,394 reproduction events

per era, while for run 2 it was 22,994. For the three EMMs shown above, the reproduction

rates on their islands when they were extracted were 23,072, 25,281 and 25,295 reproduc-

tion events per era, respectively. These evolved EMMs illustrate the variability of solutions
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Figure 9.14: A test run using two clones of the top agent from run 2. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

produced from different NoiseWorld runs. Furthermore, all five of these top solutions con-

tain the communication input variable in their communication output equations, suggesting

that the dialogue property of these communication schemes may be a crucial component in

communicating 2D information over a 1D channel.

Figures 9.18–9.21 show four test runs using the EMM in (9.10) and (9.11), which is

the top agent from the island with the highest reproduction rate across all simulation runs

reported here. While the “lateral” and “longitudinal” modes are still obvious in Figures 9.18

and 9.19, there is no sign of the “lateral” mode when agents start in diagonal configurations

(Figures 9.20 and 9.21). Even though the two agents are clearly moving diagonally to reach

each other, the communication outputs are qualitatively very similar to those seen in typical

“longitudinal” mode behaviours where agents movements are predominantly vertical. It

would appear that the “longitudinal” mode has evolved to communicate more x position

information than in other cases shown here. Furthermore, the information entropy for this

top agent’s communication scheme is lower than the values for the top agents from run 1 and

run 2 (6.04 bits versus 7.54 bits and 7.14 bits, respectively). This indicates that this agent

is using the information transmission capacity of its communication scheme more efficiently

than those seen in run 1 and run 2.
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Figure 9.15: A test run using two clones of the top agent from run 2. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

9.4 Analysis of Evolutionary Trajectories

These NoiseWorld simulations provide a unique opportunity by generating digital archaeolog-

ical records of the emergence and evolution of the complex communication schemes described

above. Figures 9.22–9.24 show three major milestones in the evolutionary trajectory of run

1. Early in the simulation at snapshot I (Figure 9.22), the top agent’s EMM equations are

θt+∆t = θt + vt3 (9.12)

ωt+∆t
out = 3.74yt (9.13)

vt+∆t
3 =

−3.82

(θt − 2.46)(−0.67− ((θt + vt3)/(y
t − 4.81)))

(9.14)

Agents have evolved to drive in circular patterns based on their y positions, yielding some

reproductive benefits without the need for cooperative communication. Furthermore, while

the agents are not “listening,” their communication outputs contain information about their

y positions. These are neutral communication outputs (or “purposeless sounds” as Darwin

called them [34]) because they neither help nor hinder reproductive viability. Their complex-

ity coupled with their similarity to later, reproductively beneficial communication schemes
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Figure 9.16: A test run using two clones of the top agent from run 2. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

suggests shaping by selection, perhaps through one or more communication “false starts.”

Figure 9.25 shows further evidence of “false starts,” as before communication becomes

fixed in the population, a significant percentage of the population seems to be modifying their

behaviour based on what they are hearing (i.e., their θt+∆t equation contains ωt
in) at several

eras that are separated by periods where this “listening” behaviour is completely absent from

the population.

This “false starts” hypothesis of how adaptive communication might emerge from initially

noncommunicating agents differs from both the “receiver bias” hypothesis first put forth by

Dawkins and Krebs [35] and the “producer bias” hypothesis put forth by Mirolli and Parisi

[104] (see also [4]). The receiver bias hypothesis postulates that communication emerges to

allow senders to exploit preexisting listening behaviours that evolved for some other adaptive

purpose in the receivers. This is obviously not occurring here, as the EMM of the top

agent at snapshot I does not contain the communication input variable. The producer bias

hypothesis postulates that senders may first evolve to produce signals that are correlated

with some environmental features and that provide some adaptive benefit to the sender,

such as helping it to internally categorize experiences. Receivers can then evolve to exploit

the information in these signals for their own benefit. Again, the EMM of the top agent at
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Figure 9.17: A test run using two clones of the top agent from run 2. The top figure shows
the movements of the two agents over time, while the bottom figure shows 3

√
ωout for the two

agents over time.

snapshot I allows us to rule this theory out, as its own communication output does not appear

on the right hand side of any of its equations. The receiver bias hypothesis is used to explain

how a manipulative communication scheme might emerge, while the producer bias hypothesis

is used to explain how an altruistic communication scheme might emerge. In NoiseWorld,

communication is neither manipulative nor altruistic; it is cooperative. Thus, perhaps a third

theory is required, namely our “false start” theory, for which further evidence is uncovered

in the analysis of the evolutionary trajectory of run 2, below. The idea of “false starts” can

also be thought of as multiple iterations of evolution exploiting a receiver bias, which might

then create a producer bias (or vice versa), which might then be exploited to further develop

the receiver bias, and so on until communication becomes fixed in the population.

At snapshot II (Figure 9.23), the top agent’s EMM equations are

θt+∆t = 2.45(ωt
in − 4.36yt) (9.15)

ωt+∆t
out = 4.36yt (9.16)

Agents have evolved to utilize a communication signal similar to the previously neutral one

to obtain significant reproductive benefits. Evidence of neutral communications being co-
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Figure 9.18: A test run using two clones of the EMM from (9.10) and (9.11). The top figure
shows the movements of the two agents over time, while the bottom figure shows 3

√
ωout for

the two agents over time.

opted for adaptive communication was also uncovered by de Greeff and Nolfi in [36]. Since

the information being communicated is about an agent’s y position, it is no surprise that

the agents are reproductively successful from vertically aligned starting configurations (see

Figure 9.28). At this point, no “plan B” has evolved for when agents are not vertically

aligned. It is clear from the agent output equations that once agents converge to a common

y position, they will move in a fixed direction indefinitely.

At snapshot III (Figure 9.24), the top agent’s EMM equations are

θt+∆t = ωt
in − 5.50yt (9.17)

ωt+∆t
out = 5.50yt − 1.39

(1.53 + xt)(ωt
in − 5.50yt)

(9.18)

We see that the communication output has undergone complexification. While the y position

variable remains relatively unchanged from the previous milestone, a new term containing

both x and y position inputs as well as ωin has evolved. Thus, neighbouring agents are

now explicitly in dialogue and are transmitting encoded x and y position information over

one-dimensional channels. Agent orientation output equations have remained relatively un-

changed, suggesting that the communication scheme evolved to further exploit preexisting
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Figure 9.19: A test run using two clones of the EMM from (9.10) and (9.11). The top figure
shows the movements of the two agents over time, while the bottom figure shows 3

√
ωout for

the two agents over time.

listening behaviours (for other examples of evolution exploiting preexisting behaviours, see

[98, 36]).

Figure 9.26 shows the distribution of various variables across agent equations over the

eras where the complexification between snapshots II and III occurs. It is interesting to note

that there are “false starts” here as well, as complexification seems to occur twice, separated

by the population falling back to its previous communication scheme, before a new scheme

becomes fixed in the population. Note that when the new scheme becomes fixed, both

the x input variable and the ωin variable seem to enter the population’s communications

simultaneously. This could be explained by a migration event introducing a new, highly

beneficial subfunction containing both variables, or it could just be that the resolution of the

snapshots is too coarse. Figure 9.27 shows the distribution of various variables across agent

equations for the entire length of run 1. This demonstrates the stability of communication in

NoiseWorld, as once it becomes fixed in the population, it does not disappear. However, the

more complex communication scheme is not as stable, as late in the simulation the population

returns back to the simple signalling strategy.

A second evolutionary trajectory was examined, this time from run 2, where θ = 0 was

aligned with the positive y direction. More emphasis was placed on the emergence of commu-
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Figure 9.20: A test run using two clones of the EMM from (9.10) and (9.11). The top figure
shows the movements of the two agents over time, while the bottom figure shows 3

√
ωout for

the two agents over time.

nication during this analysis, therefore there are six snapshots instead of the previous three,

with the first three of these coming before communication has become fixed in the population

(see Figures 9.29–9.34). Figure 9.4 shows the reproductive success of these six snapshots.

Snapshot II seems to have some communication occurring, although it has disappeared by

snapshot III. This provides further evidence for the “false starts” theorized above. Figure

9.6 shows Shannon’s information entropy of the communication output of the top agent from

each of these snapshots. Again we see evidence of “false starts” shaping initial communica-

tion outputs, as the maximum potential information content seems to be rising steadily, even

before communication has become fixed in the population.

The simplified genomes of the top agent from each snapshot are as follows. The EMM

for snapshot I is

θt+∆t = 1.57vt3 − xt − 2.97 (9.19)

ωt+∆t
out = −1.42 (9.20)

vt+∆t
3 = vt4 − 4.00 (9.21)

vt+∆t
4 = vt4 − 4.00 (9.22)
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Figure 9.21: A test run using two clones of the EMM from (9.10) and (9.11). The top figure
shows the movements of the two agents over time, while the bottom figure shows 3

√
ωout for

the two agents over time.

The EMM for snapshot II is

θt+∆t = 1.57vt3 − xt − 2.97 (9.23)

ωt+∆t
out = −1.05 +

xt

vt4
(9.24)

vt+∆t
3 = vt4 + vt5 (9.25)

vt+∆t
4 = −5.05 +

xt

vt4
(9.26)

vt+∆t
5 =

ωt
in

ωt
out

(9.27)

The EMM for snapshot III is

θt+∆t = θt +
9.20

3.43 + 268.60ωt
out

(9.28)

ωt+∆t
out = 1.43xt − 6.39 (9.29)
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Figure 9.22: Test run for snapshot I taken during simulation run 1. The EMM used is shown
in (9.12), (9.13) and (9.14).
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Figure 9.23: Test run for snapshot II taken during simulation run 1. The EMM used is shown
in (9.15) and (9.16).
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Figure 9.24: Test run for snapshot III taken during simulation run 1. The EMM used is shown
in (9.17) and (9.18).

Figure 9.25: Percentage of the population of island 64 in run 1 containing various variables in
their output equations, over the first 60 eras. If an output equation is modified by an extra
state variable that is in turn modified by the variable in question, this variable is counted as
modifying the output in question. Note that neutral variables (e.g., if the variable is divided
by ∞) are still counted.
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Figure 9.26: Percentage of the population of island 64 in run 1 containing various variables
in their output equations, over eras 450 to 650. If an output equation is modified by an extra
state variable that is in turn modified by the variable in question, this variable is counted as
modifying the output in question. Note that neutral variables (e.g., if the variable is divided
by ∞) are still counted.

Figure 9.27: Percentage of the population of island 64 in run 1 containing various variables
in their output equations, over the entire run. If an output equation is modified by an extra
state variable that is in turn modified by the variable in question, this variable is counted as
modifying the output in question. Note that neutral variables (e.g., if the variable is divided
by ∞) are still counted.

The EMM for snapshot IV is

θt+∆t =
2.34

1.31xt − ωt
in + (2.34/ (1.44xt − ωt

in + θt))
(9.30)

ωt+∆t
out = 1.44xt (9.31)
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Figure 9.28: A visualization of 10,000 tests with one agent always starting in the middle and
the second agent starting from randomly generated positions. If the two agents manage to
reproduce within a 3,000 timestep test run, a blue dot is placed on the second agent’s starting
position, otherwise a red dot is placed. This figure shows such a test for two clones of the top
agent from snapshot II of run 1. Of the 10,000 test runs, 4,253 were successful.

The EMM for snapshot V is

θt+∆t = 1.93xt − ωt
in +

1.30

ωt
out − ωt

in + (1.30/ (1.77xt − ωt
in + θt))

(9.32)

ωt+∆t
out = 1.77xt (9.33)

Finally, the EMM for snapshot VI is

θt+∆t = 3.06xt − ωt
in (9.34)

ωt+∆t
out = 3.06xt +

8.88

(3.06xt − ωt
in) (3.00y

t + 6.36)
(9.35)

Their corresponding behaviours are shown in Figures 9.29–9.34. Again, we can see that in

snapshot II there is some communication occurring, which has evolved away by snapshot III.

Furthermore, the communication output equations (ωout) show a clear progression in struc-

ture as the population goes back and forth between communicating and noncommunicating

over the first four snapshots.

Figure 9.35 again provides further evidence of “false starts,” as again we see the repeated
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Figure 9.29: Test run for snapshot I taken during simulation run 2. The EMM used is shown
in (9.19), (9.20), (9.21) and (9.22).
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Figure 9.30: Test run for snapshot II taken during simulation run 2. The EMM used is shown
in (9.23), (9.24), (9.25), (9.26) and (9.27).
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Figure 9.31: Test run for snapshot III taken during simulation run 2. The EMM used is shown
in (9.28) and (9.29).
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Figure 9.32: Test run for snapshot IV taken during simulation run 2. The EMM used is shown
in (9.30) and (9.31).
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Figure 9.33: Test run for snapshot V taken during simulation run 2. The EMM used is shown
in (9.32) and (9.33).

rise and fall of listening behaviour before communication becomes fixed in the population.

Figure 9.36 shows the transition from simple signalling to encoded communication. Again,

several different communication schemes seem to rise and fall before the new encoding scheme

becomes fixed in the population. It is interesting to note that this figure differs significantly

from Figure 9.26, as here the dialogue behaviour seems to fix in the population long before the

second position variable (in this case, y) becomes fixed. In run 1, the dialogue behaviour and

the second position variable become fixed in the population simultaneously. This indicates

that there are at least two different evolutionary trajectories that lead to a similar encoded

communication scheme (although we suspect that there are many more). Finally, Figure

9.37 shows the percentage of variables in various output equations across all eras of run 2,

showing the relative stability of the communication schemes once they become fixed in the

population.

9.5 Evaluation of Evolved Communication Schemes

We will now evaluate the evolved communication schemes of NoiseWorld, described above,

using the evaluation criteria proposed by Mirolli and Nolfi in [102].
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Figure 9.34: Test run for snapshot VI taken during simulation run 2. The EMM used is shown
in (9.34) and (9.35).

Figure 9.35: Percentage of the population of island 98 in run 2 containing various variables in
their output equations, over the first 80 eras. If an output equation is modified by an extra
state variable that is in turn modified by the variable in question, this variable is counted as
modifying the output in question. Note that neutral variables (e.g., if the variable is divided
by ∞) are still counted.
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Figure 9.36: Percentage of the population of island 98 in run 2 containing various variables in
their output equations, from eras 490 to 740. If an output equation is modified by an extra
state variable that is in turn modified by the variable in question, this variable is counted as
modifying the output in question. Note that neutral variables (e.g., if the variable is divided
by ∞) are still counted.

Figure 9.37: Percentage of the population of island 98 in run 2 containing various variables
in their output equations, over the entire run. If an output equation is modified by an extra
state variable that is in turn modified by the variable in question, this variable is counted as
modifying the output in question. Note that neutral variables (e.g., if the variable is divided
by ∞) are still counted.

9.5.1 Adaptive Role

From Figures 9.3 and 9.4 above, it is clear that the communication schemes in NoiseWorld

are reproductively beneficial to the agents that employ them. Cooperation via the commu-
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nication channel allows agents to find one another, and thus reproduce, more rapidly.

9.5.2 Expressive Power and Organizational Complexity

The type of signal is referential, i.e., it provides information about the external environment,

namely the position of the agent. The signal is deictic, as it is based on the current context of

the sender. Furthermore, the signals are relational, meaning that the roles of the individuals

in communication cannot be distinguished. However, the evolved communication schemes

have both symmetrical and asymmetrical modes. The communication scheme also possesses

a rudimentary signal structure, as agents will first communicate about one dimension, and

then once they reach the same position along that dimension, they will begin communicating

about the second dimension. The most interesting trait of the evolved signalling strategy,

however, is that it is not only abstract, i.e., it encodes information that has been generated

by integrating sensory-motor information over time, it also evolved from a non-abstract

communication scheme, where the signal provided information that was directly and currently

available (see, e.g., Snapshot II, run 1, above). As far as the author knows, this is the first

case where transitions from noncommunication to non-abstract signalling, and then from

non-abstract signalling to abstract signalling, have been observed, either in nature or in

simulation.

9.5.3 Stability, Robustness, and Evolvability

Figures 9.27 and 9.37 clearly indicate that once communication becomes fixed in a population,

it remains indefinitely. Thus, NoiseWorld communication schemes are highly stable, even

though selection is operating on the level of the individual. This is most likely owing to the

fact that cooperation in NoiseWorld is mutually beneficial. It should be noted, however,

that late in run 1 the population returned to the simple signalling scheme, indicating that

perhaps the encoded communication scheme is less stable.

Evolved communication schemes are also highly robust, as they continue to provide re-

productive benefits to agents even after transfer into physical hardware (see Chapter 10,

below).

Finally, NoiseWorld has a high degree of evolvability, as cooperative communication con-

sistently emerges from initially noncommunicating agents, potentially owing to the communi-

cation “false starts” hypothesized above. Furthermore, NoiseWorld allows for complexifica-

tion beyond the initial signalling schemes that emerge, from 1D signalling to a communication

scheme that encodes two dimensions of information. Future work will look to further increase

the open-endedness of the simulation.
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9.5.4 Knowledge Gain

NoiseWorld has provided some knowledge gain with the hypothesis of communication “false

starts” shaping initial neutral signals. Furthermore, NoiseWorld provides a unique opportu-

nity to observe the transition from simple signalling to complex encoded communication in

a continuous simulation world with no discrete generations, no explicit group selection and

no explicit fitness function.
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Hardware Experiments

10.1 Setup

The simulated agents (EMMs) are readily transferrable to e-puck robots. The e-puck robot

(see [109]) has two wheels, each with their own motor (with a resolution of 1,000 steps per

wheel revolution), and a large collection of sensors and actuators, including eight infrared

proximity sensors, a 3D accelerometer, three microphones, a colour camera and a speaker.

An example e-puck robot is shown in Figure 10.1. Only the motors are employed for the

following experiments.

The e-puck robots have a diameter of 75 mm. This is the real-world “reproduction dis-

tance,” which was 0.139 units in the simulations described above. Therefore, when converting

simulation units into real-world values, we use the conversion

1 simulation unit ≈ 0.54 m (10.1)

For all hardware experiments described here, two agents were run in a synchronized

fashion on a laptop, with motor speed adjustments being sent to the robots via Bluetooth.

This was implemented using MATLAB, therefore the EMMs and the methods to evaluate

them had to be ported from C++. This resulted in a loss of precision for the constants used

in the EMMs, as well as several other simplifications. To control the e-pucks via Bluetooth

using MATLAB, the free ePic2 framework was used. Robot orientation and x and y positions

were determined using an overhead webcam, custom colour detection software and coloured

markers on top of the robots themselves (see Figure 10.2). The colour detection software was

written in C# and connected to MATLAB via TCP/IP socket (our MATLAB code would

run a Java-based TCP/IP server and the C# colour detection program would connect as a

client).

104
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Figure 10.1: An e-puck robot; from [109].

Figure 10.2: Setup for hardware experiments.

Robotic experiments proceed as follows:

1. Set all agent variables to their initial values vt=0.

2. Get agent x and y positions from overhead tracking system.

3. Evaluate both sets of agent equations for 10 timesteps, with an agent’s ωin being set

to the other agent’s ωout from the previous timestep. The x and y input values are not
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changed during these 10 timesteps, although new noise values are used at each step. θ

is treated as an internal variable and is thus updated at each step.

4. Calculate the cumulative (i.e., over the past 10 timesteps) expected motion of each

agent. This yields a new expected position. Each robot is turned to face its expected

position (±π/16) and then set to drive forward. If a robot is already within ±π/16

of this expected orientation, it is not turned. If the robots are in motion and at least

one agent needs to turn, both robots are stopped. Otherwise they are left to continue

forward in their current direction.

5. Go to step 2.

The EMM equations used for the hardware experiments are

θt+∆t =
3.89 + xt

(−8.80yt + ωt
in)

(10.2)

ωt+∆t
out = 8.81yt − 0.76θt(1.80 + xt) (10.3)

This is a simplified top agent from an unreported canonical NoiseWorld simulation run.

This EMM originates from a slightly older version of NoiseWorld than the other EMMs

reported in this document. The only difference between the older version and the current

implementation is that the latest version of NoiseWorld contains a slightly improved method

for introducing incoming migrants into an island’s population. All other implementation

details are identical.

10.2 Experiments and Results

Video snapshots and communication data from four hardware experiments with different

initial robot positions are shown in Figures 10.3, 10.6, 10.9 and 10.12. Note that this hardware

experiment setup does not seem to allow for agents to remain sufficiently close to each

other’s y position to remain in “lateral” mode continuously. This is especially obvious in the

run shown in Figure 10.12, where the agents were initialize with similar y positions. The

agents instead repeatedly switch between their “lateral” and “longitudinal” modes, which

is still a successful behaviour. These EMM agents are demonstrating a remarkable level of

adaptability and hardware transferability, as they readily adapt to the lack of position and

movement precision that they had in the simulation world.

The e-puck position data as recorded by the overhead camera and calculated by the

custom colour detection software for these four experiments are shown in Figures 10.4, 10.7,
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Figure 10.3: Video snapshots and communication data from a hardware experiment.
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Figure 10.4: Position data from the overhead system as seen by the agents during the exper-
iment shown in Figure 10.3.

10.10 and 10.13. These are the data that were used for each 10-timestep interval over the

course of an experiment. For each timestep within a given interval, the agent would see its

current position coordinates plus random values drawn from a Gaussian distribution with

mean 0 and standard deviation 0.025. The data in Figure 10.13 further demonstrate that the

embodied agents cannot maintain sufficiently close y positions to remain in “lateral” mode.

Instead, the agents seem to overshoot each other’s y positions twice.

While the e-puck position detection system operates at a high level of accuracy in general,
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Figure 10.5: A simulation run using the same EMMs and initial conditions as the experiment
shown in Figure 10.3.

there were several inaccurate readings, most commonly near the beginning of an experiment.

These noisy points could have been problematic for the agents, especially considering that

they were used as position data for 10 timesteps; however, the agents seemed to be relatively

unfazed by these inaccuracies. This demonstrates the robustness of these EMM controllers.

This robustness is further exemplified by examining the average speeds of the embodied

agents. In simulation, agents had an average speed of 0.0005 units per timestep, with a

standard deviation of 1.25×10−5. In the hardware experiments shown in Figure 10.3, however,

the blue agent experienced an average speed of 0.0017 units per timestep, with a standard

deviation of 0.0011. The red agent experienced an average speed of 0.0023 units per timestep,

with a standard deviation of 0.0039. Because of these differences in speed, the agents find each

other faster (in terms of number of timesteps) in the hardware experiments than in simulation

(taking less than 370 timesteps in the hardware experiment shown in Figure 10.3 while taking

673 timesteps in the corresponding test simulation shown in Figure 10.5). These robot

speeds were calculated from the position data (recorded every 10 timesteps) with the first
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Figure 10.6: Video snapshots and communication data from a hardware experiment.



10.2. Experiments and Results 111

Figure 10.7: Position data from the overhead system as seen by the agents during the exper-
iment shown in Figure 10.6.

point excluded for both agents, as it was obviously inaccurate. Data from all four hardware

experiments and their simulation counterparts are presented in Table 10.1. Thus, not only

are the embodied agents experiencing a much higher average speed than in simulation, these

speeds are also more variable and differ between interacting agents. Nonetheless, these agents

are able to adapt to these novel conditions and remain reproductively viable.

To evaluate further the performance of the embodied agents, the EMM used for the

hardware experiments was ported back to the test simulations (i.e., the original EMM was
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Figure 10.8: A simulation run using the same EMMs and initial conditions as the experiment
shown in Figure 10.6.

Table 10.1: Robot speed data from hardware experiments. Initial inaccurate data points are
omitted from the calculations (although subsequent inaccurate data points are included). The
number of timesteps these EMM agents took to find each other in simulation from the same
initial conditions as in the hardware experiments are also shown. Agents had an average speed
of 0.0005 units per timestep, with a standard deviation of 1.25× 10−5 in all simulation runs.
We use µ to denote mean and σ to denote standard deviation.

Experiment Blue Robot’s Speed Red Robot’s Speed # of Timesteps to Success
µ σ µ σ Hardware Simulation

1 0.0017 0.0011 0.0023 0.0039 < 370 673
2 0.0011 0.0005 0.0019 0.0033 < 290 451
3 0.0016 0.0025 0.0016 0.0027 < 190 327
4 0.0015 0.0010 0.0053 0.0092 < 250 471

not used, instead the version used in the MATLAB implementation was copied into the test

simulation code). Simulation experiments were then run using the same starting positions
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Figure 10.9: Video snapshots and communication data from a hardware experiment.
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Figure 10.10: Position data from the overhead system as seen by the agents during the
experiment shown in Figure 10.9.

as recorded by the overhead system during the hardware experiments. The results of these

simulation runs are shown in Figures 10.5, 10.8, 10.11 and 10.14. Aside from the behavioural

differences arising from the lack of position precision in the hardware experiments (which are

most noticeable when comparing Figures 10.13 and 10.14), the embodied agents’ movement

patterns are very similar to those produced by their EMMs in simulation. This demonstrates

that the EMMs were successfully ported to the e-puck hardware.

Other experiments were conducted where the experimenter repeatedly interfered with
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Figure 10.11: A simulation run using the same EMMs and initial conditions as the experiment
shown in Figure 10.9.

the robots’ movements, moving them to new random locations and temporarily obfuscating

position tracking. Agents continually adjusted to these unforeseen circumstances (which

would never have been experienced during the simulation run), managing to locate one

another once the experimenter relented. This demonstrates the robustness of these EMM-

based agents, as they are able to successfully adapt to novel, never-before-seen situations.
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Figure 10.12: Video snapshots and communication data from a hardware experiment.
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Figure 10.13: Position data from the overhead system as seen by the agents during the
experiment shown in Figure 10.12.
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Figure 10.14: A simulation run using the same EMMs and initial conditions as the experiment
shown in Figure 10.12.
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Conclusion of Part II

We have successfully constructed a simulation world where initially noncommunicating EMM-

based agents repeatedly evolve complex dialogue-based cooperative communication, thus

proving the hypothesis of Part II correct. This was accomplished through the creation of

a novel Artificial Life simulation that we call NoiseWorld. Populations of simulated, finite-

lifespan agents, controlled via EMMs, can move freely within a 2D world and automatically

reproduce upon encountering other agents. The only means to detect other agents is through

a one-dimensional, nondirectional real-valued communication channel. Cooperative commu-

nication emerges within this simulation from initially random EMMs that have no communi-

cation scheme specified a priori. Several (but not all) of these communication schemes evolve

to a point where agents can locate each other from any initial configuration, demonstrating

that both x and y position information is being communicated. As the communication chan-

nel is one- dimensional, this implies that 2D position information must be encoded in some

fashion by the “sender” and then decoded into meaningful information (in terms of reproduc-

tive benefits) by the “receiver.” Furthermore, all top communication schemes are explicitly

dialogue-based, as agent communication outputs are directly modified by what they hear via

their communication input. Finally, different simulation runs starting from different initial

random populations produce similar but distinct communication schemes.

Evolutionary trajectories leading to top agents were examined via digital snapshots taken

during simulation runs. It was found that agents first evolved to broadcast simple infor-

mation about a single dimension, and then evolved to incorporate information about the

second dimension into the communication scheme by using a different order of magnitude

and dialogue-based communication. Evidence of the shaping of communication outputs by

selection before communication has become fixed in the population was also uncovered.

A top agent from a simulation run was transferred to e-puck robotic hardware, where

reproductively successful communication and movement behaviours were demonstrated from

119
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a variety of starting configurations. The communications and movements were not identical

to those seen in simulation, indicating that the EMMs (whose structure was fixed during

hardware testing) were adapting their behaviours to the lack of precision in these real-world

scenarios.

While previous works have successfully simulated the emergence and evolution of inter-

agent communication, the majority of them were Evolutionary Robotics experiments with

experimenter-defined fitness functions, explicit group selection, and discrete generations. Fur-

thermore, in many of these experiments, communication signals contained inherent informa-

tion, such as the direction and/or distance of the sender relative to the receiver. This makes

it difficult to determine how much information, if any, is being transmitted via an evolved

communication scheme. While the ALife implementation of Werner and Dyer [157] did not

employ the aforementioned techniques, their results were relatively simple, with agents that

live in a discrete world evolving a mapping between three-bit strings and three discretized

movements (although we suspect that similar results could have been achieved using only

two bits). The results presented here have no discrete generations, no enforced group selec-

tion and no explicit fitness functions. Furthermore, the world is continuous and there is no

information inherent in the communication mechanisms. The top evolved communication

schemes are explicitly dialogue-based and capable of transmitting both x and y position in-

formation over a 1D channel. Thus, these simulation results provide a unique opportunity

to study the emergence and evolution of complex cooperative communication.

NoiseWorld opens up a large number of future research directions. The “language”

of these evolved communication schemes has yet to be fully understood, as the dialogue

property complicates analysis. However, the underlying behaviours are governed by explicit

mathematical equations (EMMs), therefore rigorous analysis is possible. Further study on the

emergence of communication in NoiseWorld would be beneficial to the understanding of the

emergence of communication in nature. More fine-grained snapshots and analyses would shed

more light on the “false starts” hypothesis described above. Also, further information entropy

analysis may lead to a better understanding of information content in animal communication.

This simulation was developed with a focus on simplicity. Now that cooperative com-

munication has emerged in the simple case, we can examine how additional elements affect

the emergence and evolution of communication. Additions to the simulation might include

predators and prey, an explicit concept of energy, and dividing agents into male and female.

Furthermore, simulating the robotic agents with higher fidelity, e.g., giving agents direct

control over their two wheels, would also add interesting complexity to the simulation. The

ultimate goal is to develop a completely open-ended simulation. As it stands now, the evo-

lution of the agents always reaches a plateau after which no new reproduction rate “high
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scores” appear, even if the simulation run is extended for another 48 wall clock hours. A

detailed, open-ended simulation world with predator/prey dynamics (i.e., coevolution) might

be one way to avoid these evolutionary ceilings.

One of our goals in developing this simulation was to demonstrate the capabilities of

EMMs by achieving novel results. We have achieved this with NoiseWorld, however, EMMs

within the simulation should be replaced with ANN-based algorithms to see if they are

capable of evolving comparable results. The question is not if ANNs can represent the results

presented here, as we already know that CTRNNs can approximate any dynamics and are

thus theoretically capable of approximating the behaviours of any EMM. The question is

whether or not these results can be reproduced within NoiseWorld from randomly initialized

ANNs. To put it another way, is there an evolutionary trajectory from randomly initialized

ANNs to an ANN that approximates the top EMMs from these experiments?

A big question that arises from NoiseWorld is what can these artificially evolved com-

munication schemes tell us about natural communication, and, more interestingly, natural

language? What, if anything, can the parallels between the evolved communication schemes

and their evolutionary trajectories (i.e., when communicating 2D information, agents com-

municate about one dimension and then the other, and this occurs in the order in which these

variables first became fixed in the communication outputs of the evolving population) tell

us? Can specific “meaning” be attributed to certain communication output values or combi-

nations of values? These are highly interdisciplinary questions and it is hoped that scientists

from various disciplines will take an interest and download NoiseWorld for themselves.
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Thesis Conclusion

A Novel Artificial Intelligence Paradigm

A novel artificial intelligence paradigm was developed and tested, both in simulation and

in hardware. Our Evolvable Mathematical Models (EMMs) are composed of a series of

equations represented in an artificial agent’s genome as equation trees. Each equation can be

composed of the four basic mathematical operators, addition, subtraction, multiplication and

division, as well as agent inputs and outputs and numerical constants. These equations can

approximate any analytic function. More sophisticated operations can also be used, however,

exploring the benefits and drawbacks of additional operators is left to future studies. Agents

have one equation modifying each of their experimenter defined outputs, and additional

equations modifying extra state variables can be added through mutation. Other types of

mutations can modify operators, constants, variables and entire subtrees. Two levels of

sexual recombination, where an offspring genome is generated from two parent genomes,

were also implemented. One occurs at the tree level, where subtrees from the two parents are

grafted together, and the other one is an operation that occurs at the equation level, where

an offspring genome is generated with equations from both parents. The EMM paradigm

is based on Symbolic Regression (SR) in Genetic Programming (GP), where equations are

evolved to fit data. The main difference between SR and EMMs is that while SR looks to

model fixed data sets, EMMs look to artificially evolve lifelike behavioural patterns. Thus,

the input data that an EMM sees varies depending on its own outputs, the environment in

which it finds itself, and, in some cases, other EMMs.
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Benchmarking Experiments

EMMs were first tested on the most common benchmark in Evolutionary Robotics, the

double-pole balancing without velocity information benchmark. EMMs were able to solve

this task, successfully balancing two poles of different lengths on a cart in simulation, using

only pole angle and cart position information. It took EMMs roughly three times more

fitness function evaluations to find a solution than the current state of the art in Evolutionary

Robotics. The next benchmark was one that involved agent learning, the Double-T Maze

with homing. This task has only previously been solved using Artificial Neural Networks

(ANNs) with connection weight plasticity. Agents are required to search four different arms

of a maze to find the one high reward. Once the arm containing this reward is found,

successful agents should repeatedly revisit this arm in subsequent trials. If the high reward is

then moved to a different arm, agents should return to their foraging behaviours to relocate

the reward. This task requires that agents demonstrate learning behaviours without genetic

modification, as their genomes remain unchanged throughout a given series of trials. EMMs

were able to solve this task, demonstrating learning capabilities using fixed mathematical

equations. Furthermore, neuromodulation-like behaviour (where learning is enabled and

disabled via a specific signal) was seen in some of the top results, similar to results from

previous work where special neuromodulation neurons were specified a priori. Thus we have

shown that the EMM paradigm can match the results from ANN-based algorithms in two

benchmarking tasks.
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NoiseWorld

The next step was to achieve novel results using EMMs. The chosen task was the simu-

lation of the emergence and evolution of interagent communication, as it is a notoriously

hard problem spanning the fields of artificial intelligence, artificial life, and the natural evo-

lution of communication and language, the last of which is a high controversial topic and

the subject of ongoing debates among some of the world’s top scientists. We developed a

novel, open-source ALife simulation that we call NoiseWorld. Within this world, EMM-based

agents can move freely in two dimensions and can receive real-valued communication outputs

from their nearest neighbour. These communication values are nondirectional and are not

attenuated by distance, therefore they contain no inherent information about the location

of the sender. When two agents encounter one another in this world, they automatically

produce one offspring containing genetic material from both parents. For every offspring

born, one agent is selected at random to die, maintaining constant population sizes and pro-

ducing a selection pressure that favours reproducing agents without the need for an explicit,

experimenter-defined fitness function. As agents have no information about the whereabouts

of their neighbours, this selection pressure engenders the emergence of interagent communi-

cation schemes to help these “blind” agents find one another. Simple communication schemes

appear in all simulation runs, however in some simulations additional complexification occurs,

allowing agents to communicate both their x and y position information via the provided one

dimensional communication channel. Agents can use this information to locate one another

from any starting configuration. These communication schemes are explicitly dialogue-based,

a fact revealed by a cursory examination of the agent EMMs. The evolutionary trajectories

leading up to these complex communications schemes were examined, yielding significant

insight into the emergence and subsequent evolution of cooperative communication.

Hardware Experiments

Finally, by taking a top EMM agent from the NoiseWorld simulation and transferring it

to e-puck robotic hardware, the transferability of EMMs from simulation to hardware was

demonstrated. The embodied agents were successfully able to adapt their behaviours to

the lower precision and higher noise of the hardware experiments, achieving reproductive

success from a variety of initial configurations. The EMM paradigm seems to be readily

transferrable to robotic hardware, an important trait for an AI implementation that hopes

to produce real-world applications.
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Final Thoughts

The overarching hypothesis behind Evolvable Mathematical Models is that it is possible to

model the behaviour of biological agents with mathematics. The hypothesis of this thesis is

less broad, however, postulating that it is possible to evolve mathematical equation-based

controllers artificially that can demonstrate learning, adaptability and generalization capa-

bilities similar to those seen in biological agents. The work described here has proven this

thesis correct, demonstrating learning capabilities through the Double-T Maze experiments

and adaptability and generalization capabilities via transfer of agents from simulation to

hardware, as well as through various tests across all experiments described here. Further-

more, these mathematical equations evolved to produce complex, dialogue-based cooperative

communication schemes, demonstrating their potential for producing lifelike behaviour.

This thesis is intended as a first step towards producing artificial intelligences as mathe-

matical models of behaviour. While the capabilities of this paradigm have been elucidated

via several challenging experiments, some big questions remain unanswered. Can we mathe-

matically model animal behaviour? Can we mathematically model communication schemes

at the level of complexity of human language? Can we model, and thus reproduce, conscious-

ness? If the answer to any of these questions is “no,” then this engenders a different line

of questioning, namely, are there limitations to the modelling capabilities of mathematics?

We are optimistic that the novel paradigm presented here can help answer some of these

questions, and that it will lead to new and exciting results and applications in autonomous

robotics, artificial intelligence, and artificial life.
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