[0.001s][warning][perf,memops] Cannot use file /tmp/hsperfdata_ec2-user/388803 because it is locked by another process (errno = 11)

Towards Byte Code Genetic Programming

Brad Harvey

Compaq
14231 Tandem Bl.

Austin, Texas 78728-6699
brad.harvey@compaq.com

James Foster

Computer Science Dept.
University of Idaho

Moscow, Idaho 83844-1010
foster@cs.uidaho.edu

Deborah Frincke

Computer Science Dept.
University of Idaho

Moscow, Idaho 83844-1010
frincke@cs.uidaho.edu

Abstract

We investigate using the GP paradigm to
evolve linear genotypes (individuals) that consist of
Java byte code. Our prototype GP system (bcGP) is
implemented in Java. The evolutionary process is done
completely in memory and the fitness of individuals is
determined by directly executing them in the Java
Virtual Machine (JVM). Our scheme is an effective
means for evolving native machine code for the JVM.

1 INTRODUCTION

Genetic Programming (GP) has proven to be a very
powerful paradigm for solving diverse problems from a
variety of different domains. The Java language and
runtime environment is rapidly gaining acceptance as
evidenced by numerous vendors including Java as
strategic parts of their systems. Because of the
significance of these two technologies, we explore using
GP to directly evolve Java byte code in the context of a
standard Java environment. Our work has been inspired
by Nordin’s [1994] use of GP to evolve RISC machine
code. We, along with other researchers, are investigating
the possibilities and issues of byte code GP [Harvey, et
al., 1998][Klahold, et al., 1998][Lukschandl, et al., 1998]

2 BYTE CODE GP (bcGP)

The goals for our research prototype are: (1) use of a
standard JDK, (2) implementation of bcGP in Java only,
(3) direct execution of evolved individuals in the standard
JVM, and (4) the evolutionary process occurring
completely in memory.

A significant aspect of our work has been designing a
genotype only representation scheme, which facilitates in
memory evolution in the context of bcGP and the JVM. In
our scheme, a generation is represented by an in-memory

version of a Java class file with individuals represented as
methods in the class file. A generation class file is
organized in index standard form, which allows for a
unique naming and indexing scheme for both generations
and individuals. This scheme enables bcGP to directly
manipulate the method byte code constituting an
individual in a class file during evolution, and to dispatch
it for execution during fitness evaluation. In the prototype,
single-point crossover and mutation are used as well as k-
tournament selection.

3 CONCLUSIONS

We validate our approach by solving a functional
regression problem with a fourth degree polynomial, f(x)
=x4+x3+x2+x, and a classification problem diagnosing
thyroid disease. For the classification problem, bcGP
evolves individuals consisting of conditional byte codes.
Each individual represents a rule used to classify
instances of the database as either having or not having
thyroid disease based upon an instance‘s features.

References

B. Harvey, J. Foster, D. Frincke (1998). Byte Code
Genetic Programming. In Late Breaking Papers at the
Genetic Programming 1998 Conference, University of
Wisconsin – Madison

S. Klanhlold, S. Frank, R. Keller, W. Banzhaf (1998).
Exploring the Possibilities and Restrictions of Genetic
Programming in Java Bytecode. In Late Breaking Papers
at the Genetic Programming 1998 Conference, University
of Wisconsin – Madison

E. Lukschandl, M. Holmlund, E. Moden, M. Nordahl, P.
Nordin (1998). Induction of Java Bytecode with Genetic
Programming. In Late Breaking Papers at the Genetic
Programming 1998 Conference, University of Wisconsin
– Madison.

P. Nordin (1994). A compiling genetic programming
system that directly manipulates the machine code. In
Kinnear, Jr., K. E., editor, Advances in Genetic
Programming. MIT Press, Cambridge, MA

