Skip to main content

Sampling of Unique Structures and Behaviours in Genetic Programming

  • Conference paper
Genetic Programming (EuroGP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3003))

Included in the following conference series:

Abstract

This paper examines the sampling of unique structures and behaviours in genetic programming. A novel description of behaviour is used to better understand the solutions visited during genetic programming search. Results provide new insight about deception that can be used to improve the algorithm and demonstrate the capability of genetic programming to sample different large tree structures during the evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A., Chaudhri, O.A., Polito II., J.A.: What makes a problem GP-hard? analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines 2(2), 165–191 (2001)

    Article  MATH  Google Scholar 

  2. O’Reilly, U.-M.: The impact of external dependency in genetic programming primitives. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, USA, May 5-9, pp. 306–311. IEEE Press, Los Alamitos (1998)

    Chapter  Google Scholar 

  3. Hu, J., Seo, K., Li, S., Fan, Z., Rosenberg, R.C., Goodman, E.D.: Structure fitness sharing (SFS) for evolutionary design by genetic programming. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 780–787. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  4. Burke, E., Gustafson, S., Kendall, G.: A survey and analysis of diversity measures in genetic programming. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, New York, July 9-13, pp. 716–723. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  5. Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Advanced population diversity measures in genetic programming. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 341–350. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Burke, E.K., Gustafson, S., Kendall, G., Krasnogor, N.: Is increasing diversity in genetic programming beneficial? an analysis of the effects on fitness. In: McKay, B., et al. (eds.) Congress on Evolutionary Computation, Canberra, Australia, December 2003, pp. 1398–1405. IEEE Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  7. Soule, T., Foster, J.A.: Code size and depth flows in genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, July 13-16, pp. 313–320. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  8. Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., et al. (eds.) Advances in Genetic Programming 3, June 1999, ch.  8, pp. 163–190. MIT Press, Cambridge (1999)

    Google Scholar 

  9. Langdon, W.B.: The evolution of size in variable length representations. In: 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, May 5-9, pp. 633–638. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  10. Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. Genetic Programming and Evolvable Machines 3(1), 81–91 (2002)

    Article  MATH  Google Scholar 

  11. Langdon, W.B.: Quadratic bloat in genetic programming. In: Whitley, D., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Las Vegas, Nevada, USA, July 10-12, pp. 451–458. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  12. Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines 3(3), 283–309 (2002)

    Article  MATH  Google Scholar 

  13. Luke, S.: Modification point depth and genome growth in genetic programming. Evolutionary Computation 11(1), 67–106 (2003)

    Article  Google Scholar 

  14. Langdon, W.B.: Scaling of program fitness spaces. Evolutionary Computation 7(4), 399–428 (1999)

    Article  MathSciNet  Google Scholar 

  15. Daida, J.M.: Limits to expression in genetic programming: Lattice-aggregate modeling. In: Fogel, D.B., et al. (eds.) Congress on Evolutionary Computation, Honolulu, USA, pp. 273–278. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  16. Daida, J.M., Li, H., Tang, R., Hilss, A.M.: What makes a problem GP-hard? validating a hypothesis of structural causes. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1665–1677. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Rosca, J., Ballard, D.H.: Causality in genetic programming. In: Eshelman, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA 1995), Pittsburgh, PA, USA, 15-19, pp. 256–263. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  18. Igel, C., Chellapilla, K.: Investigating the influence of depth and degree of genotypic change on fitness in genetic programming. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, pp. 1061–1068. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  19. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Koza, J.R., et al. (eds.) Proceedings of the Third Annual Genetic Programming Conference, Wisconsin, USA, July 22-25, pp. 293–301. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  20. D’haeseleer, P., Bluming, J.: Effects of locality in individual and population evolution. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch. 8, pp. 177–198. MIT Press, Cambridge (1994)

    Google Scholar 

  21. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population history. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Florida, USA, pp. 1112–1120. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  22. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. O’Reilly, U.-M., Oppacher, F.: Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing. In: Davidor, Y., Männer, R., Schwefel, H.-P., et al. (eds.) PPSN 1994. LNCS, vol. 866, pp. 397–406. Springer, Heidelberg (1994)

    Google Scholar 

  24. O’Reilly, U.-M., Oppacher, F.: A comparative analysis of GP. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2,ch. 2, pp. 23–44. MIT Press, Cambridge (1996)

    Google Scholar 

  25. Juels, A., Wattenberg, M.: Stochastic hillclimbing as a baseline method for evaluating genetic algorithms. Technical Report Technical Report CSD-94-834. Computers Science Department, University of California at Berkeley, USA (1995)

    Google Scholar 

  26. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J.J. (ed.) Proceedings of an International Conference on Genetic Algorithms and the Applications, Carnegie-Mellon University, Pittsburgh, PA, USA, July 24-26, pp. 183–187 (1985)

    Google Scholar 

  27. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  28. O’Reilly, U.-M., Goldberg, D.E.: How fitness structure affects subsolution acquisition in genetic programming. In: Koza, J.R., et al. (eds.) Proceedings of the Third Annual Genetic Programming Conference, Madison, WI, USA, July 22-25, pp. 269–277. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gustafson, S., Burke, E.K., Kendall, G. (2004). Sampling of Unique Structures and Behaviours in Genetic Programming. In: Keijzer, M., O’Reilly, UM., Lucas, S., Costa, E., Soule, T. (eds) Genetic Programming. EuroGP 2004. Lecture Notes in Computer Science, vol 3003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24650-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24650-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21346-8

  • Online ISBN: 978-3-540-24650-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics