
Classifying Nucleic Acid Sub-Sequences as lntrons or Exons
Using Genetic Programming

Simon Handley
Computer Science Department

Stanford University
Stanford, CA 94305

(415) 723-4096 shandley@cs.stanford.edu

Abstract
An evolutionary computation technique,
genetic programming, created programs that
classify messenger RNA sequences into one
of two classes: (1) the sequence is expressed
as (part of) a protein (an exon), or (2) not
expressed as protein (an intron).

1. Introduction

Cells convert DNA sequences into proteins in two
stages: first, the DNA is transcribed into
messenger RNA (mRNA). Second, the messenger
RNA is translated into amino acid residues. In
eukaryotes, the messenger RNA transcribed from
the DNA does not all necessarily end up being
expressed as protein. After an mRNA sequence is
transcribed from a DNA sequence, and before it is
translated into amino acid residues, contiguous
subsequences of the mRNA sequence are spliced
out. The subsequences that are removed are called
introns; the intervening subsequences that get
expressed as protein are called exons. Singer and
Berg (Singer & Berg 1991) discuss eukaryotic
translation in detail.

In this paper an evolutionary computation
technique, genetic programming, is shown to
produce programs that can distinguish between
exons and introns.

2. Genetic Programming

Genetic programming (Koza 1992; Koza 1994b;
Koza & Rice 1992) is an inductive learning
technique that is particularly suited to problems in

which some underlying regularity or structure
must be discovered.

Genetic programming can be thought of as a
black box whose output is a program that is
(hopefully) fit according to the given fitness
measure. See figures 1 and 2.

Genetic programming starts with a population
of randomly generated computer programs, a
fitness measure, and a termination criterion and
uses artificial selection and sexual reproduction to
produce increasingly fit populations of computer
programs.

Each program is a composition of functions and
terminals. For example, "1" is a program that
consists of a single terminal; "(+ 1 2)"
another program, it is a composition of two
terminals (1 and 2) and a function (+); "
(+ 2 3))" is another program.

The programs in each generation of a run of
genetic programming are created either by
copying them from the previous generation (with
probability proportional to their fitness) or by
crossing over two parental programs (also chosen
with probability proportional to their fitness) and
placing the two resulting child programs in the
new generation.

The crossover operation works as follows. Let
the two parental programs be

(+ (* 1 2) (* 3 4)),

(+ (+ 5 (+ 6 7))

The crossover operator randomly chooses an
internal point in each program. Two such choices
are highlighted here:

(+ (* 1 2) (* 3 4)), and

fitness measure ~"

class of programs ~v

population size --~l~-

termination criterion

Genetic
Programming

System

Figure 1. Genetic programming as a black box.

v a program

162 ISMB-95

From: ISMB-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

(+ (+ K÷6 7~)8).

The crossover operator then swaps these two
fragments, (* 3 4) and (+ 6 7), to produce
child programs:

(+ (* i 2) (+ 6 7)),and

(+ (+ 5 (* 3 4)) 8).

Genetic programming has been applied to the
following sequence analysis problems: predicting
whether or not a residue is in a helix (Handley
1993; Handley & Klingler 1993); recognizing the
cores of helices (Handley 1994a); predicting the
degree to which a residue in a protein is exposed
to solvent (Handley 1994b); predicting whether
not a DNA sequence contains an E. coli promoter
(Handley 1995b); predicting whether or not
nucleic acid sequence contains a splice site
(Handley 1995a); predicting whether or not
sequence contains an omega loop (Koza 1994b);
and predicting whether or not a sequence contains
a transmembrane domain (Koza 1994a; Koza
1994b).

3. Applying Genetic Programming:

Choosing Values for Parameters

The black box in figure 1 has four inputs: the
fitness measure, the class of programs, the
population size and the termination criterion.

3.1. The fitness measure

The programs being evolved are supposed to
assign sequences into one of two classes: intron or
exon. A reliable way of measuring the
performance of two-state classifiers is the
correlation coefficient, C. The choice of parents to

participate in the genetic operations--crossing-
over and fitness-proportionate reproduction--that
create each generation (after generation 0) was
based on this fitness measure.

3.2. The class of programs

There are statistical differences between introns
and exons; for example different codons appear
with different frequencies. Programs that
differentiate between introns and exons must be
able to compute non-trivial statistics based on
sequences.

I chose to evolve programs in a modified
version of the language FP, as described in John
Backus’s 1977 Turing Award Lecture (Backus
1987). The language I implemented differs in five
main ways from that described in the above
reference: (1) I added a new function ("<",
described below), (2) I simplified the language
do computations on arrays and numbers, rather
than on arrays, numbers and symbols, (3) Boolean
values are represented by -1 (false) and +1 (true);
(4) numbers as functions are interpreted
constants (as if they were written 42 in FP) not
element selectors (lst, 2rid, etc.); and (5)
changed the error-handling (also described
below).

The intron/exon problem is different from other
molecular biology problems in that genetic
programming has been applied to in that the
programs to be evolved must compute statistics
based on sequences. Other problems, such as the
helix-cores problem (Handley 1994a), were solved
by evolving programs that looked at individual
residues/base pairs and then an external wrapper
was applied to each evolved program that ran the
program on all residues/base pairs of a sequence.
Such a summing-up wrapper is not useful in the

function genetic-programming(fitness-measure, class-of-programs, pop-size, termination-criterion
gem <---0
for i ~-- 0... pop-size - 1 do

population[0][i] e- randomly-generate-a-program(class-of-programs
compute & store fitness-measure(population[0][i]

end
while not termination-criterion(population[gen])

create population[gen+l] by crossing-over and copying probably-highly-fit programs from
population[gen]

for i ~-- 0... pop-size - 1 do compute & store fitness-measure(population[gen+l][i]
gem ~-- gen + 1

end
return fittest individual in population[gen]

end

Figure 2. Genetic programming pseudocode.

Handley 163

intron/exon problem because the evolved
programs must compute more complex statistics,
such as di-codon frequencies.

FP was chosen not because it is known to be
amenable to evolutionary change (it’s not known
to be) but because it is a well-defined starting
point for experimenting with evolvable array-
based languages.

It isn’t necessary to understand the details of all
the functions below. What is important is that all
the functions operate on and return numbers and
lists of (lists of...) numbers.

There are two classes of functions: ordinary
functions, that take as input a sequence or a
number and return a sequence or a number, and
functional forms, that take as input one or more
functions and return a function.

Appendix 1 lists the ordinary functions. These
functions indicate an error by returning their input
unchanged. Angle brackets ("<" and ">") are used
to delimit sequences; for example, <1, 2> is a
two-element sequence.

Appendix 2 lists the functional forms.
Parentheses ("(" and ")") are used to group
functions together.

Here are some example programs. The notation
p:x-9y means that the program p when given the
input x returns the value y.
¯ 2nd:<l, 2, 3> --> 2. (Returns the 2nd

element of the input sequence.)
¯ 4gh:<l, 2, 3> -9 <1, 2, 3>. (4th

element doesn’t exist so it returns its input.)
¯ 4th:42 -9 42. (Input isn’t a sequence so it

returns its input.)
¯ (ins +):<1, 2, 3> -9 6. (Returns

+:<1,+:<2,+:<3>>> =
+:<1,+:<2,3>> = +:<1,5> = 6.)

¯ (ata I) :<i, 2, 3> -9 <I, i, i>.
(Returns <1 : 1, 1 : 2, 1 : 3>, ’T’ being
function that ignores its input.)

¯ ([]2 id (ata i)) :<I, 2, 3>
<<i, 2, 3>, <i, I, i>>. (Returns
<id:<l, 2, 3>, (ata I) :<i,
3>>.)

¯ (o trans ([]2 id (ata I)))
2, 3> -9 <<I, i>, <2, i>, <3,
l>>.0~eturns trans:<<l, 2, 3>, <i,
I, i>>.)

¯ (o (ata +) (o trans ([]2 (ata
i)))):<i, 2, 3>-9 <2, 3, 4>.(Adds
1 to each element of the input sequence.)
Random programs in the above language can

require an enormous amount of computer
resources. For example, the program (while
([]2 id id)) requires an exponentially
increasing amount of memory. The havoc caused
by such programs was controlled in two ways: (I)
limiting to 1500 the total number of while-loop

iterations per fitness case; (2) limiting the number
of list elements (conses) that can be in use (5000).
Both ordinary functions and functional forms just
return their input when they need a new cons but
the limit has been reached.

3.3. The population size

The genetic algorithm is designed to search spaces
that have many dimensions and that are
moderately epistatic. The population is used to
implicitly store multiple partial solutions to sub-
spaces of the search space. For this reason, the
size of the population is directly proportional to
the difficulty (the degree of epistasis and the
number of dimensions) of the problem that can be
solved. Because programs written in the above
language can take a long time to run, populations
of 12,800 individuals were the largest that would
fit on the available hardware.

3.4. The termination criterion

Normally genetic programming runs are stopped
when some criterion is true of the most recent
population, for example if the population contains
a solution to the problem then the run would
usually stop. Because the evaluation of individuals
in this problem is so slow, I ran each evolution for
a fixed time period.

4. The Data

I extracted all human sequences from Genbank 85
(Benson et al. 1994) that contained the phrase
"complete cds". Then all introns and all exons
were extracted whose starting and ending points
were well-defined (i.e., whose location was "x..y",
not "<x..y", "x..>y", etc.). I then extracted the
largest possible multiple of 3 codons from each
intron and exon, making sure that the reading
frame was correct (exons don’t necessarily start at
the start of a codon). This resulted in 1055 introns
and 1014 exons. To keep the computation
tractable, introns and exons containing more than
500 bases were filtered out. Finally, 150
introns/exons were randomly chosen (without
replacement) for the training set. A testing set
(with which to check for overfitting) was not used
because the lack of computer time precluded
overfitting; similarly, no evaluation set (with
which to independently evaluate the resultant
programs) was used.

A fitness case in this problem is a complete
intron or a complete exon. Each evolved program
takes as input a sequence of numbers representing
the entire sequence of bases that make up the
intron/exon and returns a value indicating whether
or not the program classifies that sequence as an

164 ISMB-95

intron or an exon. (The DNA sequences were
presented to the programs as sequences of floating
point numbers, where base N = 0.0, A = 1.0, C =
2.0, G = 3.0, T = 4.0, R = 5.0.) The result of the
execution of an individual program was converted
into a Boolean classification as follows: if the
result was a number then it was converted to a
Boolean as per the "and" function; otherwise the
flattened result was summed and the sum was
converted to a Boolean value.

5. The Results

One run was done. Computing the fitness of a
single individual took -20 sec on an SGI
Challenge. Table 1 shows the fltnesses of the best
three individuals. Appendix 3 shows the actual
individuals.

6. Previous Work

Lapedes et al. (Lapedes et al. 1990) used th order
perceptronsI to predict whether or not a sequence
of DNA was expressed as a protein. The bases
were grouped together in the input representation.
Two nets were created: one for H. sapiens and one
for E. coil The training set for the H. sapiens net
contained liver cDNAs (the positive examples)
and the negative examples were chosen from
introns. The training set for the E. coli net was
-50 sequences from GenBank; the testing set was
the remainder of E. coli. The sizes of the training
and testing sets weren’t given. They achieved
accuracies (expressed as the average of QI on the
positive and negative examples) of 99.5% and
98.4% on E~ coli and H. sapiens. It is difficult to
compare the Q1 values obtained by Lapedes et al.
with the results in this paper because (1) the
individuals in table 1 and appendix 3 were
selected for good performance as measured by C,
not Q1. Comparing QI values is not meaningful.
(2) It is not possible to compute (23 or C from Q!
because the number of false positives is not
known.

I An nth order perceptron has the inputs to each

neuron grouped in all possible groups of n and
weighted individually; this enables the net to learn
nth-order correlations without a hidden layer.

Uberbacher and Mural (Roberts 1991;
Uberbacher & Mural 1991; Xu et al. 1994) wrote
a program, called GRAIL, that classified DNA
bases as being in introns or in exons. GRAIL
contains 7 hand-crafted feature-detectors that are
combined by a neural net. This neural net’s input
is a 99-base window of DNA and it’s output is the
likelihood of the central base being in an exon.
Their training set was 18 human genes and their
testing set was 19 human genes. Of the 1113
residues in exons in the testing set, 1029 (92%)
were correctly identified and 84 (8%) were
incorrectly identified.

Uberbacher and Mural successfully created a
program that classifies bases as exon/intron with
very high accuracy: approximately 90% of exons
are correctly predicted. GRAIL is not directly
comparable to the work in this paper, however,
because of the hand-crafted feature detectors.
(GRAIL also differs in that it has to parse the
DNA sequence, the programs described in this
paper were given sequences that were either
entirely an exon or entirely an intron.) The point
of this paper is to try evolving both the feature
detectors and the logic that combines them. This
problem is different than that solved by GRAIL.

7. Conclusions

This paper has shown that an evolutionary
computation technique, genetic programming, can
create programs that differentiate between introns
and exons. Due to the computational difficulties
inherent in array-based languages it was not
possible to evolve programs that were accurate on
many training examples. The above experiments
are promising, however, in that they indicate that
with more computer time it should be possible to
evolve a program that accurately differentiates
between introns and exons.

80 Acknowledgments

Thanks to: John Koza for his comments; David
Andre for his programming advice; and Monica
Lam for the use of the machine on which the
software was developed.

I
generation C

best individual 59 0.54
second-best 27 0.53
third-best 23 0.52
Table 1. Performance of the top three individuals. The "generation" column is the generation in which the
individual first appeared.

Handlcy 165

9. References

Backus, J. 1987. Can programming be liberated
from the von Neumann style? A functional style
and its algebra of programs. In ACM Turing
Award Lectures: The First Twenty Years, 63-130.
New York, NY: ACM Press.

Benson, D.; Boguski, M.; Lipman, D. J.; and
Ostell, J. GenBank. 1994. Nucleic Acids Research
22 (17): 3441--4.

Handley, S. G. 1993. Automated learning of a
detector for t~-helices in protein sequences via
genetic programming. In Proceedings of the Fifth
International Conference on Genetic Algorithms,
271-8. Urbana-Champaign, IL.: Morgan
Kaufmann.

Handley, S. G. 1994a. Automated learning of a
detector for the cores of o~-helices in protein
sequences via genetic programming. In First
IEEE Conference on Evolutionary Computation,
474-9. Walt Disney World Dolphin Hotel,
Orlando, FL.: IEEE.

Handley, S. G. 1994b. The prediction of the
degree of exposure to solvent of amino acid
residues via genetic programming. In Second
International Conference on Intelligent Systems
for Molecular Biology, 156-60. Stanford
University, Stanford, CA.: AAAI Press.

Handley, S. G. 1995a. Predicting Whether Or Not
a 60-Base DNA Sequence Contains a Centrally-
Located Splice Site Using Genetic Programming.
Forthcoming.

Handley, S. G. 1995b. Predicting Whether Or Not
a Nucleic Acid Sequence is an E. coli Promoter
Region Using Genetic Programming. In First
International IEEE Symposium on Intelligence in
Neural and Biological Systems, Herndon, VA.:
IEEE Press.

Handley, S. G. and Klingler, T. 1993. Automated
learning of a detector for tx-helices in protein
sequences via genetic programming. In Artificial
Life at Stanford 1993, ed. Koza, J. 144-52.
Stanford, CA: Stanford Bookstore.

Koza, J. R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, J. R. 1994a. Evolution of a comuter
program for classifying protein segments as

transmembrane domains using genetic
programming. In Second International
Conference on Intelligent Systems for Molecular
Biology, 244-52. Stanford University, Stanford,
CA.: AAAI Press.

Koza, J. R. 1994b. Genetic Programming H:
Automatic Discovery of Reusable Programs.
Cambridge, MA: M1T Press.

Koza, J. R. and Rice, J. P. 1992. Genetic
Programming: The Movie. The MIT Press.
Cambridge, MA.

Lapedes, A.; Barnes, C.; Burks, C.; Farber, R.;
and Sirotkin, K. 1990. Application of neural
networks and other machine learning algorithms
to DNA sequence analysis. In Computers and
DNA, SFI studies in the sciences of complexity,
ed. Bell, G. and Marr, T. 157-82. VII. Addison-
Wesley.

Roberts, L. GRAIL seeks out genes buried in
DNA sequence. 1991. Science 254 (5033): 805.

Singer, M. and Berg, P. 1991. Genes & genomes:
A changing perspective. Mill Valley, CA:
University Science Books.

Uberbacher, E. C. and Mural, R. J. Locating
protein-coding regions in human DNA sequences
by a multiple sensor-neural network approach.
1991. Proceedings of the National Academy of
Science (USA) 88:11261-5.

Xu, Y.; Einstein, J. R.; Mural, R. J.; Shah, M.; and
Uberbacher, E. C. 1994. An improved system for
exon recognition and gene modeling in human
DNA sequences. In Second International
Conference on Intelligent Systems for Molecular
Biology, 376-84. Stanford University, Stanford,
CA.: AAAI Press.

166 ISMB-95

Appendix 1. The ordinary functions

Descriptive Short name & Definition
name
First2

lst:x=/xl ifx=<x! xn>,n>l

tx otherwise

Tail <x
tl:x - ix

xn > ifx=<x I xn >,n>2

otherwise

Reverse tail < XI
tlr:x - Ix

Xn_1 > if x =< xI xn >,n > 2

otherwise

Identity id: x = x
Atom? [-1 ifx=<x I

atm:x - [+1 otherwise
xn>

Equality test [+1 xI =x2 ifx=<xl,x2 >, Xl,X2are numbers,

eq:x=l!’l XI ~:x2 otherwise

Logical and3 [~’+1 xI >0,x2 >0
and: x -- - 1

Ixl
otherwise

if x =< xI , x2 >, xI , x2 are numbers,

otherwise

Null sequence? +1 ifx=<x I
null:x - -1 otherwise

xn>,n=O

Reverse < Xnrev: x -- Ix
X1 > if X =< XI, Xn >

otherwise

Distribute left disthx_J"<<y,zl >
lx

<Y,Z, >> if x=<y,<zl Zn >>
otherwise

Distribute right
distr: x -

<<Zl,y> <Zn,y>> ifx=<<Z1 Zn>,y>
Ix otherwise

Length In if x =< xI
len: x -- Ix otherwise

xn >

Addition4

+:x-{ xl+x2otherwiseifX=<Xj’X2 >’xl’x2arenumbers

Division "xI/x2
x Xnl >""’ ifx=<<XlI

ifx=<xl,x 2 >, Xl,x2arenumhers, x2 *:0

otherwise

Transpose <xll’tl’ans:x - lx< Xlm

Xnm >> otherwise

Xlm > ,<Xnl,...,xn m >>5

Append left
apndhx = [< y, zl Zn > if x =< Y,< Zl z, >>

tx otherwise

2Second (2rid), third (3 rd) sixth (6 gh) are defined similarly. Reverse-first (rX s t) reverse-sixth
(r 6 th) are also similar: reverse-first returns the last dement, reverse-second the second-to-last etc.
3The functions or, < and not are defined similarly.
4The functions * and - are defined similarly.
5Also, all ofx’s subsequences must be the same length.

Handley 167

Append right
apndr:x = J’< Zl

zn,y> if x =<< Zl Zn>,y>

otherwise

Rotate left Xn,XI > ifx=<xI xn >rotl: x ---
<X2

x otherwise

Rotate right <Xn,XI Xn_I > if x=<Xl,...,X n >
rotr: x -

x otherwise

numbers e 9~ numbers evaluate to themselves (i.e., they’re constant functions)

Appendix 2. The functional forms

Descriptive Short name & Definition
name
Composition (o fg):x f: (g:x)

Construction ([]2 fg):x -=< f:x,g:x >

Conditional F~t:x p:x>O

(ifptf):x- ~Lf:x p:x<O p:xisanumber
Lx otherwise

Insert f:<xl,(insf):<x 2 xn >> ifx=<x I xn >,n>2

(ins f):x --, I if x =< x1 >

x otherwise

Apply to all [<f:xI
(ata f): x -=

f:x n> ifx=<x I xn>
otherwise

While (whde)(f p:x>O
(while p f):x-, p:x<0 p:x is a number

x otherwise

Appendix 3. The best three individuals.

The best individual:
(o (if (if len (o (if ([]2 (if (if 2nd not r5th) not r5th) (if tl r6th-.9439))
(if (ata (if (if (if ([]2 (if (ins or) (if (ins or) (ata (if tl
(while ([]2 (if ([]2 * *) (o (o or r4th) (if not 6th not)) ([]2 ([]2
(ins 5th))) (ata (ins (ins +)))) (ata (o (ata tl) (ins distl)))))
(distr)) (o distl trans) (ata (rotl)))) (if tl r6th -3.9439)) (if
and atm ([]2 distl trans)) (ata -)) (while (ins apndr) (o (ins (ata

([]2 < ([]2 rotr (while ([]2 (rotr) (if (if (while (ata rotl) -)
(while (if or and ([]2 (<) rlst)) trans))) ([]2 ([]2 (and) *) +))
(ata (o (ata tl) (ins (distl)))) ([]2 2nd (while (o distl ([]2 (if
(ins rlst))) len))))) trans)))))) or ([]2 ([]2 and *) +))
distl))) (if (if (if (while (ata rotl) (o or 5th)) (ins (o
trans))) ([]2 ([]2 and (ata trans)) (ata r4th) ([]2 (ata (o (at a t l) (i
distl))) ([]2 rotr tlr))) atm r5th) (ata -)) (while (ins apndr)

trans) rotr) (ins rotl) ([]2 (if rotl id distr) (ins rlst))) ([]2 (ata
(if rotr rotr or) (if (if (if ([]2 (if (if (if 2nd (if (ins (o ([]2
and *) ([]2 (if ([]2 (if rotl id distr) (ins rlst)) % (if tl r6th -3.9439))
(ins rev))))) (while tlr trans))) (o (if ([]2 (if 2nd not r5th)
([]2 ([]2 (if 2nd ([]2 (if rotl id distr) (ins rlst)) (o (5th) (while
(ata r5th) (if and (atm) r5th) (ata -))))) r6th) ([]2 (ins (if

(o distl ([]2 (if - r6th %) (ins rlst)))) (while rotr and)))) (while

168 ISMB-95

and *) rotr) (if ([]2 (o distl (%)) *) 9.5347 4th)))) * len)
-3.9439)) (if (ata r5th) (if and atm r5th) (ata -)) (while (ins
trans) rotr) at/n) (ins not) (while null apndl)) (if (ins (or)) (ata

-3.9439)) (while ([]2 (if ([]2 * *) (o (o or r4th) (if not 6th (not)))
len r2nd) (ins 5th))) (ata (ins (ins ÷)))) (ata (o (ata tl) (ins

(o ist distr) (o distl trans) (ata rotl))) (if tl r6th -3.9439)) (if
and atm ([]2 distl trans)) ([]2 distl trans)) (while (ins apndr) (o
([]2 < ([]2 rotr tlr))))) or ([]2 ([]2 and *) +)) ([]2 5th rotr) (ins

The second-best individual:
(o (if (if len (o (if ([]2 (if (if 2nd not r5th) not r5th) (if tl r6th-3.9439))
([]2 < ([]2 rotr tlr)) (while (ins apndr) (ins rotl))) trans) rotr)

([]2 (if rotl id distr) (ins (if 2nd ([]2 (if rotl id distr) (ins rlst))
(while tlr (if ([]2 (if 2nd ([]2 (if rotl id distr) (ins rlst)) (o 5th
(if 2nd (if (if or 4th rotl) (ins %) len) r5th) (if (ata tl) r6th (ata
([]2 (if (if 2nd not r5th) not r5th) (if tl r6th -3.9439)))))) (if (ata
and atm r5th) (ata -)) (while (ins tlr) len)))) (if tl r6th -3.9439
(r5th))(ata -)))))))) ([]2 (ata r5th) ([]2 (if rotr rotr or) (if
(if (if 2nd (if (ins (o ([]2 (ata (o ([]2 (if rotl id trans) (ins
r4th len))) ([]2 ([]2 and *) +)) (while tlr trans))) (o (if len (if
atm r5th) (ata-)) (while (ins apndr)len))trans)rotr) (atm)) (ins
null apndl)) (if (ins or) (ata (if (o (if (if (if (while r2nd 3rd)
distl) (o eq (apndr))) + rev) ([]2 - or) ([]2 apndl rotl)) (ata (o

id trans) (ins rlst)) ([]2 r4th len)))) r6th -3.9439)) (while ([]2
(o (o or r4th) (if not 6th not)) ([]2 ([]2 len r2nd) (ins 5th))) (ata
+)))) (if eq % (while (ata (o distl ([]2 (if rotl id distr) (ins
r5th)))) (if (o ist distr) (o distl trans) (ata rotl))) (if tl r6th
(ata tl) (if and ([]2 distl trans) ([]2 distl trans)) (ata -)) +)
apndr) len) not) ([]2 5th rotr) (ins distl)

The third-best individual:
(o (if (if len (o (if ([]2 (if (if 2nd not r5th) not r5th) (if tl r6th
(if (ata (ata (o (ata tl) (ins distl)))) (if ([]2 ([]2 and *) +)
-)) (while (ins (apndr)) (ins rotl))) trans) rotr) (ins rotl) (if
([]2 (ata r5th) ([]2 (if rotr rotr or) (if (if (if ([]2 (if (if (if
(o ([]2 * ([]2 (ins +) +)) (while tlr trans))) (o (if ([]2 (if and
trans)) (if tl (if (o or 5th) atm r5th) -3.9439)) (if distl 2nd (ata
(ins apndr) len)) trans) rotr) atm) (ins not) (while null apndl))
(ata (if (ata len) r6th-3.9439)) (while ([]2 (if ([]2 * *) (o (o
not 6th (not))) ([]2 ([]2 len r2nd) (ins 5th))) (ata (ins (ins +))))
tl) (ins distl))))) (if (o ist distr) (ata r4th) (ata rotl))
-3.9439)) (if (ata tl) (if and atm ([]2 distl trans)) (ata -)) +)
and 5th) +)) ([]2 len ([]2 (if distl distr apndl) +)) (ins

Handley 169

