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Abstract

An evolutionary computation technique, genetic
programming, was used to create programs that
classify DNA sequences into one of three
classes: (1) contains a centrally-located donor
splice site, (2) contains a centrally-located
acceptor splice site, and (3) contains neither 
donor nor an acceptor. The performance of the
programs created are competitive with previous
work.

1. INTRODUCTION

In eukaryotes, not all of the messenger RNA (the RNA
transcribed from the DNA) necessarily ends up being
expressed as protein. After an mRNA sequence is
transcribed from a DNA sequence, and before it is
translated into a protein, contiguous subsequences of the
mRNA sequence are removed, or spliced out. The
subsequences that are removed are called introns; the
intervening subsequences that get expressed as protein are
called exons. The interstitial position between an intron
and an exon (and vice versa) is called splice si te. The
splice site between the end of an intron and the start of an
exon is called an acceptor site, the site between the end of
an exon and the start of an intron is called a donor site.
Singer and Berg (Singer & Berg 1991) discuss eukaryotic
translation in detail.

The huge amounts of DNA currently being produced by
the various sequencing projects is unannotated or raw: it
is just a very long string of As, Cs, Gs and Ts. An
annotated DNA sequence additionally has various features
located on it. One particularly interesting feature of a
DNA sequence is the gene: a roughly-contiguous
subsequence of DNA that codes for a particular protein.
Since proteins catalyze most reations in cells, determining
the sequnce, structure and function of the particular
proteins in cells is very important.

How are the locations of genes in raw DNA determined?
Because our understanding of the structure of genes in
incomplete, most gene-finding programs (Guig6 et al.
1992; Krogh, Mian, & Haussler 1994; Roberts 1991;
Uberbacher & Mural 1991; Xu et al. 1994; Xu et al.

1995) start with a collection of imprecise feature-detectors
(programs that return the probability of a feature being at
a particular location) and use dynamic programming to
find the most probable collection of features.

In this paper I use genetic programming to evolve splice
site detectors, i.e. programs that can distinguish between
acceptor splice sites, donor splice sites and ordinary DNA.

2. PREVIOUS WORK

Kudo et al. (Kudo, Iida, & Shimbo 1987) induced 
automaton that recognizes 5’-splice sites. They started
with 156 mammalian 5’-splice sites that they converted
into 156 separate automata, each of which recognizes one
and only one splice site (the conversion is the obvious
one). They then combine all these 156 separate automata
into one big automaton, by adding a start state (plus
transitions to the 156 start states in the 156 smaller
automata) and an end state (plus similar ~ transitions).
This new automaton recognizes a sequence if and only if
it is one of the original 156 splice sites: there is no
generalization. To get a more general automaton, the
automaton is compressed: states are merged if they either
have the same, say, 7 immediate predecessors or the same
7 successors. The resulting more general automaton gets
Q1 = 55% 1 on a testing set of 20 splice sites (it’s unclear
what the ratio of positive to negative examples is).

Brnnak et al. (Brnnak, Engelbrecht, & Knudsen 1990)
trained a 19.4×20x2 neural net to recognize splice sites in
DNA. They trained on 33 human genes and discovered 7
incorrect database entries that had inhibited learning.

Towell (Towell 1991; Towell, Craven, & Shavlik 1991)
compared various machine learning algorithms on the
splice sites problem. His data (Towell, Noordewier, 
Shavlik 1992) was all 3190 examples of splice sites in
primate sequences in Genbank 64.1 (Benson et al. 1994).
Towell compared the following algorithms on a 1000-site
subset of the 3190 primate sequences (half of which were
negative examples): nearest-neighbour, Cobweb,

1 Q 1 measures the number of positive examples correctly classified,

number of positives correctly predicted

number of positives
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function genetic-programming( fitness-measure, class-of-programs, pop-size, termination-criterion 
gen ~---0
for i ~-- 0 ... pop-size - 1 do

population[0] [i] ~-- randomly-generated-program( class-of-programs 
compute & store fitness-measure( population[0] [i] 

end
while not termination-criterion( population[gen] ) 

create population[gen+ 1 ] by crossing-over and copying probably-highly-fit programs from
population[gen]

for i <--- 0... pop-size - 1 do compute & store fitness-measure( population[gen+l][i] 
gen ~-- gen + 1

end
return fittest individual in population[gen]

end

Figure 1. Genetic programming pseudocode.

perceptron (neural net with no hidden neurons), ID3,
PEBLS, back-propagation, and KBANN (a neural net
training algorithm developed by Towell). The above
seven algorithms were divided into two classes: those
whose performance depended on the ordering of the
training examples and those whose performance was
ordering-independent. For the ordering-dependent
algorithms (Cobweb, the perceptron, PEBLS, back-
propagation and KBANN) Towell ran each algorithm on
11 different permutations of the 1000 training examples.
He then defined a training case as correctly classified if a
majority of the 11 independent runs correctly classify that
training case. Such a methodology is inappropriate for a
Monte Carlo-style algorithm such as genetic programming
(Koza 1992; Koza 1994b; Koza & Rice 1992) because 
random classifier can appear to do arbitrarily well by just
looking at more and more permutations of the training
data. So, to provide a benchmark for the results in this
paper I used the two order-independent algorithms:
nearest-neighbour and ID3. The performance measure
used by Towell to compare the above seven algorithms
was the relative information score (RIS) (Kononenko 
Bratko 1991).

Lapedes et al (Lapedes et al. 1990) also tried to predict
whether or not a H. sapiens DNA sequence that contains
"AG" or "GT" is a splice site. The training set size isn’t
given, the testing set contains 50 examples. They tried
windows of 11, 21 and 41 bases around the "AG"/"GT".
They got averaged Q 1 values of 91.2% on acceptor sites

and 94.5% on acceptor sites.

THE TECHNIQUE: GENETIC
PROGRAMMING

Genetic programming (Koza 1992; Koza 1994b; Koza 
Rice 1992) can be thought of as a black box whose output
is a program that is (hopefully) fit according to some
fitness measure. See figures 1 and 2.

Genetic programming starts with a population of
randomly generated computer programs, a fitness
measure, a class of programs (i.e., a function set and 
terminal set) and a termination criterion and uses artificial
selection and sexual reproduction to produce increasingly
fit populations of computer programs:

Genetic programming has been applied to the following
sequence analysis problems: predicting whether or not a
residue is in a helix (Handley 1993; Handley & Klingler
1993); recognizing the cores of helices (Handley 1994a);
predicting the degree to which a residue in a protein is
exposed to solvent (Handley 1994b); predicting whether
or not a DNA sequence contains an E. coli promoter
(Handley 1995b); predicting if an mRNA sequence is 
intron or an exon (Handley 1995a); predicting whether 
not a sequence contains an omega loop (Koza 1994b); and
predicting whether or not a sequence contains a
transmembrane domain (Koza 1994a; Koza 1994b).

4. APPLYING GENETIC PROGRAMMING:

fitness measure

class of programs

m.
~ll~ Genetic

Programming
population size ~II~ System

termination criterion ~ll~

Figure 2. Genetic programming as a black box.

w-- a program
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CHOOSING VALUES FOR PARAMETERS

The black box in figure 2 has four inputs: the fitness
measure, the class of programs, the population size and
the termination criterion.

4.1. THE FITNESS MEASURE

The fitness cases are the positive and negative examples
of splice sites (each positive example is further split into
donors and acceptors). The fitness of a program is 
measure of the number of correct predictions.

The fitness measure used was the relative information
score (RIS) that Towell used (see the "Previous work"
section). RIS is defined as RIS = (Ia/E) x 100% where

Y li
fitness cases, i

la= Nyc

-lg(P(Cj))+lg(F(C)) ifF(C)>_P(Cj)
li = lg(1 - P(Cj)) - lg(l - P’ (C)) otherwise ’

and

E = - ~,P(Cj)Ig(P(Cj)).
classes, j

P’(C) is the probability of fitness case i being correctly
classified (= 1 if correct, 0 otherwise). P(Cj) is the prior
probability of classj. Nfc is the number of fitness cases.

4.2. THE CLASS OF PROGRAMS

Programs that classify DNA sequences must be able to do
two sorts of computation: first, they must be able to look
at multiple bases of the sequence; second, they must be
able to condition on individual bases.

The ability to look at different bases of a sequence is
satisfied by the use of a "turtle" that moves along the
sequence. Two functions are used--1 ft and rght-- that
each take one argument and that, when executed, first
move the turtle one base left or right, respectively, and
then evaluate their argument. A third function, home,
records the turtle position, evaluates its sole argument and
then "homes" the turtle back to the recorded position.

The ability to conditionally execute different parts of a
program depending on the bases seen is supplied by the
following functions. (First, note that because the
sequences are of finite length it is useful to add a fifth
base ’-’ that stretches infinitely far both upstream and
downstream of each promoter and non-promoter.)

¯ a?, c?, g?, t? and -?. These functions take two
arguments and either execute the first one (if the indicated
base is in the position pointed to by the turtle) or execute
the second one (otherwise). For example, the program
(c? +3 -4) returns +3 if the base pointed to by the

turtle is "C" and returns -4 otherwise.

¯ switch (a.k.a. sw). This function takes five
arguments and executes one of the five, depending on the

base pointed to by the turtle. That is, the program
(switch <a-arg> <c-arg> <g-arg> <t-arg>

<- -arg> ) evaluates, for example, to "<c-arg>" if the
base pointed to by the turtle is a "C".

¯ i f> = 0. This function returns its second argument if
its first argument is >= 0.0 and returns its third argument
otherwise.

¯ av, cv, g-% tv and -v. These functions return either
+1.0 or -1.0 depending on the base pointed to by the
turtle. For example, av is equivalent to (a? +1.0
-1.0).

In addition to the above two classes of functions, some
miscellaneous functions were added:

¯ arithmetic functions: +,-, * and %, where

[X/Y, Y ~O

(%XY)=[ 1, otherwise" Note that (% X Y)’s
second argument, Y, is evaluated before its first argument,
X.

¯ random numbers between -10.0 and +10.0 were added
to generation 0 programs as zero-argument constant
functions.

4.3. THE POPULATION SIZE

The genetic algorithm is designed to search spaces that
are highly dimensional and that are moderately epistatic2.

The population is used to implicitly store multiple partial
solutions to sub-spaces of the search space. For this
reason, the size of the population is directly proportional
to the difficulty (the degree of epistasis and the number of
dimensions) of the problem that can be solved. Based
loosely on my experience with other DNA motif problems
and the available computer resources I chose a population
size of 64,000 individuals.

4.4. THE TERMINATION CRITERION

A run was terminated if one or more of the following
conditions were met:

¯ a total of 75 generations had been evolved (i.e., 76
populations: 1 randomly created and 75 evolved), or

¯ the computer crashed, or

¯ the population started to overfit the data.

Given a set of examples, enough generations and enough
runs, genetic programming will have no problem finding
arbitrarily accurate classifiers. If the goal, however, is to
discover programs that can classify unseen examples then
such highly accurate programs are of little use. Programs

2 By "epistasis" I mean the degree of interconnection or correlation
between the "independenf’ variables of a problem. A problem with tittle
epistasis can trivially be solved by independently optimizing each
variable. A problem with a high degree of epistasis can only be solved
by enumerating the entire search space (consider, for example, a spike
function: having the value ~ at a single point and 0 elsewhere). 
moderately epistatic problem can be solved by an adaptive search
procedure that exploits regularities in the search space.
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run Generation Training set Testing set Evaluation set

16 83.01 81.93 85.15

14 81.93 87.22 85.16
24 82.04 89.00 86.59

Table 1. Fitness (RIS) on the training set, the testing set and the evaluation set of the best-of-generation (on 
training set) individual that scores best on the testing set. The "Generation" column is the generation that the
indicated individual first appeared in.

that accurately classify the training data may not have
accurately captured the underlying model that generated
that data: they may have learnt the noise as well as the
signal. Of course, a highly accurate program could be
accurately modeling the underlying process. The point is
that there is no way to tell, from the training data alone,
how well a learnt program is modeling the underlying
process.

The only way to predict how well an inductively learnt
program will perform on unseen data is to partition the
data into separate data sets, to train on one and to test on
the second. The performance of learnt programs on the
second data set (the data that the program wasn’t trained
on) will be a reliable predictor of its performance on
unseen data. I call this second data set the evaluation set.

Partitioning the data set into two sets solves the problem
of evaluating the resultant programs but doesn’t solve the
problem of deciding when to terminate each run of
genetic programming. So I further divide the first data set
(the promoters that the programs are trained on) into two
sets: the training set and the testing set. The training set is
used as described above in the genetic-programming0
subroutine: these examples define the fitness of each
program and this fitness determines which genetic
operations that program participates in etc. The testing set
is used to evaluate the degree to which the fittest (on the
training set) program of each generation is overfitting the
training data. I compute a 10-generation moving average
of the fitness on the testing set of the fittest (on the
training set) program of each generation and stop a run
when the moving average starts to get worse: i.e., when
the best (on the training set) program of each generation
gets less fit on the testing set.

To summarize, the training examples (as described in the
"Data" section) are partitioned into three mutually
exclusive sets: the training set, the testing set and the
evaluation set. The training set is used to drive the
evolutionary process, the testing set is used to stop the
evolutionary process, and the evaluation set is used to
evaluate the best individuals of a number of runs on
unseen promoters.

For compatibility with Towell’s (Towell 1991) results, 
used 10-way jackknifing: the 1000 examples were
partitioned into 10 sets of 100 examples each and one of
the 10 sets was used to evaluate the performance of the
best program trained on the remaining 900 examples. The

900 examples were further divided into 600 (to train on)
and 300 (to test for overfitting).

5. THE DATA

These experiments used Towell’s (Towell 1991) data:
1000 randomly chosen positive and negative examples
from a database of 3190 positive and negative examples
of primate splice sites (Towell, Noordewier, & Shavlik
1992). In the original database (Towell, Noordewier, 
Shavlik 1992) there is an equal number of donors and
acceptors.

6. THE RESULTS

I did three runs of genetic programming on the data
described in the previous section ("The data") and with
parameters set as described in the "Applying genetic
programming" section. Each run was terminated as
described in the "Applying genetic programming" section
above. Table 1 shows the best (on the testing set) best-of-
generation individual from each of the three runs. Figures
3, 4 and 5 show the individuals.

(if>=O (-? (- (-? tv tv) (rht 
(home (sw (home (t? tv tv)) (-? 
-0.616664) (if>=O -v tv av)) (rht 
8.65255 -v)) (sw gv gv cv cv tv) (a? 
cv)))) (sw (g? (+ -v cv) (- 
(if>=O (sw (rht (- av tv)) (- cv 
cv gv) av (if>=O (Ift gv) (c? 7.19598
tv) (sw -v cv tv av gv))) (ift 
gv av tv)) (% gv 4.99743)) (rht 
cv 8.13416) (+ cv gv))) (* 
(rht cv)) (* cv (-? gv tv)) 
(if>=O (sw (sw gv cv 1.8385 gv 
cv av) (+ cv gv) av (+ tv av)) 
0.878068 gv)) (% gv 4.99743)) 
av gv gv av -4.99146)))))

(-?
cv)
(g?
(-

(a?
( sw

Figure 3. The individual that scored 85.15 on the
evaluation set.
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genetic 85.633

83.9

nearest-nei 69.3

0 20 40 60 80 100
fitness (RIS)

Figure 6. Performance on the evaluation set of three algorithms. The numbers for the nearest-neighbours and ID3
algorithms are from Towell’s thesis (Towell 1991).

(g? (rht (- (t? (sw (sw 2.42938 
-v 1.53658) (if>:O 8.0244 -v 6.91427)
(ift gv) (- -v tv) (if>=O -v av 
(ift (ift (% av -v)))) (if>=O 
(g? -2.67231 -v)) (% cv cv) (-? 
(t? gv av) (% cv av)) (a? 9.89077 
(ift (% av -v))))) (% (ift (sw 
-2.67231 -v) ) (% cv cv) (-? tv 
(if>=O @v gv tv) (% cv av))) (ift 

Figure 4 The individual that scored 85.16 on the
evaluation set.
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7. COMPARISON WITH PREVIOUS WORK

Towell’s (Towell 1991; Towell, Craven, & Shavlik 1991)
work is used here as the state of the art. As discussed in
the "Previous work" section, only two of the algorithms
considered by Towell are relevant here: nearest-neighbour
and ID3. Figure 6 shows the average fitness (RIS) 
nearest-neighbour, ID3 and genetic programming.

8. CONCLUSIONS

This paper shows that an evolutionary computation
technique, genetic programming, can create programs that
outperform the best classifiers produced by other machine
learning algorithms.
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