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Abstract

As functions which further the state of a proof in automatesbtem proving, tactics
are an important development in automated deduction. Tiesi$ describes a method
to tackle the problem of tactic formation. Tactics must eatly be developed by hand,
which can be a complicated and time-consuming process. Aadas presented for
the automatic production of useful tactics.

The method presented works on the principle that commontymwing patterns
within proof corpora may have some significance and couldcetbes be exploited to
provide novel tactics. These tactics are discovered usthgeg step process.

Firstly a suitable corpus is chosen and processed. One dégafrgosuitable corpus
is that of the Isabelle theorem prover. A number of possibkractions are presented
for this corpus.

Secondly, machine learning techniques are used to data-@aich corpus and find
sequences of commonly occurring proof steps. The specifepmof step are defined
by the specified abstraction.

The formation of these tactics is completed using evolatigiiechniques to com-
bine these patterns into compound tactics.

These new tactics are applied using a naive prover as wekladsrgoing manual
evalutation. The tactics show favourable results acrosdextson of tests, justifying
the claim that this project provides a novel method of autiically producing tactics
which are both viable and useful.
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Chapter 1
Introduction

Within the field of automated deduction, the huge searchespawolved in finding
correct proofs means that fully automated theorem proversiat as advanced as it
was once thought they would be by this time. For example, Nemnd Simon claimed
that a computer would “discover and prove an important newheraatical theorem”
by January 1st 1968 [Simon and Newell (1958)]. However, st gearch spaces in-
volved in finding even a relatively simple mathematical gromans that automated
theorem provers are not nearly so advanced. The majoritulgf &utomated theo-
rem provers can only prove relatively simple mathematicabtems and can only do
this much within a specialised domain. Interactive theopgovers allow for human
intervention to generate the ‘eureka’ steps while prowgdsome automation for the
more tedious steps of a formal proof. In order to increasectpability of automated
theorem proving, many techniques to aid proof discoverghmen developed but this
remains a field with a long way to go to realise its potential.

An important advance in theorem proving was made by Robimé&tilvhen he in-
troduced the notion of tactics [Gordon et al. (1979)]. Tesare functions from goals to
subgoals which raise appropriate error messages whendheylie use of tactics has
greatly helped the field of theorem proving by guiding seaiidie technique described
in this dissertation aims to build upon that success by impleting a method to allow
tactics to be formed automatically. Robin Milner used &in his automatic proof
assistant Edinburgh LCF [Gordon et al. (1979)], which ated the current theorem-
proving, proof-checking, proof-assisting methods. LCE he to descendents such
as HOL [Gordon (1985)], ISABELLE [Paulson (1986)], COQ [Dekvet al. (1991)],
LEGO [Luo and Pollack (1992)], Nuprl [Constable et al. (13&6d PVS [Owre et al.
(1992)]. The concept of tactichas become somewhat overloaded in theorem proving

1



2 Chapter 1. Introduction

with many different techniques and theorem provers usitgntean different, yet spe-
cific, things. Within this documertaicticsis used with the classic meaning of a set of
instructions which will further a proof, more specificallyformation about rules and
techniques which should be applied to the subgoal in ordadt@ance the proof state.
This phraseology encompasses simple tactics which areeeegs of proof steps to
compound tactics which contain more complex operators afwitrhation about how
to apply proof steps.

Tactics must currently be developed by hand. The most attitactics (such as
Rippling, developed by Bundgt al. [Bundy et al. (1993)]) can take many years and
significant human effort to develop. Even more straightnsvtactics require human
intervention and inspiration.

1.1 Technique Outline

This thesis presents the NewT (New Tactic generator) syatadrits Isabelle-specific
implementation IsaNewT. The evaluation of IsaNewT shoved thcan form useful
tactics automatically using a combination of techniquesnfiprobabilistic reasoning,
machine learning and genetic programming.

By adapting probabilistic reasoning techniques, such amba Length Markov
Models (VLMM) [Ron et al. (1996)], rule sequences have beemiified. These tech-
niques are used to discover commonly occurring patternstiegiin proof corpora.
Such patterns can be viewed as simple probabilistic taciMisat constitutes a proof
step varies across different systems and the main NewTraydbes not require a spe-
cific form. For the ease of reading we represent all tactidsabelle formatting which
is the form we have used for development and testing. Witigrisabelle system such
proof steps generally consist of a theorem which is used ewate rule.

These patterns are adapted using Koza-style genetic pnogray [Koza (1992)].
Using this, the simple tactics are generalised into comgoames, e.g. containing
repetition, branching and other operators from the reggdammar defined in chapter
5. This process requires the development of an evaluatioctifun for scoring the
evolving tactics. A new evolutionary programming techr@gsi compared against the
traditional Koza-style Genetic Programming method in ®ohefficiency and output
tactics.
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The tactics generated by IsaNewT have the form:

Tacl = [step, repetition(step list), branch([step list],[step list])]

It can be more useful to imagine the tactics as a pictori@ tnech as in figure 1.1,
particularly when dealing with complicated tactics.

step

step
T
step

N\

step stef

step

Figure 1.1: An abstract example of a tactic.

In order to evaluate these new tactics a fully automatedgnaithin the interactive
theorem proving system Isabelle has been developed (IeAlihe new generalised
tactics are evaluated by applying them to a test set of theownd comparing their
performance within IsaAuto. The results with and withowt tlewly discovered tactics
are compared to provide a measure of usefulness.

1.2 Original Contribution

These are the main original contributions of the method rilesa in this thesis:

1. Pattern discovery within a proof corpus method for automatically scanning
a proof corpus and finding commonly occurring patterns witthiese proofs
is provided. Although many techniques exist to discovetguas a particular
adaptation of these is used to produce a method specific¢owdisng patterns
within proof structures. In particular, there is a requishto adapt methods
designed for sequences to handle trees.

2. Evolution of patterns into tactio& method is provided for combining sequences
of proof steps together into compound tactics. At this paimadaptation of ex-
isting Genetic Programming techniques is used to combigaesees together
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into more general structures which describe multiple seqgeg. For our pur-
posessequenceare lists of abstracted proof steps.

. Automatically produced tacticEhe two previous contributions lead to the main

purpose, which is to provide a method to produce tacticsmaatizally. As dis-
cussed in the introduction, this achievement describegrafiant contribution
to the field.

The IsaNewT system describes the first attempt to providdha dutomated
method for producing tactics. The analysis of these tagtiekls favourable
results which show that IsaNewT is capable of producingdaethich are both
viable and useful.

Thesis Outline

Chapter 2 describes previous work carried out in the fields tie method pre-
sented is concerned with. Existing work in the field of auttedadeduction is
considered, along with previous learning methods from pertessing, com-
puter vision and bioinformatics. Also considered is rafaterk in the field of

genetic algorithms and existing automated theorem provers

Chapter 3 considers the available choices for a proof corpugxplains the
choice of proof corpus and the method of obtaining the necgstata. Most
importantly, this chapter describes possible choices sfrabtion and justifies
the choices made.

In Chapter 4 the pattern discovery process is describedtaldé&Some avail-
able methods are considered and the production of a newitpahis presented.
Some results from this stage of the technique are also pexten

Chapter 5 presents some methods for combining these maitemncompound
tactics. Two approaches are described and compared in @rmesults and
efficiency. Some preliminary results for this process am@magrovided.

In Chapter 6 the method for applying these tactics in ordat they can be
better evaluated is provided. This chapter describes themmentation of a
naive automated prover which is used to evaluate the nevesact
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e Chapter 7 shows an in-depth analysis and experimentaltseBoin the en-
tire IsaNewT system. This chapter enables a judgement todvendregarding
whether the discovered tactics can be considered useful.

e Chapter 8 presents the conclusions of the entire process.

e Appendix AThis contains a glossary to clarify all technical terms ysegar-
ticular, this is used to explain the overloading of certaimis.

e Appendix B:This contains some technical information about proofs amdfp
steps.






Chapter 2

Related Work

This chapter gives a broad overview of related work in vasidelds. It covers a
number of processes which have been applied to a varietyobigms.

Traditional reasoning methods and how they have led to teihiod are considered
along with techniques from other disciplines and how thay loa adapted to relevant
uses.

As this technique crosses several disciplines, some of ts ralevant work within
each discipline are considered with the uses to which thedeniques are normally
put. A range of existing automated theorem provers aredired followed by an ex-
amination of existing learning methods from a range of fieldsis chapter concludes
with some genetic programming techniques, including hasy thave been applied to
a related problem.

2.1 Automated Theorem Proving and Provers

Automated theorem proving at its most simple is a term whiebcdbes the use of
a computer program to prove a mathematical theorem. Withigifield areinterac-
tive theorem proversvhich provide proof assistance to a human &ty automated
theorem proversvhich require no human intervention at all.

A conjecture made up of a set of assumptions and a conseqisegigen to these
provers which then use their knowledge base (made up of axeamd derived infer-
ence rules) to explore the search space in order to proveoitjeature. The proof is
stored as a sequence of steps which can derive the consequieaconjecture from
its assumptions.

A proof step can be applied either forwards (what can be urdnmm A) or back-

7



8 Chapter 2. Related Work

wards (how carA be proved). As an example, the forwards proof of the conjectu
‘ANB — AA(BAA) is givenin figure 2.1.

Conjecture AABFAA (BAA)
Derived rule conjl PQFPAQ

BasSmM—xasm

BT A
BAA
AN (BAA)

conjl

conjl

Figure 2.1: A simple theorem proving example.

2.1.1 Proof Tactics

A proof tacticis a computer program for applying the rules of inference aiathe-
matical theory library [Gordon et al. (1979)],paoof tacticguarantees correctness by
only applying valid rules. Tactics are widely used in intgige proof systems for au-
tomating common patterns of proof and, hence, improvinglpetivity. Tactic-based
theorem provers have been developed both in academia (CORRN, PVS, Mizar,
LEGO, HOL, Isabelle, Nuprl) and industry (Forte, ProofPowedJntil recently, this
has required the manual construction of tactics. The tegtenpresented here reduces
this impediment by providing a fully automated method favgwcing new tactics.

2.1.2 COQ

The COQ tool is a formal proof management system [Dowek €t1l8P1)] : a proof
done with COQ is mechanically checked by the machine. Alidalgjudgements in
COQ are typing judgements. The core of the COQ system is e dhecking algo-
rithm that checks the correctness of proofs. It checks thabgram complies to its
specification. COQ also provides an interactive proof gsstgo build proofs using
tactics.

COQ has an interactive mode in which commands are integheet¢he user types
them in from the keyboard and a compiler mode where commanedsracessed from
afile.

e The interactive mode may be used as a debugging mode in whectiser can
develop his theories and proofs step by step, backtrackimgeided and so on.
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e The compiler mode acts as a proof checker taking a file cantaawhole devel-
opment in order to ensure its correctness. Moreover, COQispiler provides
an output file containing a compact representation of itatnp

2.1.3 NUPRL

The NUPRL proof development tool [Constable et al. (198fgt released in 1984 -

is a framework for the development of formalised mathenadttaowledge as well as

for the synthesis, verification and optimisation of softevalt includes formalisations

of the fundamental concepts of mathematics, data types @glgmming. The sys-

tem supports interactive and tactic-based reasoningsidecprocedures, evaluation
of programs, language extensions through user-definedeptgicand an extendable
library of verified knowledge from various domains.

214 PVS

The PVS theorem prover [Owre et al. (1992)] provides a ctitbecof powerful prim-
itive inference procedures that are applied interactivelger user guidance within a
sequent calculus framework. The primitive inferencesudel propositional and quan-
tifier rules, induction, rewriting, and decision procedufer linear arithmetic. The im-
plementations of these primitive inferences are optimisetiarge proofs: for example,
propositional simplification uses BDDs, and auto-rewries cached for efficiency.
User-defined procedures can combine these primitive inéa® to yield higher-level
proof strategies. Proofs yield scripts that can be edité#tdcled to additional formu-
las, and rerun. This allows many similar theorems to be pificiently, permits
proofs to be adjusted economically to follow changes in megoents or design, and
encourages the development of readable proofs.

2.1.5 Mizar

The Mizar proof assistant [Rudnicki (1992)] is similar tetbompiler mode in COQ.
A user writes an entire proof and the system checks it forembness. The source text
is prepared using any ASCII editor and typically includesrir1500 to 5000 lines. The
text is run through the Accommodator. The directives from Emvironment Declara-
tion guide the production of the environment specific forantcle. The environment
is produced from the available data base. Now the Verifieeagly to start checking.
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The output contains remarks on unaccepted fragments obtireestext. These three
steps are repeated in a loop until no errors are flagged arauther is satisfied with
the resulting text.

A finished Mizar article is submitted to the Library Commeétef Association of
Mizar Users for inclusion into the Mizar Mathematical LibyaThe contributed article
is subject to a review and if needed the authors must revesefite. The contents of
an accepted article is extracted by the Exporter utility exedrporated into the public
data base distributed to all Mizar users.

2.1.6 LEGO

LEGO [Luo and Pollack (1992)] is an interactive theorem grodesigned and imple-
mented in Edinburgh using New Jersey ML. It implements wai@lated type systems
- the Edinburgh Logical Framework (LF), the Calculus of Gomstions (CC), the Gen-
eralised Calculus of Constructions (GCC) and the Unifiedofjnef Dependent Types
(UTT).

LEGO is a tool for interactive proof development in the natuteduction style. It
supports refinement proof as a basic operation. The systeigrdemphasises remov-
ing the more tedious aspects of interactive proofs. For gtanfeatures of the system
like argument synthesis and universe polymorphism makeffoecking more prac-
tical by bringing the level of formalisation closer to thdtioformal mathematics.
The higher-order power of its underlying type theories, grelsupport of specifying
new inductive types, provide an expressive language fonétisation of mathematical
problems and program specification and development.

2.1.7 Isabelle

Isabelle is a mechanical theorem prover developed with dhguage ML [Paulson
(1986)]. Isabelle is capable of dealing with many types gfidosuch as first order
logic (FOL) and Zermelo-Fraenkel set theory (ZF). Most coonity, Isabelle is used
with higher order logic (HOL).

Isar is an extension to traditional Isabelle which operatiés HOL, it is based on
the natural language representation used in the Mizarsydtamproves on Isabelle
in a number of ways:

e It has a new theory format supporting interactive developinaad unlimited
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undo operations. This makes developing theories easiatit@ed simpler to
debug.

e A formal proof document language designed to make matheaigtioofs more
readable has been developed for Isar.

e It contains a simple document preparation system for tyjpageformal devel-
opments together with informal text.

Most LCF systems such as Isabelle use a definitional approHtis means that
everything must be proved from a very small number of iniimloms, namely those
of higher order logic. This has the benefit of ensuring thahestep has a well-founded
base —i.e. no axioms are defined which are inconsistent hatlexisting theory.

Isabelle has the additional advantage for our project ofrttpa large electronic
proof corpus which has proofs from a wide variety of logics ¢escribed above) and
disciplines (from geometry to real analysis to HOL logicsdsoning).

2.1.8 IsaPlanner

Lucas Dixon has recently developed IsaPlanner [Dixon aadriét (2003)] as a generic
framework for proof planning in the interactive theoremymolsabelle. It facilitates
the encoding of reasoning techniques, which can be usecijeatare and prove the-
orems automatically. IsaPlanner provides an interacta@ng tool that allows you to
interact with the proof planning attempt.

IsaPlanner includes techniques to allow rippling, decectiynthesis and genera-
tion of natural language from IsaPlanner traces among ¢kifiregs.

2.1.9 LambdaClam

The Mathematical Reasoning Group at Edinburgh implemahietechnique of proof
planning in theClamandAClamproof planners [Bundy et al. (1990); Richardson et al.
(1998)] and applied it particularly to the kind of inductipeoofs that arise in verifi-
cation and synthesis of IT systems. It has extended the ming®blems that can be
solved without human intervention. In particular, the usproof critics has automated
the discovery of intermediate lemmas and generalisatiogiafd and Bundy (1996)] -
so called ‘eureka’ steps, which were previously thoughetpuire human intervention.
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The AClam system specialises in using induction based on the ripplegistic.
An interactive theorem prover Oyster-Clam [Horn and Sm@if190)] has been de-
signed to work with the Clam system. It is based on the NuFstesy but is imple-
mented in Prolog [Pereira et al. (1979)].

2.1.10 Qmega

TheQmega group, based in the Saarland University, Saarbrimkdrthe German Re-
search Center for Artificial Intelligence (DFKI) developtb@ Qmega system [Benzmilller
etal. (1997)].Qmega is a tool with the ultimate purpose of supporting theqgoeoving

in main-stream mathematics and mathematics educationcdinent system consists
of a proof planner and an integrated collection of tools twnfulating problems, prov-
ing subproblems, and proof presentation.

Qmega allows each user to build up their theory from a smadioal set pro-
vided withQmega, this allows the capacity for operation in a wide vgrigtdomains.
Qmega is currently being used with MathWeb [Kohlhase (200@)jich supplies an
infrastructure for web-supported mathematics.

2.1.11 Summary

This section has described a broad range of the availalbeeieéd and interactive the-
orem provers available. Some of these systems, such as GO@eat most commonly
for checking the correctness of programs, and some suchze jgtide themselves on
having a large library of purely mathematical theorems. Mahthe systems, such
as the Isar extension to Isabelle strive to bring the redithabif the proofs built us-
ing them closer to that of traditional mathematics. In maagss (such as IsaPlanner,
Qmega and LEGO) the emphasis is placed on removing the lowel $¢eps tradi-
tionally required by formal mathematics. These cases ugdetques such as tactics
and proof methods to form a higher level proof structure etds those developed in
informal mathematics.

The method behind IsaNewT is applicable to any method whigblves an ele-
ment of automatic proof search so it could theoreticallyaiad to any of the provers
described here. However, an important consideration istiadability of a suitably
sized proof corpus to learn the tactics from. Although maitye provers listed above
have a significant library, the format of these proofs anddage of extracting them
has played a significant role in the choice of proof corpus\NiewT.
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2.2 Previous Learning Methods

There have been several previous attempts to learn new pretbfods or tactics from
example proofs. Also of interest to us are systems whicmlead predict patterns,
this has been particularly common in the bioinformatics noamity.

2.2.1 Pre-condition Analysis

Bernard Silver applied techniques of explanation-basathlag to the automated learn
ing of proof methods for equation solving [Silver (1984)].isH.earning-Press sys-
tem analysed successful solutions to equations and geseet#hese solutions to form
methods for guiding the Press equation solving system. itnviilay, he was able to
automatically rediscover simplified versions of many of fireviously hand-coded
methods of Press.

Similarly, Roberto Desimone automated the reconstruafanductive proof plans
[Desimone (1987)]. Silver and Desimone used preconditioalyesis which learns
new inference methods by evaluating the pre- and post-tiondiof each inference
step used in the proof. A dependency chart between theseapdepost-conditions
is created, and constitutes the pre- and post-conditiomiseohewly learnt inference
systems. These methods are syntactically complete preps$ st

The techniques of both Silver and Desimone generalise frimigles successful
proofs and require the system to be primed with some key tegtd-concepts for
expressing the preconditions and effects of the methodgsléaent. This requirement
for priming is a significant drawback to these techniques.

2.2.2 Learning Proof Methods

Kerber, Jamnik, Pollet and Benzmiller have applied thariepies of least general
generalisation to a family of similar proofs to learn new gironethods for various
domains [Jamnik et al. (2002)]. They present a frameworkaiatomated learning
within mathematical reasoning systems. In particulas tramework enables proof
planning systems to automatically learn new proof methama fvell chosen examples
of proofs that use a similar reasoning pattern to proveedl#tteorems.

Their framework consists of a representation formalisnmiiethods and a machine
learning technique which can learn methods using this sgmtation formalism. They
present an implementation of this framework, called L&xvtatic, which adds new
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methods to th@mega proof planner. Methods are represented using a regpaar-
mar over individual proof steps and previously learned rods allowing a hierarchi-
cal collection of methods. Note that this technique requadéthe proofs in the family
to be examples of the learned method.

2.2.3 Learning using Markov Models

Ron, Singer and Tishby applied the probabilistic technsgod/ariable memory Length
Markov Models [Ron et al. (1996)]. VLMMs processes can becdbsed as a subclass
of probabilistic finite automata (PFA) which they call Prbbstic Suffix Automata
(PSA). Though hardness results are known for learningidigions generated by gen-
eral probabilistic automata, they prove that the algorithey present can efficiently
learn distributions generated by PSAs.

In particular, they show that for any target PSA, the divargebetween the dis-
tribution generated by the target and the distribution gateel by the hypothesis the
learning algorithm outputs can be made small with high cemfoe in polynomial time.
The learning algorithm is motivated by applications in hummaachine interaction. In
their paper, they present two applications of the algorithm

In the first one they apply the algorithm in order to constraechodel of the En-
glish language, and use that model to correct corrupted liexhe second application
they construct a simple stochastic model Eocoli DNA. They looked at data which
has ashort memory property.e. consider the empirical probability distribution dret
next symbol in a sequence given the preceding symbols, tiexe exists a length
(memory lengthsuch that the conditional probability distribution does change sub-
stantially if we condition on preceding subsequences dftlegreater than L. These
can form Markov models of ordér > 1, they give efficient procedures both for gener-
ating sequences and for computing their probabilities.

Markov Models have been frequently used in Bioinformatespecially for clas-
sifying incomplete DNA strands. Some of the work on patteratehing in DNA
sequences [Brazma and Cerans (1994)], as in the GENOMEcprggeelated to the
NewT learning mechanism.

2.2.4 Random Fields

Stephen Della Pietra, Vincent Della Pietra and John Laffpresented a technique
for constructing random fields from a set of training examspletheir papeinduc-
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ing Features of Random FieldBella Pietra et al. (1997)]. Their learning paradigm
builds increasingly complex fields by allowing potentiah@ions, or features, that are
supported by increasingly large subgraphs. Each featulsaheaeight that it trained
by minimising the divergence between the model and the ecapulistribution of the
training data. A greedy algorithm determines how featuresracrementally added to
the field and an iterative scaling algorithm is used to edtirttze optimal values of the
weights.

The Random Field models and techniques introduced by DadtealPDella Pietra
and Lafferty differ from those common to much of the computsion literature in that
the underlying random fields are non-Markovian and havegelaumber of parame-
ters that must be estimated. Relations to other learningoaphes, including decision
trees, are given. As a demonstration of the method, theyrideskits application to
the problem of automatic word classification in natural laage processing.

2.2.5 Proof Reuse and the Simulation of Human Learning

Kolbe, Walter and Brauburger [Kolbe and Walther (1998);4b&t al. (1998)] in ad-
dition to Melis and Whittle [Melis and Whittle (1998)], hawmne related work on
the use of analogy and proof reuse. Their systems requiredd teasoning with one
example to reconstruct the features which can then be uspte a new example.
The reconstruction effort needs to be spent on every new pbeafar which the old
proof is to be reused. In contrast, we learn our reasoningpest from a large number
of examples. A piece of related work in Cognitive Science ussE’'s Mathematics
Understander [Furse (1995)], MU, which stores mathemiadicenain and procedural
knowledge in a contextual memory system, and tries to sitadlaw students learn
mathematics from textbooks. MU builds up a uniform low-ledata structure, and
while the principle behind this approach is similar to th&tlus project, IsaNewT
builds generalised tactics from a range of examples rati@r tocusing on the minu-
tiae of a single example.

In terms of a learning mechanism, fairly recent work on l@agmregular expres-
sions, grammar inference and sequence learning by Sun ded [Sun and Giles
(2000)] is related. Learning regular expressions is edentato learning finite state
automata, which are also recognisers for regular grammars.

Muggleton has done related work on grammatical inferencthous [Muggleton
(1990)] which automatically constructs finite-state stmwes from trace information.
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His method IM1 is a general one and can describe all othetiegigrammatical in-
ference methods. IM1 consists of first, generating a preéi& from example traces,
second, merging of states to get canonical acceptor stakesi(still describe only the
example traces), and third, merging states which essbntia¢s the generalisation of
the structure. The generalisation, i.e., merging, is detsed by a particular chosen
heuristic measure.

The existing state automata learning techniques diffeedémg on the heuristic
that they employ for generalisation. These techniquesiottquire supervision or an
oracle which confirms when new examples are representdtiveonferred generali-
sation.

There have been various approaches to incorporate leamipgnning. In the
PRODIGY system [Minton et al. (1989)] a number of technigiee$earning are avail-
able. The goal of the learning process is either to get cbkirowledge, that is, rules
that describe which goal to tackle next and which method &deprat the decision
points of the planning algorithm, or learn planning operafocom the change of plan-
ning states by observing an expert agent. The aim of NewEwdifin both aspects
as the goal is to learn new operators that are learnt fronr @jperators and could be
compared to learning of macro operators of chunks [Rosemblet al. (1993)].

Another difference is that these techniques use post-tiondithat are not always
readily available. Proof planning methods are complex dredpost-conditions are
only available when a method is applied in a concrete praoiason. The NewT
method is applicable without any requirement for concreée pnd post- conditions.

2.2.6 Explanation-Based Learning

There have been a number of projects on Explanation-Basathing (EBL) as de-
fined by Tom Mitchell [DeJong (1988)] within the machine leiag community. An
EBL takes four kinds of input:

1. What isseenin the world.
2. A high level description of what the program is supposeléaon.
3. A description of which concepts are usable.

4. A set of rules that describe the relationship betweenaobbjend actions in the
domain.
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From this, the EBL computes a generalisation of the traiexgmples that is sufficient
not only to describe the goal concept but also to satisfy ffexational criteria. From
this description it would be fair to describe the method uggdNewT as an EBL. In
fact, NewT extends this functionality to a more general caske techniques used
in this project allow for a generalised proof to be learnt dne learnt tactics to be
improved with operators such as repetition and branchirfies€ key functionalities
are not part of EBLSs.

2.2.7 Learning Heuristic Control

Schulz 2001 [Schulz (2001)], which is a continuation of poes work such as [Fuchs
and Fuchs (1998); Denzinger and Schulz (1996)], invesigyiarning of heuristic
control knowledge in the context of machine oriented theoproving, more pre-
cisely, equational or superposition-based theorem pgoviknowledge gained from
the analysis of the inference process is used to learn imposearch decisions, which
are represented as abstract clause patterns. These a@yethil heuristic evaluation
functions to better guide the search when attacking newfgmadlems. The selection
of heuristic evaluation functions for a new problem at haguided by meta-data.

Unlike the technique used by NewT, the learnt informatio®amulz’s work is not
represented as a reasoning primitive (as are NewT’s leactits). It rather guides the
search amongst the existing primitives at the global sdayer instead of building up
new, structured chunks of encapsulated search processes.

2.2.8 Summary

In this section different techniques and uses for learniethmds have been examined.
Techniques such as the Press system and Qzaatic use information from existing
proofs to advance a new proof. The probabilistic methodd bgeronet al. and Della
Pietraet al. are much more commonly used within the bioinformatics comitytthan
within the automated theorem proving community. Howeuee, dapplication of these
techniques in these cases show how they can be used to ldeempawhich has a
direct bearing on NewT.

Existing work which examines the potential for the reuse miofs is extensive,
however, these methods often focus on the features of spegdimples. These tech-
niques all have a need for context (pre- and post-conditishgch can be difficult to
obtain.
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2.3 Genetic Algorithms

In this section an examination of Genetics Algorithms (Gigresented and consid-
ered as a technique for generalising simple functions inbbencompound ones. GA
techniques require a minimum of direction, with the inpupplation being sufficient
to randomly improve the functions. Although not known foeithefficiency, these
techniques are often put to good use when the specificatiarpodblem is difficult to
match.

2.3.1 Koza

John Koza explains the principals of Genetic ProgramminigisrbookGenetic Pro-
gramming: On the Programming of Computers by Means of NatetectionKoza
(1992)]. Koza’s work describes and illustrates genetigpaoming with 81 examples
from various fields, particularly interesting is the ‘Evain of Subsumption’, which
is what the traditional approach tested in chapter 5 is based

Koza's approach genetically breeds populations of conmgutegrams to solve
problems by executing three steps:

1. Generate an initial population of random compositiontheffunctions and ter-
minals.

2. Iteratively perform the following sub-steps until therngnation criterion has
been reached:

(a) Execute each program in the population and assign itesBtmalue

(b) Create a new population by:

(i) Reproduction: Copy existing programs to the new popaoiat

(i) Crossover: Create two new programs by genetically nelsming ran-
domly chosen parts of two existing programs

3. The best program at the time of termination is deemed tdheeadsult of the
genetic programming. This may be a complete or partial swiut

Although Koza describes his technique in terms of prograonsgtions and ter-
minals, there is a direct correlation with tactics, proapst and operations from the
grammar used by NewT.
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2.3.2 Learn2Plan

John Levine and David Humphreys’ [Levine and Humphreys 8Dfeveloped L2Plan
(learn to plan), a genetic programming based method fomptan Their system rep-
resents control knowledge aspalicy and learns using Genetic Programming. The
program’s crossover and mutation operators are augmentesiniple local search.
L2Plan was able to produce policies which solved all the pesblems it was given,
outperforming hand-coded policies written by the authdilse genetic programming
used for this is well suited to the task of generalising patento tactics, randomly
generating an initial population and then evaluating thieiess against the test set
used by IsaNewT produces results that would be difficult td €ising other methods.

2.3.3 Summary

Genetic programming as defined by Koza is traditionally usedhe development
of software programs. However, the adaptation of this tephato planning as done
with the Learn2Plan system shows its versatility. The evotuof simple patterns into
compound tactics is a problem well suited to Genetic Prograrg.

2.4 Summary

This survey has covered works within the field of automategtem proving, machine
learning and genetic programming as the approach used NgVga bridges all three

fields. Within the field of automated reasoning there is mueli-documented experi-

mentation into re-using existing proofs in order to find newqds. However, no other
method has attempted to automatically learn new tactiea ach a broad spectrum
of existing proofs.

Pattern discovery is also well-documented in the machialag community, par-
ticularly when applied to DNA sequencing and text procagsiNone of these tech-
niques have attempted to learn from a proof-style tree &tracand there are no ap-
plications of pattern discovery techniques within the awdted reasoning community.

Within the automated theorem proving community, tradiéidearning techniques
have usually involved an examination of just a few exampesli as with Desimone
and Kolbe, Walter and Brauburger). This has led to a predante of learning tech-
niques suited to this purpose. In contrast, the bioinfortsatommunity traditionally
gathers data from a much wider source (such as DNA data adydedn, Singer and
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Tishby). In order to generate a model of a large proof corfhesprobabilistic methods
employed by the bioinformatics community are much moreaslé than the methods
used by the automated theorem proving community.

Genetic programming techniques are mostly used to geneeateprograms, but
systems such as Learn2Plan have previously utilised teebaigjues in planning prob-
lems. The Learn2Plan approach is not used within automhaésateém proving but their
application shows how viable this approach is.

Although L2Plan works well on a small search space (it wasgaesl for a small
subset of block moving and stacking problems in robotice)atild not be feasible in
terms of efficiency to extend this to the more general thegreawing search space.
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Obtaining Data

In this chapter the proof corpus that will used to acquire naetics is introduced.
The requirements for the theorem proving system that willsed are discussed. An
introduction to our chosen theorem prover along with an aeev of the proof styles
and techniques that are available to it are presented.

The tools used in order to extract the proofs from the chogsetem are described.
The format that the proofs are put into in order that they campdssed to the pattern
discovery technique in the next stage is presented.

More importantly the notion of an abstraction with respexcthe existing proof
scripts is introduced. The choice of abstraction can haeggeleffect on the quality of
the patterns discovered and also the amount of search egfoifill in the missing in-
formation when the discovered tactics are applied. A nunobeossible abstractions
are presented and discussed. The advantages and drawbsackmted with each ab-
straction are shown before introducing in detail the seyectvhich will be used in
subsequent chapters.

3.1 Choosing the Theorem Prover

The techniques used in the NewT approach place certain dentamthe corpus that
is chosen. In this section these requirements are desautddeveral theorem prover
which may have a suitable proof corpus are considered. Tdu@resments on the cor-

pus are the only requirements made by the NewT system; gigeiitable corpus the

techniques described can be applied to any theorem prover.

21
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3.1.1 Requirements

A theorem prover with a suitable corpus of proofs to be useith WiewT must be
chosen, this corpus must meet precise requirements:

1. It must be stored in computational form, so that it is aal# for machine learn-
ing

2. It must be sufficiently large to contain many examples oftiply occurring
patterns of proof

3. There must be an appropriate diversity of kinds of proepst i.e. sufficient
different kinds of proof steps that patterns can be idewtjfl®it not so much
diversity that patterns do not recur. Note that appropritersity is relative to
corpus size and abstraction: the larger the diversity,ahger the corpus required
for the re-occurrence of patterns.

Note first that the huge search space generated by reschtiiantheorem provers are,
unfortunately, mostly unsuitable because of requiremeaib@ve: typically only one
or two rules of inference are used. It could be possible teiftiate rule applications
by the formulae they manipulate, but these formulae are rgésge during the proof
search and are often too diverse, e.g. millions of derivads#s. In addition, it has
been suggested that interactive theorem provers may be likeleto yield interest-
ing patterns due to the structure that people insert in fhr@iofs. Conversely, it has
also been suggested that a wholly automatic theorem proagryeld patterns as it
searches for proofs in an algorithmic way.

3.1.2 Options

A selection of well-known interactive theorem provers aadelle, Mizar, COQ, LEGO
and PVS.

3.1.2.1 Isabelle

Isabelle [Paulson (1986)], the interactive theorem proeseloped at Cambridge [Paul-
son (1994)] satisfies the necessary criteria:

1. Isabelle’s theory libraries are available online, anelythlso come with the Is-
abelle implementation (which is also available online).
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2. Isabelle has several hundred theory files, includinggelaumber based on its
higher-order logic (HOL).

3. Isabelle HOL has a relatively small basis of theorems aglddn-order logic ax-
ioms, all subsequent theorems are built upon these (andegatiar theorems).
It is possible to deconstruct any theorem to this basis, anydower level which
provides the appropriate diversity.

Isabelle has some inbuilt commands which allow the proof t¢iiesorem to be
extracted.
3.1.2.2 Mizar

Mizar [Rudnicki (1992)], the interactive theorem provesimed in particular to pro-
duce human-readable proof scripts also satisfies the resgasgeria:

1. Mizar’s theory libraries are available online.

2. Mizar has a huge number (thousands) of large theory filetaims to have the
largest number of mechanical proofs.

3. Mizar proofs are generated by a user specifying the nebgsail. The prover
itself uses its small number of axioms within the verifier &sart that this is a
correct step achievable using the internal proof rules.

The main drawback to Mizar is the difficulty in obtaining thiess used at each
stage of verification by the internal Mizar mechanisms. Taguires direct access to
Mizar’s verifier which is restricted by the Mizar group. However, NewT couédused
with Mizar if the corpus was extracted.

3.1.2.3 COQ

COQ (2.1.2), the interactive theorem prover developediwitiie LogiCal (logique et
calcul) project also compares favourably with the criteria

1. COQ’s theory libraries are available online, and thep alsme with the COQ
implementation (which is also available online).

2. COQ has over 3000 entries in its lemma database.

3. COQ also has only a small number of basic axioms.
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The COQ project has some automatic commands (similar teledpthe steps imple-
mented in these applications must be extracted. Unless GO@ps a tool to do this,
this could be a complex step. Tactics could be generatedlogeset of proofs contain-
ing these automated steps, but this may mask patterns atichtiathe diversity of the
corpus.

3.1.2.4 LEGO

LEGO (2.1.6) is the interactive theorem prover developdgidabhburgh:

1. LEGO's library files are available online and as part ofsbarce.
2. LEGO has a large library containing thousands of theorems

3. As with most other interactive provers, LEGO is based omalknumber of

initial axioms.

The LEGO system is an older theorem prover which is not so contyrused now.
It is preferable to use a theorem prover which is currentljr@aguent use where the
discovered tactics will be of more use.

3.1.25 PVS

PVS (2.1.4) is the interactive theorem prover where the gagtes the application of

primitive inferences:
1. PVS has a large online library which is contained in thegpain source.
2. The PVS library contains thousands of theorems.

3. PVS is based on a small number of powerful primitive infiees including
propositional rules, quantifier rules, induction, rewrgj and decision proce-
dures for linear arithmetic.

The PVS libraries are far less easy to read than those of tiex eystems described
here. They are a PVS system dump rather than a human-prothezag file. Although
this provides no problem for an automated system, it couldamaspecting existing
theories in order to learn about PVS more difficult.
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3.1.2.6 Summary

In spite of some minor difficulties extracting the corpus am® cases, all of the sys-
tems investigated are viable candidates for NewT.

Isabelle has a few advantages over the other systems foutpege of extracting
the proof corpus and learning from the proofs. The otherauive systems looked
at sometimes involve machine checking of a human-writt@ofr This means that
the internal mechanism only uses a few specific steps to diatleach progression
is valid. This can create problems with the specification tha corpus we use must
be appropriately diverse. Although the user may write a pigdof, the proof collected
by the internal system may well contain only the few rewritées required to check
the correctness of any step in the proof. In particular, tntematic steps in the final
product of the human proofs could mask the details which mescidbe many of the
patterns. However, if the internal proofs were consideiteglould be possible to miss
the interesting mathematical steps which would entail #eessary diversity.

The corpora from the other systems could be extracted - famge, patterns could
be learned what people type in and not from the verificatiepstHowever, Isabelle is
more conveniently organised for the stated purposes. AksHimelle system provides
a much more user-friendly approach to accessing the irtproaf scripts it has been
chosen as the basis for the proof corpus and hence NewT bedeaid¢ewT.

3.2 Isabelle

As previously described, Isabelle is an interactive theopeover developed with the
language ML. Isabelle is capable of dealing with many tydésgic such as first-order
logic (FOL) and Zermelo-Fraenkel set theory (ZF), althotlgghmost commonly used
is higher-order logic (HOL).

The syntax of Isabelle is given in the table in table 3.1.

Isar, an extension to Isabelle, has been designed in orgeotde more human-
readable proofs. However, increasing the readability abafdoes not help to extract
the proof scripts. In fact, the older method - still traditedly called Isabelle - of a
sequence of steps each applying a rule is much more suited®Wt’s purpose.

Although Isar is the newer method, and is fast becoming theeroommonly used
form of Isabelle, the vast majority of proofs in Isabellel®pf corpus are written in
procedural Isabelle, this more traditional approach is atal fully compatible with all
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Table 3.1: Syntax in Isabelle

Syntax Description

& A, and

~ =, not

==> =, implication (meta level)
—> —, implication (object level)

= =, <, ifand onlyif
lorALL V,forall

? orEX d, exists

@ €, Hilbert choice

% A, lambda abstraction

new releases of Isabelle. This is unlikely to change, a®abh the Isar style is more
readable, the Isabelle approach is often considered to lve os®ful in developing
a new proof. Both approaches may be used simultaneously, mitre procedural
commands being used within an Isar proof in order to aid agrekent (although it
is unusual for these to remain when a final proof is constd)ct€his means that the
Isabelle approach of a sequential step approach can be uteditfear of becoming
obsolete in the near future.
There has also been some consideration to an automatic dnefthconverting

proofs from Isabelle to Isar (and vice-versa), this wouldwallsaNewT to continue
to use new proofs written in the Isar style.

3.2.1 Proofsin Isabelle

Isabelle uses a definitional approach meaning that evexytimiust be proved from a
very small number of initial axioms, namely those of highetey logic (or whatever
logic is being adopted). This has the benefit of ensuring ¢laah step has a well-
founded base — i.e. no axioms are defined which are inconsigiéh the existing
theory. However, this also has the disadvantage of requthat even ‘trivial’ and in-
tuitive theorems must be proven from first principles at soiat. Isabelle’s libraries
are so large that most common trivial proofs are alreadyasgmted within the system.
These theorems can be used as rules within a proof.

Isabelle is user-directed. That is, although Isabelle hasraber of automated
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tools, the user decides which proof strategy and which ratedtheorems to use at
all times. This has the advantage of allowing Isabelle twigie both a forward and
a backward proof system (even within one proof). Howevas, #tso means that the
user must be familiar with the hand proof, and, unlike withest(automated) theorem
provers, must understand how the proof works.

Isabelle has several important and powerful commands éousier to make use of.
Some of the more frequently used are:

auto This is perhaps the most powerful of Isabelle’s automatidstolt attempts to
apply all rules defined as simplification rules to all subgoarhis can make a
huge difference in removing tedious simplifications and akso 'clean up’ the
proof so that the next step becomes clear. It uses Isabel#ssical reasoner as
well as its simplifier — this enables it to perform natural detibn steps using
introduction and elimination rules.

simp This works in a similar way to auto but is restricted to apptythe simplifier
only to simplifying one subgoal at a time.

blastBlast is one of Isabelle’s classical reasoning tools. ltnsrdegrated Tableau
prover that can be used to prove subgoals which involvingipage logic. It is
only applied to one subgoal at a time.

rule This command is used to apply a rule (these rules are oftanqusly proven
lemmas and theorems). It has variations

e erulefor backward proofs,
e drulefor forward proofs and
¢ frule which keeps the assumption so that it can be used again.
In a backwards proof construction, the user supplies a guhbpplies existing

rules to simplify it to simpler subgoals. This process istowred until all the
subgoals are solved.

In a forwards proof construction, the assumptions of a ruéerasolved with
other rules to give new assumptions. This is continued erttier the conclusion
of the goal is an instance of some assumption, or the entakigian instance of
a theorem.
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lemma contrapos_pn:"[| Q P = AQ|] = /"
appl y(rule notl)

appl y(rule_tac P=Q in notE)

apply sinp

appl y(assunption)

done

Figure 3.1: An example proof from the Isabelle corpus

The proof shown in figure 3.1 is presented here simply to givexample of how
an Isabelle proof looks. It begins with the declaration af theorem (preceded by
lemma. Each of the steps are preceded by the tactic applty. In the second
rule step there is a user specified instantiati®a=(Q) which instantiates the instance
of P in the theorermotE to by Q from the subgoal, this user-specification requires
that the addition’ _ tac” be added taule. In the third step, the user has utilised
Isabelle’s inbuilt simplifier §imp. The final ste@ssumptiorcompletes the proof by
instantiating an assumption to the conclusion. The finighredf is closed with the
commanddonethis allows the lemma to be used elsewhere by calling on thengi
name ¢ontrapogn in this case).

This lemma demonstrates some of the problems that we havesigrdng our
system. Although the steps used within the simplifier canxteeted, including the
instantiations made by the user would over-specify the fpasahere are an infinite
number of potential instantiations. By default, Isabefistantiates any rule to the first
possible situation in the assumption of a subgoal. Instesidg a specification, a user
can ensure that a rule is applied to the correct part of a altigorder to find a proof.
It would be possible to treat instancessohp autoetc. as atomic, but as these are often
overlapping commands and users invoke them at differerggjnt would be possible
that many significant patterns would be missed. For exanople user may utilise the
commandautoto resolve a subgoal, while another may apply another 2 eetbteps
by hand in order to be able to find the solution using the lesgepinil commandimp

Unfortunately, we will always have the problem with our tecjue that we may
have the correct sequence of rule steps to find a proof butdenia the relevant
instantiation information. This does not preclude our digred tactics from being
used as a guide to recommend future steps to a user, one suldatpn of this has
already been implemented by Alison Mercer in PGTips [Meld&96)]. The user
could then examine the proof to see if extra information & Kind should be applied.
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3.3 Extracting and Formatting Proofs

In almost all proofs available in Isabelle, tools suchaaso have been used. For this
reason the proof must be extracted from the system in ordactode the steps which
happened at these points,aurto must be adopted as a primitive step in the IsaNewT
abstraction.

However, ifauto, simp blastetc. are adopted as primitives there is a risk of losing
important steps which would be part of a commonly occurrieguence as many users
will invoke these tools at different points. In additionetkteps covered by these tools
are likely to be the simpler step that it would expect woulddaend as part of patterns
which would be commonly used across many kinds of theoreafelte has a number
of tools to allow the steps performed during a call of thesdstto be extracted.

Firstly, during installation of Isabelle, it is critical &the full proof derivations are
kept. In more recent versions of Isabelle, these are pretded@nd so full derivations
are kept. In older versions compilation was done duringailtetion, so the possibility
to keep only a minimal derivation was included in order toesanemory during instal-
lation. This minimal derivation includes some informatimmtypes necessary to allow
each proof to be used as a rule in future, but does not inclogérdormation on the
steps used to find each proof.

Extraction of the proof is then made possible by the prootaytool

Pr oof Synt ax. pri nt _proof _of bool thm

The theorem names required can be obtained by

thms_of theory

This prints out all the lemmas and theorems defined withintltie®ry file the-
ory.thy.

The output from the proof syntax command is a large tree (émesmall proofs)
containing some\ variables, some instantiation information, the rule namgslied
and the specifications of these rules along with the diractiod a large amount of
white noise. However, a straightforward parser can be implged to remove any
unnecessary or unwanted information and represent thd primomation in a neater
(and potentially much smaller) tree structure. This pacser be designed to keep as
much or as little information as required.
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3.4 Abstraction

The notion of arabstractionis defined to be the proof remaining after the formatting
mentioned above has been performed. In particular, thisadi®on can be varied by
the amount and type of information thrown away. The abstvaaised has a direct
effect on how much search remains to be done in order to applgiscovered tactics
as well as how much space will be needed to store the infoomaktiroughout the
whole tactic-formation process.

In addition, and more importantly, a bad choice of abstaactiould remove any
chance of finding any suitable patterns. Too vague or tooiggean abstraction and
there is a risk of leaving the boundaries of ‘appropriateedsity’ as defined in section
3.1.1.

To demonstrate some possible abstractions we look at tioé pfo

exl: Px = dx. Px

The proof of this theorem in Isabelle is:

unfol d Ex_def)
rule alll)
apply (rule inpl)
apply (erule allE)
apply (erule np)
apply assunption
done

apply
apply

—_— e~ o~ —~

The details of each step are as formed as follows:

1. apply (unfold Exdef)
This unfoldsthe definition ofd
Exdef:AP=VQ. VX Px— Q) —Q
to give
PX=VQ (VX Px—Q —Q

2. apply (rule alll)
This applies
alll: Px=Vx. Px
to give
Px=— (VxPx— Q) —Q
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3. apply (rule impl)
This applies
impl: (P= Q) =P — Q)
to give
[PxVxPx— Q[ =Q

4. apply (erule allE)
This applies
allE:[|Vx.PxPx— R||=R
to give
IPXP(xQ —Q[=Q

5. apply (erule mp) This applieaodus ponens
mp [|[P—QP[l=Q
to give
Px= P (x2 Q)

Here the conclusion can be instantiated to match the assumyu the theorem
is solved by

6. apply assumption

This shows the complete proof of the theorert This example has no user spec-
ified instantiation or use of Isabelle tools. It was chosetieimonstrate the correlation
between the steps that could be used and the exact prooftkis ttied Isabelle libraries.

3.4.1 Options

This section introduces a selection of possible abstrastim each case the advantages
and disadvantages of the selection are considered:

1. Rule name only: This potential abstraction is a list of rule names. In Iskhel
each rule name is a previously proven theorem or definition.

Example [Ex_def, alll, impl, allE, mp, assumption]

AdvantagesThis abstraction allows for a wide diversity (as discusseike in
our description of Isabelle, rules can be deconstructextivdir component
parts). It also describes an integral part of the transitiom one subgoal
to the next in a proof script.
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DisadvantagesAs this abstraction leaves out much of the information ndede
to perform a proof step, later application of discovereditaowill require
more search than other abstractions might require.

2. Rule name with direction: In this potential abstraction each proof step is a
combination of the rule name as in abstraction 1 and the tire@ which it is
applied. In Isabelle, the direction is given by the tacscale, drule, eruleand
frule. Definitions are unfolded usingnfold

Example [unfold Ex_def, rule alll, rule impl, erule allE, erule mp, assumption]

AdvantagesThis option has similar advantages to that above with th&iadd
of a mild decrease of the search required at the applicatages

DisadvantagesAs with the previous example, the amount of search left is the
main drawback (in spite of a slight decrease as comparedstoeation 1).
This abstraction will also require additional space (anddeeprocessing
time at other stages) in order to store this extra inforrmatiGomparison
between this abstraction and the previous one relies omtpevement on
search time against the extra storage space needed.

3. Class of rule only: In this potential abstraction, rule names are classified int
groups and the proof step contains only this classification.

Example [definition, Quantifierelim, rewrite, Quantifierelim, rewrite, assump-
tion]

AdvantagesThis type of abstraction would allow patterns involving sdas
to be determined, in particular, this would help spot temigsn such as
applying rewrite rules together or stripping off all outsidquantifiers as
soon as possible.

DisadvantagesBy limiting the number of different proof steps there is &ris
of reducing the set until there is not the appropriate ditees required in
the specification. There will also undoubtedly be an unnealle amount
of search to do before any tactics can be applied.

4. Class of rule with direction: This potential abstraction combines two of the
features from previous suggestions. Each proof step dsrnsighe direction a
rule was applied and the class that the rule has been assigned
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Example [unfold definition, rule Quantifieelim, rule rewrite, erule Quanti-
fier_elim, erule rewrite, assumption]

AdvantagesAgain, this abstraction will help spot tendencies of theetyle-
scribed previously.

DisadvantagesThis will increase the diversity over 3, but the excessiarce
space will remain.

5. Rule name with subgoal information:

There are a number of different options for including subga@armation. We
could include operator information from the part of the sodghe rule is
applied to. It would be possible to include some instardratnformation
or information of which assumption a rule is applied to. Heerm as each
rule can be applied in such a wide variety of situations theasion where
no patterns at all would be found could easily arise.

6. Main proof operator: In this potential abstraction each rule is reduced to its
most significant operator. A proof step contains the mostiBgant operator of
the applied rule.

Example [def, A, —, A, =, assumption]

AdvantagesThis technique provides a side method for including subdai-
mation. For example, if a rule has been applied where theaalligcludes
an A operator it is known that this step can only be applied to ageab
containing such an operator.

DisadvantagesThere are a limited number of operators available and threre a
many rules associated with each operator. There are alsy at@asions
where there are more than one significant operator andnéia operator
is not clear. In most cases, the significant operator woulttbive clear
through the context of a rule application, however, conigxibt examined
so this refinement would be impossible without a change tsthted ap-
proach. It would be possible to examine the context of a proofvever,
this would also involve examining the subgoals at each stepeoproof
in order to understand the application of a rule. Such a ctv#ensitive
method would require a radically different approach to Isai\.
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7. Main proof operator with directionThis potential abstraction combines the di-
rection a rule was applied with the rules main operator.

Example [unfold def, ruleA, rule —, eruleA, erule=—>, assumption]

AdvantagesThis abstraction has the same advantages as above withdhe ad
tion of having reduced the amount of search needed

DisadvantagesAs with the previous abstraction.

8. Rule name with position in proof: This potential abstraction contains the rule
name that was applied along with a general indication of th&tn it was

applied in the proof.

Example [beginning Exdef, beginning alll, middle impl, middle allE, end mp,
end assumption]

AdvantagesRules which are likely to start (or end) a proof can be exanhine
At application time rules marked beginning would only havébe tested
once for each theorem.

DisadvantagesSome patterns may appear at the start most of the time, but
not exclusively. Most rules would be marked “middle” whiclowd be

wasteful.

A full test and discussion of these abstractions is perfartater in the evaluation.
For now, discussion of a proof step is with respect to abstiad, ‘rule names only’.
This is for clarity purposes only, abstraction 2 is at leastjaod a candidate.

3.5 Summary

In this chapter, the requirements for a suitable proof cerpave been defined. The
alternatives have been considered the Isabelle theorewempselected as the most
suitable to NewT'’s needs, it satisfies the necessary aitdravailability, size and di-
versity. The formatting required to transcribe the Isabetirpus into a suitable format
has been described, and an introduction to the structura tfadbelle proof has been
presented.

Most importantly, the notion of an abstraction has beengiresl. A number of
available abstractions have been presented and their pob€a@ns discussed. For
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IsaNewT’s purposes an abstraction containing either timeenaf the rule applied at
each step on its own or this rule name with the direction ofiappon is best suited.
For simplicity, therule name onlyabstraction will be used in the rest of this dissertation
unless otherwise stated.






Chapter 4
Pattern Discovery

This chapter describes the technique for discovering contyraxcurring sequences of
proof steps from the chosen proofs corpus. The definitiohe$¢ sequences depends
on the choice of abstraction as described in the previoupteha The process for
discovering patterns is:

1. Proofs given in tree structure format are explored usiagmme learning tech-

niques.
2. These proofs are modelled and all occurring sequencesaadrom this model.

3. The list of all occurring sequences is limited to commardgurring sequences

using a threshold value.

Any information which is contained in the abstraction of gireof corpus can be
learned. However, the simplicity of the abstraction (i.ee humber of proof steps
given per proof) has a direct correlation on the efficiencgmy learning algorithm.

The chapter begins with an overview of the goals involvedhia part of IsaNewT,
followed by specific requirements for the software used. As/ay of some existing
methods which were tested along with some of the typical lprab encountered is
given. The outline to the method for pattern discovery usetsBNewT is presented
followed by a detailed description of the pattern discovergcess. In conclusion,
some experimental results obtained from the pattern desggwocess are given.

4.1 Overview

This stage of the IsaNewT involves the search for commontyoing patterns within
proofs. In particular IsaNewT is looking for sequences afgfrsteps (rule names in

37
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the given abstraction) which occur with a specific level gingicance. The level of
significance is defined by a pattern attaining a frequencycotining which exceeds
a specified threshold. This threshold is variable - a gresaggrificance threshold will
lead to fewer patterns being discovered but each of thesadhawhigher frequency of
occurrence.

In some cases a falsely low score may be assigned to a patterio dmall fluctu-
ations. For example, the theorems:

le_min_iff _con;:
which contains the branch:

[conjE,notE,impl,iffl,disjCI,conjl,swap]
and:

if_booleq.disj:
which contains the branch:

[conjE,notE,impl,iffl,conjl,ccontr,swap]

Both have similar theorems in many places but the small r@iffees shown here
would be enough to ensure that they would not be counted ast¢auarrences of the
same pattern. However, both patterns are common enougih thathreshold was set

low enough to ensure they were found to be significant themetttec formation stage
would combine them using anoperator:

[[conjE, notE,impl,if fl,Vv([conjl,cconty, [disjCl,conjl]),swag

In situations such as this it would not be desirable to logsehpatterns. After
all, any low-significance patterns which are not improvedh®ytactic formation stage
can be discarded before application. For cases like thegntbe desirable to have a
threshold set to disregard insignificant patterns rathen ttatch significant ones.

The patterns are discovered automatically from a wide fyadeproofs taken from
the Isabelle theory libraries. The intention was to provédsystem that allowed a
transition from a corpus of proofs to a group of commonlygong patterns without
any human intervention. This represents a significantidiffee from existing work as
the input proofs do not need to be hand chosen.

4.2 Specification

The requirements specified by the IsaNewT approach are las/fol
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e The approach must find commonly occurring patterns withooptrees (rather
than sequences).

Pre-processing forms the proof structures inttsees where each node on the tree
is a step in the proof which takes the proof goal from one staéamother. For example,
figure 4.2 represents a proof which would solve the simpléeltgeorem ‘box equals’
([[la=b,a=c,b=d|| — a=d).

A more traditional proof tree would have the goal state atritbées and the proof
step as labels on the branches which transform one goaltstatether, however, be-
cause no information from the goal state is used the treebearmranged as described.
For the purposes of clarity, the full proof tree (i.e. indlogl all the information that
has been removed to form the abstraction) is shown in figide 4.

In this proof:
each application diransrepresents the rewrite rule

[[r=ss=t|]]—r=t
and the step

symrepresents the rule of symmetry
r=s=s=r

conjE

notE

iffl

impl

/N

conjl disjClI
-V
ccontr conjl

N/

swap

Figure 4.1: Two patterns combined by an or branching structure
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box_equals
trans
trans assumi
sym assume

assume

Figure 4.2: The abstracted proof represented in tree structure

box_equals
[la=b,a=c,b=d|] => c=d

trans

[la=b,a=c,b=d|] => c=A [la=b,a=c,b=d|] => A=d

trans

Jacb acc fel] => =8 la=b a=c.b=d) => B=A

sym assume
a=b,a=c,b=d|] => B=c - .
[l 1 assume (unifies A with d)
(unifies B with a [la=b,a=c,b=d|] =>a=d
assume - ,a=c,
(unifies B with a) and A with b)
[la=b,a=c,b=d|] => a=c [la=b,a=c,b=d|] => a=b
solved

Figure 4.3: The traditional proof tree
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assumeimply attempts to solve the subgoal by unifying one of treiagptions
with the goal. In this notation, a capital letter (such®sepresents a variable.

The approach must mine trees of this type to find common pestter
e The approach should avoid prejudices against length

A two-step combination has a good chance of occurring oftaeply due to chance,
whereas a long string is unlikely to appear together a highlyer of times without
some specific reason. This requirement implies that singaleriting’ solutions would
be unsatisfactory. Probabilistic methods which wouldwale measure significance
based on how often a string of steps occur together as a giopaf how often the
rules are used within the corpus is more appropriate.

e The approach should find subsets of patterns which are theesgeatterns

It is possible for a string of (say 4) proof steps which are engwn pattern to
be contained within a longer string of (say 9) proof stepghd& smaller pattern also
occurs independently of the larger pattern, it should besicared to be a significant
pattern in its own right. For example, if the discovered same:

[a,b,c,a,b,c]
has a frequency of 0.09 but the subsequence:

[a,b, ]
has a frequency of 0.13. Then it is desirable for both seceetabe carried forward,
as the subsequence is also a pattern in its own right.

4.3 Existing Models

The initial hope was that it would be possible to find sometegs'off the shelf’
methods which could be adapted to IsaNewT’s purpose. Aghdbere is an abun-
dance of pattern matching software available, most pattscovery software appears
to be linked with the bioinformatics community for DNA stgrcompletion. However,
some examples were found for text; in particular for lookiagcommonly occurring
words within text documents. The restrictive nature of eaefuence within DNA
meant that the techniques designed for this were oftenigigtrin the variety of in-
put data they could handle - many different rule names wooldoe accepted. The
diversity of language meant that text tools seemed to pteserore likely solution.

A description of two pieces of software which initially agwed to be good candi-
dates is given, along with some of the problems and incorbitiigs encountered.
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4.3.1 Sparse Markov Transducers (SMT)

The SMT [Eleazar Eskin and Singer (2000)] algorithm workddayning a tree based
on Markov Models given by training data. This specificatieermed to be ideal for
IsaNewT’s purpose. In IsaNewT’s case this training datasiste of the abstracted
proofs. This prediction tree has been used to provide thadiikod of certain strings
appearing together as patterns.

Applied to the corpus, the SMT algorithm gives a number ofgras. However,
inspection immediately shows that all the patterns havednee first step and also are
significantly less varied than could reasonably be expedibi is due to the way that
the SMT algorithm works. The SMT program was developed s$jpadly for complet-
ing amino acid sequences in DNA. This means that the traithatg (abstracted proofs
in IsaNewT’s case) are assumed to be always in a specificdqrosiFor IsaNewT’s
purpose the position that the step names appear within thedf [ unimportant with
only the positions relative to other steps being relevauwt. this reason, some of the
patterns may in fact not be patterns at all but a trait of aaterstep appearing at a
certain point in the proof (such as thesumptiorstep always being used at the end of
a proof).

These problems were not all foreseen before testing wagedawut, but the dif-
ference in intention was expected to cause problems. Q@iigjnt was hoped that
adapting the method would be a feasible alternative. Howeseer reviewing SMT,
this no longer appeared to be a viable option.

4.3.2 Teiresias

The Teiresias [Rigoutsos and Floratos (1998)] algorithmsdaot make use of proba-
bilistic methods as intended, instead it finds patternsgusiscanning algorithm which
counts the occurrences of each pattern. Although this doeagree with the original

specifications, it was felt that examining this softwarelddae useful. A user-defined
parameter allows the number of occurrences required toalafpattern to be specified.
The program then combines the patterns allowing ‘wild-tah@racters to find more

general sequences. This looked useful as a method of findigugesices which only
differ in one or two steps. The algorithm returns the most#mesequences which
still have the same number of occurrences. The results shairetzen when a high
significance level is chosen, a high (and varied) number oédagatterns are found.
When a smaller significance level is given to define a patterarg large number of
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occurrences are found in just a few seconds (online).

Full documentation for the Teiresias text-word patterrcai®ry tool along with
free (for non-commercial use) downloads are availablenenRigoutsos and Floratos
(1998)].

In spite of the fact that the SMT program has a specificatiochraloser to that
desired, the Teiresias program seems to provide a bettgerahpatterns. This was
particularly useful in the initial stages for giving an icdtion of the types of results
that could be expected later. However, as with the SMT tegleithis algorithm also
has significant drawbacks.

1. Itdoes not notice the significance of two tactics alwaysuaing together if they
only appear a small number of times. For example, if the st@msonly occurs
(say) 19 times, but 18 of these are followed dhg jI, the Teiresias algorithm
would not notice this to be a pattern.

2. There is no significance given to longer patterns, for Bs&Ns purposes it could
be desirable for long patterns to have to occur fewer timeststitute a pattern,
but the Teiresias algorithm treats all strings the same nitemite length.

Adapting any of the methods investigated in order that it ¥dae applicable for
IsaNewT'’s specific purposes would be prohibitively compldexe to the overheads in-
volved in understanding software written by someone elsnough detail to change
it. It is more sensible to design a complete, specific apgrdemn scratch, where it
could be certain that it would perform exactly to the speatfns.

4.4 Implementation

After examining existing methods it became clear that th& belution would be to
design a specific approach for IsaNewT. As previously statedirequirements imply
that it would be desirable to look at probabilistic methoadisd solution to the pattern
discovery problem.

One way of quantifying the significance of a pattern of a dpe@ngth would be
to fit the patterns with a generative probabilistic model tegptures their statistical
correlations with the occurrences. Then, whenever thedthmodeM is presented
with a patternPat = [a, b, c...n], it assigns to it a scores), the normalised probability
thatM would emitPat out of all possible patterns of the same length. So the sSore
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would be the frequency of a pattern of lengilbeingPat. Subsequently, a threshold
above which a pattern is considered to be significant can bheviarkov Models are
trained in this way and then used as predictors to computadhealised probability
of one step appearing given (a set number of) previous steps.

As patterns of varying lengths are desired, the trainingestaf a variation on
Markov Models was inspected.

4.4.1 Variable Length Markov Models

Variable length Markov models deal with a class of randoncesses in which the
memory length - i.e. the length &at described above - varies. Their advantage over
a fixed memory Markov Model is the ability to locally optimiges length of memory
required for prediction. This results in a more flexible arfficeent representation
which is particularly attractive in the case where it is dasie to model patterns of
varying lengths.

VLMMs offer the ability to capture statistical correlati®of different length scales
in a single probabilistic model. Rather than estimatingpaBsible sequences of length
d that could exist in the state space, the VLMM models a sallestt of sequences
of different lengths. The chosen sequenceS&et determined by the training data,
and includes longer sequences where these appear in tharghthorter sequences
when the longer ones are not required. This sequence selestheme avoids the
exponential explosion of higher order Markov Models altibge.

However, Markov Chain Models cannot be used as required entbranching
tree structures that describe the proofs extracted. Aihdrees could theoretically be
learned in this fashion, the large numbers of branches mwiphoof structures would
cause a massive increase in time and space required for ttiel michis would make
any substantial set of proofs impossible to mine for patern

An ideal solution has not been produced as linearisatiomndar&nches assumes
the independence of branches which is not necessarily @treer methods of dealing
with such tree structures have similar problems, each isrgpcomise which will lose
some of the detail. A decision was made to linearise the grogfsplitting down
the branches. The subsequent step of genetic programmihigawve the capacity to
partially reconstruct the link between branches, this iscdeed in chapter 5. Some
suggestions have been made for future work which involvedetiog directly over
tree structures.



4.4. Implementation 45

The approach designed for IsaNewT takes the preprocessadslaa sample of
proofs, then searches this data for information regardirggpfpstep hames and the
number of times each step occurs in the proof sample. Eacheoptoofs within
the sample is linearised to remove branches and correspprekights are attached
to ensure that the occurrences are not given false emphasisodthe linearisation
process, this is explained in detail in section 4.5.2.

The approach examines each step of each proof and update¢abasia of nor-
malised probabilities of each combination occurring. Tisaas a sequence of (two or
more) steps is found, it is added to the database with a nm@adgbrobability based on
this occurrence in relation to the number of times the leabfstep occurs within the
proof sample. The frequency is based on the lead proof steguise it describes the
normalised probability of the sequence occurring givenfitse step, i.e. ‘if we have
A, what is the probability thaB,C,D come next’. The examination continues through
the proof steps, when a sequence is found that is alreadgriresthe database (i.e.
this pattern occurs elsewhere) the frequency attachedgsélquence is increased.

This examination process covers every combination of elergth and at every
stage present in the proof sample. By examining each praojusbfrom the initial
proof step, but also from the second, then the third and sat @ensured that to be
found, a pattern does not need to begin at the start of a proof.

By using a probabilistic technique which refers to the oll@ecurrence of a step,
the bias towards patterns involving more frequently usedssts counteracted.

Also, by examining different lengths of potential patteasswell as different start-
ing points, significant subsets along with any larger pati¢hey are contained within
are found. By definition, this will mean that any pattern of flerm abcdewhich is
found to be significant will automatically generatie abg abcd bc, becdetc. as signif-
icant patterns. However, unless these sub-patterns atso elsewhere in the sample
(in which case it would be desirable for them to be considadignificant patterns
in their own right) they will end up with exactly the same nailime probability as the
larger pattern. Therefore, it is easy to weed out any pattefrich are contained within
any other patterandhave the same final frequency.

The probabilities associated with the modelled sequentasspecific rule only
sum to 1 if the recursive set of subsequences are not comdidér the case where a
repetition occurs, such da,b,c,a,b,c| repeated parts of the pattern suchjab, c|
would be updated twice. This would count as two occurrenéssich a pattern. Also,
[a, b] would also be recorded which would cause the sum of the frezjee (fora) to
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exceed 1.

Ultimately, after weeding out any ‘insignificant’ sub-peatis and removing any
patterns which are linked to a proof step which is only usedeowithin the proof
sample (a fairly rare occurrence which usually crops up wégecific mathematical
results become theorems and therefore can be used as pepsfistisabelle), any
patterns which have a frequency attached to them which iseabaiser-determined
threshold can be weeded out. This threshold issiaificance value

The methodology behind the approach used with IsaNewT igagito that used
by probabilistic parsing [Eisner (1996)] which examineamples with reference to a
grammar to identify which transitions are most likely to pap next. However, the ap-
proach used by IsaNewT focuses on gathering complete cormetuences so patterns
which are found are, in effect, a collection of steps whidefoccur together. Proba-
bilistic parsing typically follows one branch and uses thi@imation is has gleaned to
predict the next step.

4.5 Finding the patterns

Here a detailed description of the approach outlined ab®yedasented, including ex-
amples to demonstrate how each process works. A detailexiijoigsn of the prepro-
cessed data is given first, followed by an illustrated desicm of how the linearisation
process works. A detailed technical description of howeHe®earised sets are mined
to find significant patterns concludes the section.

4.5.1 Preprocessed data

The abstracted data is preprocessed from the proof scagiise a simple list of lists
representation for a proof tree. The end of each proof is wehby ‘;" which marks
the end of a command in ML, and so allows the program to real paof separately.
These proofs are written in a file called ‘data’ (this filenammehe default for the
program, but can be easily changed by the user).

An example proof, as given in tree representation in figu2eig.given in IsaNewT
form as:

[trans,[[trans,[[sym,assume],[assume]]],[assume]]].

Isabelle is built upon a very small number of basic axiomsesehaxioms form
the basis of the proof system and are used as rules to progeguént lemmas and
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theorems. Each such lemma and theorem is given a name aneémegfdrth be used
as a rule to prove other theorems. These names of rules wigdh &act the names of
axioms, lemmas and theorems, are what is meant by a refei@acproof step’. How-
ever, this distinction is based entirely on the chosen abstm (where the proof steps
consist only of rule names). A different abstraction (high®wver or intermediate) can
be chosen fairly simply and can be easily integrated inthlésal. For example, by in-
cluding the direction a rule is used the information couldatibe another abstraction.
This information could easily be included in the descriptiven below by adding the
direction directly to the name of the theorem, such an adiaptavould look like:
[rule_trans,[[ruletrans,[[rulesym,assume],[assume]]],[assume]]]
So itis clear that only the preprocessing step has to be edaporder to allow differ-
ent levels of abstraction. Indeed, a selection of diffeeddtractions has been shown
and will later be examined and compared with the main choice.

4.5.2 Linearisation Process

One of the major problems encountered with the pattern desyois the branching

in the proofs. Although many pieces of software exist fomiifging patterns in se-

guences which could be adapted for use with proof structuresexisting methods
or unimplemented theorised techniques which identifyguatt within tree structures
have been identified. It was suggested that branches coudghteed or simply treated

as a special case i.e. a ‘split token’. However, the frequehoccurrence of some sort
of branching structure within a proof means that in this gas@y interesting patterns
may well be lost.

The technique decided upon was to split the proofs into sepaequences and
give weights accordingly i.e. for all the steps before egdit the weights are given
as:

1/(bxw)
whereb represents the number of branches resulting from the spdit\arepresents
the weight immediately after the split. All the steps at timel ®f each branch have
weight 1 — so a tree which has 2 two-way splits would have a el at the end of
each branch, 0.5 on every branch between the last two split® 83 before there is
ever a split point.

The list of lists representation is converted to weightstslusing a recursive pro-
gram which:
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[[0.33 trand, [0.5,trangd, [1,syn},[1,assumg

The original tree is shown by figure 4.4.

trans 0.33 trans 0.33 trans 0.33 trans
trans/ assume 0.5 trans 0.5 trans 1.0 assum
5% >sume 1.0 sym 1.0 assume
1.0 assume

assume

Figure 4.4: Picture of example proof linearisation.

e The process cycles until the end of the nested list is founttlaen assigns the
weight 1 to each node of each branch at this level of the rgestin

e Adds together the inverse of the weights given to each bramchassigns the
weight 1/total weightto the next highest nest.

e Continues this process until the top of the list has beerhesgic

Example:
[trans,[[trans,[[sym,assume],[assume]]],[assume]]]

[trans,[[sym,assume],[assumej]][assume]

[sym,assume)\ [assume]\ [] assign weight 1

[assume]\ [] assign weight 1A [] assign weight 1

[] assign weight 1A [] assign weight 1A [] assign weight 1
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[[1,assume]A [[1,assume]]A [[1,assume]]

[[1,sym],[1,assume]h [[1,assume]A [[1,assume]]

new weight = ¥(1/1+1/1) = 0.5
[[0.5,trans],[1,sym],[1,assume}] [[0.5,trans],[1,assume]} [[1,assume]]

new weight = ¥(1/0.5+1/1) = 1/3 = 0.33 (for each amalgamation)
[[0.33, trans],[0.5, trans],[1,sym],[1,assume]]
[[0.33,trans],[0.5,trans],[1,assum&]][[0.33,trans],[1,assume]]

These weights are incorporated simply at the point wherdtudkov Model is up-
dated. It would be much more elegant to have software whestmé®l Markov Models
directly from the tree structures but as most proofs confaiten multiple) branches,
the increase in complexity made this not feasible. Someesigms have been made
to implement a method for learning directly from trees iruat

For the purposes of the tactic formation step later, eacle ansplit is found the
step preceding it (i.e. the step whose application resuttsglit) is noted. These steps
are kept in a ‘split token’ file so that later it will be knownahthey appeared at a
branching point.

In the example given, the sté@nsis labelled as a split token and kept in the split

token file. In this way, if both branches represent pattdmegdctic formation step will
note thattrans should be reformed as a branching point and can reform theches.
If the connection over a branch is indeed significant, onediraepresenting a com-
monly occurring pattern should result in the other branalo &leing represented. This
means that any truly significant correlation between bras@hould be rediscovered
at the tactic formation stage.

4.5.3 Finding Patterns

1. The training data is searched with a simple sweep to fintheutames of all the
different tactics (T). The occurrence (O(T)) of each of thexctics is found.This
occurrence incorporates the weights so that each tactauisted a correct num-
ber of times. The final figure for each tactic will always be aol@number.

2. The model is trained on the data to give probabilities forthecombination oc-
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currence O(T).

3. Theresults are returned as all the patterns with a freqyuainove a user-specified
threshold.

Step 1 is straightforward.

Step 2 involves assigning a frequency to every possible auatibn of two or
more consecutive steps within a proof. For example a pjadx c, d] would generate
probabilities for[a, b], [a, b, c], [a,b,c,d], [b,c], [b,c,d] and[c,d].

If no probability for a combination of step&(b, c|) already exists in the database
then the normalised probability given is:

P = (1/0) *wwhereo is the number of times the tactoccurs andvis the weight
assigned to the tacteat that particular point. The weight comes from the firstitact
in the sequence as this weight represents the sequencaimegfiom this point, It can
be thought of as a weight associated with the branch, nottélstep. Thig is the
normalised probability that a given sequence is used tegettihin the proof corpus.

If a normalised probability is already contained in the date QIdP) thenP is
added to this valueOIldP accounts for the occurrences of this sequence before this
point andP accounts only for this occurrence so addiigp OldP keeps the frequen-
cies up to date.

Example:
For the purposes of this example the following occurrenoesath step are assigned.

O(trans) = 67

O(sym) =14

O(assume) = 157
Note that O(assume) will never be usecaasumeby its very nature can only be used
at the end of a proof. The sequences are measured from tsestBp andssumean
never be dirst step.

For demonstration, it can be assumed 3 occurrencesymfbeing followed by
assumdeach obviously with weight 1 as assume is always at the eadadnch) have
previously been found, therefore:

P([symassump = 3x(1/14)x1=0.214
is already contained in the database. No other relevaniesrgxist in the database.

The previous example continues to be used, but for the sakewaty only the first
listis looked at:

[[0.33 trangd, [0.5trang, [1,syn), [1,assumg (4.1)
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First [[0.33,trang, [0.5trang] is considered. The frequency associated with this
is computed a® = (1/67) « 0.5 = 0.0007. This is added directly to the database as
there are no previous entries for this sequence. The fatligyirobabilities are then
calculated and added to the database:

P([[0.33,trans, [0.5trang, [1,syn}]) = (1/67) * 1 = 0.0149

P([[0.33 trang, [0.5trang, [1,syn}, [1,assumg) = (1/67) x« 1 = 0.0149

P([[0.5trang, [1,sym]) = (1/67) « 1= 0.0149

P([[0.5trang, [1,syn}, [1,assumg) = (1/67) x1 = 0.0149
ThenP([[1,sym,[1,assumg) = (1/14) «1=0.0714 is calculated, but as the sequence
already has an entry in the database that entry must be wpidetbe:

P([[1,sym,[1,assumg) = 0.214+4 0.0714= 0.2854
This makes sense as there are now 4 occurrencegrnobeing followed byassume
this is indeed a little under/B of all occurrences afym(which was initialised at 14).

This updatestep of the process forms a Markov Model which contains tiobgr
bilistic information of every possible combination of ssehat occurs in the corpus.

Step 3 is also quite straightforward. All sequences whichataonstitute a pattern
or are otherwise not useful are removed. All potential pateavith a final frequency
less than the threshold are discarded. In addition, angpetivhose first element has
O(T) =1 are also discarded as discussed earlier.

It could be argued that any step which is used less than (ség)es should be
discarded as a pattern leader. However, even if a step isaudgdwice, if both occur-
rence are followed by the same sequence of steps, the gdigsitzt this is significant
must be considered. For this reason, only patterns asedoth single-use proof
steps are removed. In addition, these rarely-used stepalsveunlikely to occur in
future proofs, so they will not cause unnecessary seardfeatrtplementation stage.

It should be noted that steps which occur only a few times @ and constitute
only the smallest number of the discovered patterns (ontydnthree even in a large
set).

From the éxtremelysmall) example above, the threshold could be chosen to be
around 0.2 which would eliminate most of the patterns witlakprobabilities.

Similarly, as discussed earlier, any sequence which isecdsubset of another
with the same frequengy also discarded as it only occurred because of its inatusio
as part of the larger set.

In the example, it can be imagined that this is the last sempiém be consid-
ered and no more updates are carried out. All patterns exXuapis trans (0.007),
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[symassumg(0.2854), andtrans trans symassumg(0.014) can be discarded with-
out considering the threshold. It can now be seen that thg pattern to survive
the threshold would bésymassumg If figure 4.4 which shows the whole proof is
again examined, it can be deduced that including the otrerdbras part of the se-
guences and updating the probabilities associated wittther branches of the tree
would causdtranstrang to be discarded also. This is because the frequency asso-
ciated with it would be updated from 0.007 to 0.014, this wdomlake it a subset of
[trans trans, symassumgwhich holds the same probability meaning that it is unnec-
essary.

Keeping the final probabilities associated with each pattehich survives can
be useful in later stages. In particular, if a low significartbreshold is used, many
patterns which are related to each other but are not exadlghed as the process
demands can be caught.

The tactic formation step fuses many of these together,drmaegatterns will still
be present which truly are below a good threshold. If a tatéis a low score (for
example 1) after the Genetic Programming stage, then it biaseen combined with
any other pattern to form a more compound tactic. If such actatso had a near-
threshold probability at the pattern discovery stage, ihean be deduced that it was
not truly significant and it can be discarded. Earlier thedeis of using a threshold
which is just high enough to rule out insignificant pattenmsofder to catch patterns
with borderline frequencies) was mentioned. At this stagthe IsaNewT process it
is possible to rule out false positive patterns which havdoeen improved by genetic
programming. Testing has shown that with the chosen progfusoa new threshold
0.02 higher than the original threshold is usually appraterfor this pruning.

4.6 Experimental Results

Finding the patterns is the most significant step in disdogenew tactics. These
discovered patterns form the basis for the new tactics, ter Eage adds any new
information. However, at this point it is difficult to accuedy evaluate any of the
discovered patterns. Indeed, until the final evaluatiogestahere the completed tactics
are tested using a fully automated Isabelle prover, it igodilt to gain any true measure
of success.

Therefore, this results section is concerned mainly withl&xing the choices in
the changeable metrics of the threshold value and the nuarmkrchoice of input
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proof scripts. Also presented are some examples of disedveatterns along with
explanations of where and why they might have originallgeni

4.6.1 Input Choices

The Isabelle theorems are split into two setsaining andtestwith a 1:1 ratio. This
allows each set to have a large component of theorems fromrietywaf domains.
Within Isabelle, each session of proof created by a userpsikeatheoryfile. Each
of these files represent a selection of proofs mathematioalhted to each other. In
order to keep these sets as even as possible in terms of atiormthe proofs from
eachtheoryfile were randomly split between the two sets. This was to enthat the
training set and the test set would be evenly matched in tefrtiteorem length, type,
topic and complexity.

As input, any theorems from the training set can be chosemeSoteresting ques-
tions arose when considering how much of an impact the chafiteeorems would
make. It would appear likely that tactics formed from a dertand of theorem would
perform best when applied to the same kind of theorem (thlisbeidiscussed more
fully and tested later in the application chapter). Follogvihis reasoning, the differ-
ences in the probabilities of the patterns discovered wasyexed both when a random
set of input data was chosen and when a set of input data wasrclioat came from
the same theories or types of theories. As the training astdstt were split evenly
across Isabelle theories it was simple to use a test sehatigg in a theory (or set of
theories) and to choose a training set from the same set ofitise

Using a ‘mathematically similar’ set of theorems gives atdreprobability rate
for patterns - this is expected as the process behind prawatgematical theorems is
not independent of domain or human influence (so two indepenitheories written
by the same person may have more in common than two theorigswy different
people). In this context, ‘mathematically similar meahgdrems within the same
domain (higher-order logic (HOL) theorems, natural numtherorems etc). This is
shown by comparing the results of sets of 100 input theoreBys.comparing the
thresholds required to get 20 patterns from a set of 100 émstthe different results
gained from a random selection, and from a directed selectém be compared. The
results are given in figure 4.5, it is clear that a chosen selegives much better
results in most cases. In the situations where no improvemasabeen found it can
be postulated that these proofs are of a more general kinctimren Every set of
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results given were run multiple times on a range of inputs,résults given describe
the average output of these runs.

Effect of Input Choice
27.54

25/
22.5

N)
°

17.51

=
a

[l selected
12.51 ] Random

Probability required to get 20 patterns
H
©

N N
o v o U

Random vs Selection

Figure 4.5: Threshold required to gain 20 patterns from random selections against
chosen selections. Four comparisons are made. This graph describes the average of

15 runs across different domains.

As the domain is broadened, the frequency given to the pattecreases in gen-
eral. This does not happen in every case, as some stepsaepbasic (e.g. simplifi-
cation) rules which will often be used in proofs of any kindowver, the main claim
for IsaNewT is that tactics can be discovered using a progbgs requires no human
intervention at all. In fact, the domain selection procedcan be done automatically
using the Isabelle hierarchy, the method for which is désctiat the end of the next
section.

4.6.2 Threshold

The variable which can make the most difference is the tlmestalue. However

altering the threshold can in some ways artificially alter thsult. It is easy to claim
that (say) 90 patterns from 100 theorems can be found, bhisifaccurs because the
threshold has been set too low, then these do not truly repregat is wanted in terms
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of patterns.

The threshold can not be arbitrarily decided as can be seemtie previous dis-
cussion on input choices. The size of the input, and theioglaach input theorem has
to each other has a significant effect on the required thidsAdthough the threshold
has previously been manipulated in order to obtain a speuificber of patterns, this
is only really useful as a diagnostic and examinatory toslf¢a discussing the effect
of inputs above). Using this as a measure to guide the thiceglould artificially alter
the results, which should be avoided.

Therefore, it has been most useful to leave the threshold tevthe discretion of
the user. In a fully automated tactic formation system hawen automated threshold
selector is required. For this purpose a set of rules hava Hesigned, these reflect
the average optimal threshold values from a large set oftiast

e Begin with two default values for 100 theorems (which weresdn after exten-
sive testing):

1. if the theorems are chosen randomly, with no consideraiven to their
mathematical domain, then the threshold is set at 0.1;

2. if the theorems arselectedfrom a mathematically similar set then the
threshold is set at 0.2.

e The threshold is reduced proportionally to the set sized#iareased:
Set Sizg100= Proportional Set Size

T hreshold= Original ThresholdProportional Set Size

In order to determine whether a set is from a mathematicatylar set, theorems
from theory files deemed to be similar have been combinedsubsets so that any
selection of theorems chosen from such a set can be said ¢eleeted In the Is-
abelle theory structure, this hierarchy is already in pls@é¢his procedure can be fully
automated. When a new theory is begun, the user heads thatfiléhe theory depen-
dencies. Theory dependencies in this set indicate whichagtothe theorems in the
theory belong to, this allows the IsaNewT process to coetioube automated even if
the patterns are being used to prove (or recommend a steg)i@nd new theory.
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4.6.3 Some Patterns

To understand the patterns found, it is necessary to exasoime in order to see where
they came from and how they originally applied to theoremfhieproof corpus. Here
two examples are presented and their origins discussed.ekmination also allows
the appearance of patterns to be understood when it may rot¢deexactly why such
patterns occur.

4.6.3.1 Example 1

The first example pattern appeared isedectedset of 500 theorems with a frequency
of 0.134. This domain contained the basic higher-ordercltiggorems such as propo-
sitional rules and rewrite rules. The pattern is given infigg4.6.

Iffl

exE

somel

assume

Figure 4.6: Pattern from a set of 500 selectedheorems.

This pattern can be found contained in the proof of:
conjl=[|P; Q|| =PAQ
It completes one branch of the proof. Unfolding the defimitad and then applying
the rulealll leaves the subgoal:
IR[P,Q|=®P —Q —R —R
Here the k. represents an unknown constant. So the pattern is followegbplying:
impl P=Q) =P — Q
to this subgoal, which leaves:
IR [[P,Q;P — Q — R|] =R
As with the discovered pattern:
mp[|P— QP = Q
is applied to get two subgoals, only the first is shown as thithé branch that the
discovered pattern comes from:
NR.[|P;Q;|] P
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This is a simple instantiation, accomplished usiisgume
This pattern is also used to complete a branch in the proof of:

disjll P— PV Q
This proof begins by unfolding the definition of followed by an application célll
and an application ampl. These steps leave the subgoal:

"R[PP —R|] = (Q — R —R
To thisimpl is applied to get:

IR[|PP—RQ—R] =R
Againmpis applied to get two subgoals, the first of which is:

IR[|P,Q — R] =P
Which is solved using an instance of assume.

In fact, a second examination of the proofs shows that thetaformation stage
may well combine these two patterns to provide a compouritttihat subsumes both.
This is shown in figure 4.7.

alll
impl +

mp

assume

Figure 4.7: Combined pattern after tactic formation.Here impl+ means 1 or more repe-

titions of impl.

4.6.3.2 Example 2

The second example pattern (4.8) appeared in a random s@0ahB&orems with a
frequency of 0.049.
This pattern solves the subgoal:
Ixxo. [|Pa; Px Px; VY. Py — y = Xo|] = X=Xz
which appears in the proof of the theorem:
somelequality [|3!x. Px Pa| — eP=a
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The steps in the pattern are as follows:
allE [|vx. PxPx= R|]=R

mp [[P— Q;P]]=Q

The full proofs ofdis 1, conjl andsomé._equalityare contained in the appendix A.
These are just examples of places these two patterns dhgapgpeared, for them
to have been designated as patterns, they must appear inatiemplaces.

4.7 Summary

A description of the pattern discovery technique has beesgmted. After exploring
the options available from existing methods, a new processdeveloped specific to
the requirements. The parameters contained in this apprioaee been explored and
some examination of the results so far has been provided.

Examination of techniques for solving problems of this tyfpattern discovery)
threw up a number of issues. For the most part, existing isoisitdeal with DNA
modelling, and those which could be adapted to deal withmalaes, do so in a less
than ideal way. None of the software examined would be easiptable to the pur-
pose of this thesis. Also, none of the software discoveréepe over trees.

When developing the new technique a compromise in dealintistive type of
tree structures described by the proofs had to be made. No sbdution to this
problem was found in existing software and theory. The degiso linearise the
proofs down the branches meant losing any important coromecbetween different
branches. However, it was decided that it was more impottakéep the connection
between successive steps.

impl

mp

assum

Figure 4.8: Pattern from a random set of 500 theorems.
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The tactic formation step will recover much of the lost infation, particularly
if it is significant. If one branch is significant, and thereaiglirect link between it
and another branch of the same proof, then the second braiichiss be found to
be significant. This ensures that both branches will occupatterns in the tactic
formation stage.

In order that patterns associated with common rule namesarneported as sig-
nificant when they arise simply due to chance it was decidegéqrobabilistic meth-
ods to form the basis for the pattern discovery approach. speeification led us to
the training stage of Markov Models. In particular, Varialilength Markov Models
which allow modelling of patterns of any length proved araidsolution.

The parameters within the approach have been examined sted tdBy selecting
the input (through an automated process) and tailoringtieshold to the input given,
it has been possible to optimise the patterns returned.

Many patterns have been extracted using the techniqueslkx$and it has been
shown that examining them can give some insight into how thay have come about.
This information is included to allow a check that the patsediscovered are reason-
able, this was particularly useful during the developmisttge. This information has
no real value to the final tactics. However, it can give anaation of how well they
may be expected to perform, but this cannot truly be testéitlafter the patterns have
been combined in the tactic formation stage.






Chapter 5

Tactic Formation

5.1 Introduction

This chapter describes the technique for combining thdtsestithe pattern discovery
into compound tactics. This chapter begins with an overaéthe goals, followed by
a specification for solving the problem. The traditional &&nProgramming approach
is described and an explanation given of why it is suited &NB~T's purposes. A
description of the adaptation of the traditional GP methisdgiven followed by a
detailed description of the newly developed technique.

At this stage there are some commonly occurring patterssarirom the previous
stages. However, these patterns are linear and bear étd&an to the original proof
structures. Also, in many cases the patterns that have beed fliffer by only a single
step. An example of this is given in figure 5.1, these examgdede seen in the proofs
of conjl andconjunctl respectively. It is clear also that some steps may be regeat
number of times. However, the pattern discovery softwatkfind separate instances
of them as separate patterns, as can be seen in figure 5.2littmoagwhere possible it
is desirable to reconstruct the branching structure thatlast during the linearisation
process.

5.2 Specification

As discussed, an approach for combining the patterns tivat @en found into com-
pound tactics is desired. There are four items to consider:

61
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alll alll
| |
| |
mp mp

Figure 5.1: Two patterns which show potential for an V introduction.

spec spec
mp mp
mp impl

impl

Figure 5.2: Patterns which show potential for a plusintroduction.

Spec impl

impl mp

mp disjl2
disjl2

assume

Figure 5.3: Two patterns which show potential for macro introduction.



5.3. Grammar 63

Spec spec
conjl conjl
iffl iffl
conjE disjl1
assume disjl2

Figure 5.4: Two patterns which show potential for an A introduction. Note that here iffl

is stored as a step which results is a branch

1. Macro Formation - Macros which represent internal parts of tactics whichuocc
commonly are desirable. An example of two candidates isgndigure 5.3

2. Vv introduction - Combinations of possible patterns (as in 5.1) togethen euit
V operator is desirable.

3. A (re)introduction - The reintroduction of the branching information lost chgyi
the linearisation procedure earlier is desirable. An examptwo candidates is
givenin figure 5.4

4. + introduction - A representation of repeated steps withlas operator to de-
note 1-or-more repetitions is desirable.

5.3 Grammar

Some care is required over the choice of the tactic langu@e.choice ranges from
regular grammars, via a limited set of tacticals to a gengrajramming language,
such as ML (as used in LCF [Gordon et al. (1979)]). A parsiroasilanguage will
be better suited to genetic programming, e.g. a limited $e¢adicals. Moreover,
the language must not require information that cannot baiobdt by analysis of the
proof corpus. For instance, it is no use including whiledsr if-then-else, if their
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conditions cannot be constructed.

Non-conditional forms of repetition and non-determinismstbe used instead. It
has therefore been decided to represent generalisednsaittehe same way as Kerber
et al. [Jamnik et al. (2002)]. using the following languagevhich is defined as:

rerL for rule name identifiers
me L for macro identifiersn
[L1,Lo] € L

(LiVLlp) e L forLi,Lo e L

(LiALp) € L

L+eL forLe L

The rule name identifiers denote the rule names (or proofadspciated with the
abstraction) which appear in the extracted proof sequemdasro identifiers are used
as abbreviations for a pattetne L.

The operators have the semantics of tacticals. The {ejnh ] is interpreted as
sequencingl(; is applied aftet 1), vV(L1,L2) stands for a disjunction (eitheg or Ly is
applied), am(L1,L2) has the semantics thiat is applied to one subgoal ahd to the
other subgoal. The termL denotes an arbitrary number (equal to or greater than one)
of repetitions ofL. In order that this operator can be used with the informagjiven,
its use is defined to beas few as necessdryln other words, this step is repeatedly
applied only until the next step in the tactic can be usedhénsituation that it occurs
at the last step of a tactic, its use is defined todsedften as possible
An example of a generalised tactic would be:

[step, V([step,step],[step]), +[step, step], macro(m, A([step],[step])]

wheremacra'm) is itself an identifier for a tactic.

5.4 Genetic Programming

If the discovered patterns are considered as simple tatkies this stage of the ap-
proach can be though of as an evolution of these simple satdicompound ones.
More specifically, these simple tactics are being evolved ones which are more
suited to the task (describing the proof corpus). EvolwigrProgramming is ideal
for this purpose, providing an approach which will allow angeation of increasingly
better tactics with each increment. As there is no exact oreas when the optimum
tactic set has been found, it is desirable to use a technigtieas EP where the initial
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population converges on a solution. Therefore stoppingptbeess at any time will
still provide a useful result.

Genetic Programming (GP), a specific instance of EP, is iibedsaNewT as the
tactics being generated can be though of (in some sensed@gprs to solve a prob-
lem.

5.5 Traditional GP Method

Koza’s GP approach genetically breeds populations of céengarograms to solve
problems by executing three steps:

1. Generate an initial population of random compositiontheffunctions and ter-
minals.

2. lteratively perform the following sub-steps until therngnation criterion has
been reached:

(a) Execute each program in the population and assign itesftmalue
(b) Create a new population by:

(i) Reproduction: Copy existing programs to the new popaoiat
(i) Crossover: Create two new programs by genetically cioinly ran-
domly chosen parts of two existing programs
(iif) Mutation: Choose one program and randomly mutate apon it by
adding or removing an operator or command.

3. The most fit program at the time of termination is deemecktthle result of the
genetic programming. This may be a complete or partial smiub the specified
problem - i.e. a partial or complete program.

Although Koza describes his technique in terms of progrdurstions and termi-
nals, there is a direct correlation between this and tagpicsof steps and operations

from the grammar.

5.5.1 Implementation

A seeded Genetic Programming implementation is used wherdiscovered patterns
are the initial population set. Much of the change comes ftombinations of two pat-
terns with the approach ending after a time-out. The fitnesstfon scores tactics over
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the initial population not over the entire corpus. This isdngse the patterns included
in the initial population are representative of the most nownly used parts of the
corpus. Scoring over the entire corpus would not only beaditily time-consuming
but can result in over-generalisation of tactics which wdoélquire increase the search
space at the application stage. This algorithm is coveratdyjollowing steps:

1. Allthe patterns are scored according to how many othéepet within the initial
population (the set of discovered patterns) they subsumgally many of the
scores will be 0. However, all patterns are ordered by rarfiefe the first pattern
scored highest) according to their score. Patterns witlséinee score are ranked
arbitrarily.

2. One of three procedures below are applied. The choiceooBplure is randomly
chosen, although with weights which provide a bias towaettam procedures.
Crossover (preferred - 50%), mutation (25%) and reproduac(R5%). These
weights were chosen after extensive testing. The higher tloamal mutation
weight is required in the early stages to ensure the reiotbon of branches
and operators. This allows later crossovers to work as eégdeand speeds up
the initial process.

e Crossover works generally by randomly choosing a branclkaofiéree (P1
and P2) and swapping them. However, the initial populatamrscsts solely
of patterns not trees so crossover works by choosing a pnieaoh pattern
(P1 and P2) and adding the remainder to the other by inseatingif the
last step matches (shown in figure 5.5) andnait it doesn’t (shown in
figure 5.6). For the purposes of the figures, a tree branclesepts and
branch. Anv branch results in a graph as in figure 5.5, in this case &n
included for clarity. Although allowing a small random piskty for an
A to occur even with matching ends allows more variety. Thisriks the
situation where a/) branch occurs but coincidentally both branches end
the same. A random number generator chooses whether arpoftibe
pattern will just be “cut-and-paste”, whether branched td introduced
or (in the case that branches already exist) that traditiom@ach-swapping
occurs (shown in figures 5.7 and figure 5.8).

In each case a small random probability is allowed for onehef dther
feasible options to occur. For example, even if both pastaiready contain
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a branch there is a chance that another random branch wilh$erted
instead of the traditional subtree swap.

e For mutation, a random point in the pattern is chosen (vidoamnumber
generator (RNG)) and the pattern is mutated at that poititalfpoint is an
operation {\, v or +), the positioning is changed slightly. One branch of
an A can be moved (so effectively the split starts one step eantiéater)
and the length of an or apluscan be lengthened or shortened by one step.
For example, if the patter chosen is:

[a,b,c,v([d, €], [f,g]),h]

and the point chosen to mutate is thethen the boundaries of the can
be moved to get:

fa,b.c,v([d].[f.g)).eh]

which effectively adds an element of th@o the main sequence, or it could
be expanded to get:

ja.b,v([c.d.€][c, f,g]),h

If the patternPat chosen is:

P1 P2 NewP1 NewP:
e
a e a ‘
| |
b f
b f
] N /N
c C g
c |
| | V g \ /
d d \ S q

d

Randomly chosen crossover point

Figure 5.5: Results of a crossover when no branches are present and the patterns end

with the same step
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P1 P2 NewP1 NewP:
a e a ©
| |

b f
b f
‘ ‘ /\f C/ \g
6 P SN
| | d d h
d h \

Randomly chosen crossover point

Figure 5.6: Results of a crossover when no branches are present and the patterns end

with different steps

Pl P2 NewP1 NewP:;
a e a e
b f ‘b f
C g C‘J g
/N N\
h h d

d i i

Figure 5.7: Results of a crossover when one of the candidates already contains a

branch
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[a,b,c,+(d,e), f,g]

and the point chosen is thpdus then:

[a,b,+(c,d,e), f,g]

could be obtained or thgluscould be shrunk to get:

[a,b,c,+(d),e f,g]

If the patternPat chosen is:

[a,b,c,A([d,e, f],[g,h,i])]

and the point chosen is threthen the result could be any one (randomly)
of:

[a,b,A([c,d,e, f],[g,h,i])]

[a,b,A([d, e, f],[c,0,h,i])]

[a,b,c,d,A([e, f],[g,h,i])]

or:

[a,b,c,g,A([d, & f], [h,i])]

If the pattern chosen (or the point in the pattern chosen)nloasperator

then the step at that point can be randomly swapped (for anatep),
removed or an arbitrary new step or operator can be added.

P1 P2 NewP1 NewP?2
a f a f
| | |
S AN
\ ./\. i d ¢

Randomly Chosen crossover point

Figure 5.8: Results of a crossover when both candidates already contain a branch
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e Reproduction simply involves the chosen pattern beingembdirectly into
the new population.

3. Depending on the technique chosen, one or two patterrsebeeted. A bias is
allowed to sway the random selection towards good patternisda patterns can
still be chosen. The original ranking of the patterns is Hasetheir frequencies
in the pattern discovery stage, but later rankings reflesit tmprovementin this
section (i.e. how many other patterns they subsume).

4. When a new pattern is formed, it is scored and the scorengpaced against
its parent’s score. If the offspring scores best then it i%3@ore likely to be
chosen for a new population than its parent. If the parentescbest then it is
90% more likely to be chosen for the new population than itspoing.

5. When the current population is empty. the procedure isatga using the new
population. However, a copy of the initial set of discovepadterns is kept so
that new candidates can be scored using this.

It would be possible to evaluate each new candidate agatest set of theorems
instead of the discovered patterns. However, this would leanutations based on this
step and not on tactics formed from the discovered pattehtthough this could be
useful, this approach is not used to demonstrate that itgsipte to form tactics from
one training set which can be repeatedly used in the future.

In fact, genetic programming of this type could be used (wittandom start or
otherwise) as a stand-alone approach in order to find thesbesf tactics to model the
whole corpus. The main drawback to this approach would beetingth of time that
this would take. Even when modelling a (relatively) smatllges the set of patterns
with a seeded input, the GP technique can be very inefficient.

5.5.2 Performance

Genetic Programming was not expected to be particularlgiefft in terms of time. It
was hoped that this technigue would provide good tacticelvould compensate for
this. GP does in fact produce some interesting tactics.

In this section, some of the tactics which have arisen froim gtage, along with
some evaluation of these are described. Until the appticaif these tactics are de-
scribed and a more specific appraisal of their worth can bengithey must be evalu-
ated using the test set obtained from the proof corpus.
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The efficiency of this approach is also discussed, includimgxamination of the
differences made by adjusting the time-out value and theecizhe initial population.

5.5.2.1 Results

Genetic Programming has yielded a number of new tacticswaofethese may be
completely inapplicable as they have progressed into thepopulation due to the
‘random factor’. Of those kept, most are only partially apgble. The wide range
of tactics from Genetic Programming encompass; some with two steps and no
operators - unchanged from the pattern discovery stagaubecl changes have re-
sulted in a lower score than the initial score, some very kaggics which include large
branchesV or A) which are inapplicable but which have been kept becausetof
the tactic scores well.

A fairly typical example is shown in figure 5.9. This tactigpresents a sequence
of exlE followed by either all. dupE followed by ssubst or someflollowed by exE,
then 1 or more repetitions @il E followed bymp

ex1lE
T

all dupE some

| v
ssubstl exE

\/+
(allE)

mp

Figure 5.9: Example of a tactic found using Genetic Programming

Using one branch of thg (left-hand), this tactic could be applied to part of the
proof of:

somd._equality=[|J! xP x P a] — (SOME xPx) = a
However, there does not appear to be any occurrence whidaiosrthe right-hand
side. This does not prove that the right-hand side can newarsied, but it is not
applicable within the set and would represent unnecessairgis during application.

Full details of all the steps in this tactic and their apgima to this proof can be
found in appendix B.
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As an example, from one input sample of 100 patterns and X)Q0dterations,
53 tactics were kept. The tactics kept have a score of at [e&sim the scoring
system detailed previously. This set of 53 patterns doesowipletely describe the
initial population as some patterns have mutated until #reyno longer useful. In this
particular set, the highest score was only 7. This meanghileabest tactic only com-
pletely described 7 of the original patterns, from an initiepulation of 53, it would
not be unreasonable to expect better. This slightly disayipg result provides the
main motivation for the construction of the ‘Pairwise Comdttion’ approach, which
is described in section 5.6.

A measure of the usefulness of these tactics can be gainedrbpasing them
against the test set to see how often they would be applicdliies is not limited to
once in a proof, so it is possible to measure how many proofs tectics applicable
to them and how many tactics are applicable. This measut®isrsin figure 5.10.

Use of tactics within proofs

11.00%

no tactics

[ 1 tactic
25.00¢0l 2 tactics

] 3 or more tactics

19.00%

Figure 5.10: This shows the percentage of proofs which could have 0, 1, 2, 3 or more

tactics applied to them.

5.5.2.2 Efficiency

As the initial population consists of patterns (containimgbranches), a certain re-
liance must be placed on chance to provide the useful (orlamay)ches. This is one
of the reasons that genetic programming starts off so sliwthe case of IsaNewT.
By measuring the average score of the tactics against théewwoh iterations the effi-
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ciency of the Genetic Programming technique can be examihisds shown in figure
5.11.

Average tactic score vs no. of iterations

1.4,
1.34
1.24
1.11
1,
0.9
0.8
0.7
06,
0.5
0.4
0.3
0.2
0.1

Tactic score

0 : : : : ‘
0 1,000,0 2,000,0 3,000,0 4,000,0 5,000,0
00 00 00 00 00

No. of iterations

Figure 5.11: Measure of efficiency of Genetic Programming. The x axis shows the

number of iterations and the y axis shows the decrease in population size.

As can be seen from figure 5.11, above 3,000,000 iteratitnese tis very little
improvement. The initial population for this sample was By.comparing a number
of these graphs the optimal number of iterations has beamdftambe roughly propor-
tional to 100,000 for each member of the initial populati@i.course, this is a rough
guide, but it goes safely past the convergence point of thphgin all test cases.

5.6 Pairwise Combination

Although Genetic Programming apparently offers a good fitht® requirements of
IsaNewT, it was felt that a more directed approach might beeretiective. In particu-
lar, one of the great strengths of GP is the potential for tutao allow a previously
unexpected solution to arise. However, the intention whih isaNewT method is to
find tactics specifically based on commonly occurring patigso it is not necessary
to find new possibilities in this way. For this reason, in diddi to the implementation
of the traditional Genetic Programming approach, therésis an implementation of a
novel method.
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The new approach is inspired by Koza’s GP algorithm. Thig@ggh, which has
been named ‘Pairwise Combination’, uses the discoveradrpatas an initial popula-
tion, but focuses solely on the crossover step of the GP isthgor

5.6.1 Implementation

The method involves repeated iterations in which two membéthe population are
chosen and an attempt made to combine them. The number atiotes is decided
by the user. The default is 1,000,000 iterations, which isumpeasonable even for a
small set in genetic programming. The default is usuallyugito generate a ‘stable’
set of tactics from a pattern base of 50. A ‘stable’ set is @efito be one which will
not change significantly even when run for another 500,08/@titons. Each iteration
consists of the following steps:

1. The patterns are each assigned a number at random (thgarassit is done
simply using the order that the patterns came out from theepatdiscovery
stage which is random).

2. The number of patterns are counted (N) and 2 (distincloemnumbers be-
tween 1 and N are chosen. The patterns assigned to these rsLemdehosen to
be compared, say (P1,P2).

3. Firstly a check is performed to see if P1 is a complete dudid@2 or vice versa.
These complete subsets can appear provided the frequencwttiained in the
pattern discovery stage was different (i.e. the smalletepatappeared in other
places as well as being a subsection of the larger pattefrgo, Ithe smaller
pattern (say P1) is named asracroand given the nexinacro identifierin
succession (e.g. m3).

The occurrence of this pattern in P2 is replaced by m#&akrois not permitted

to contain a step that is known to be a branching step (see63tef§ such a
macrowere permitted and put in place, the method would have toilegike the
macroto check for branching points or risk not joining known brhas together.
Looking inside the branches would greatly increase the tamken to perform
each iteration and not discovering the branches would bgréfsiant drawback.
Losing out on some potentialacroswas seen to be the least important loss. An
example ofmacrointroduction is shown by figure 5.12.
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mp

and_def
and_def
macrol

spec
spec

and_def

spec

assumption

Figure 5.12: Introduction of a macro identifier.
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4. If the macrostep fails, then the potential for@usoperator is checked. P1 and
P2 are compared. If they only differ by a repeated step (jeeb, c,c,d] and
[a,b,c,c,c,d]) then aplusis introduced [@, b, 4-(c),d]). This is better shown by
figure 5.13. There are instances where addipb@may be an over-generalisation,
but it is common that two sequences which only differ by thget#ion of a step
are representative of other sequences which have a diffatenber of repeti-
tions of this step.

spec spec
spec
mp mp |
——
. mp +
Impl
mp ‘
impl
impl

Figure 5.13: Introduction of the plus operator.

5. If P1 and P2 are dissimilar so far then a search is perforfoed potentialv
introduction. Both patterns must begin and end the samdnidfis true then a
filtering process is undertaken until the shortest diffeeeis covered by the.
For example:

Pl1=[a,b,c,d,e f] P2=[a,b,g,hi,e f]
becomes:
[a,Vv([b,c,d,€],[b,g,h,i,g),f]

then:

[a,b,V([c,d,€],[g,h,i,€g]), ]

and finally:

[a,b,Vv([c,d],[g,h,i]),e, f]

in which theV covers the shortest difference. An example of this is shawn i
figure 5.14
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In order to avoid long sequences with very little in commoimigoined by a
large Vv there is a simple scoring system. A sequence scores 1 poievéry
original pattern it subsumes and loses 1 for every membeheflongest branch
of ) anV. The score must be non-negative for the new sequence to bptadc
This also prevents the disjunction over every possible secgl being returned
as a tactic. This would otherwise score well, but would notéy useful!

alll alll alll
impl spec = impl \/ spec
mp mp mp

Figure 5.14: Introduction of the V operator.

6. If P1 andP2 are still unchanged a branching point is looked for. Alpste/hich
result in branching are known ( they are gathered in the waiglstage of the
pattern discovery). All steps iR1 andP2 until a branching step is reached must
be matched. If this is possible then the tactic with branglsmpassed back into
the population. This is shown in figure 5.15

trans trans trans
trans trans — trz‘;ms
/N
sym assume sym assumi
assume ass‘.ume

Figure 5.15: Introduction of the A operator.
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7. If none of these steps are successful tRérandP2 are passed back into the
population unchanged.

8. If necessary (i.e. iP1 andP2 are merged) then the identifiers assigned to the
new patterns are updated. Only the new tactic is KeéptandP2 are discarded
as they are subsumed by the new tactic. This causes the poputashrink.

The entire population is kept as the current tactic set. Kértlhe more traditional GP,
there is no ‘old’ and ‘new’ population, the population ingrentally changes contin-
uously. If a good initial selection of patterns is found ahd time limit is sufficient
then the patterns set will be significantly reduced.

By choosing the two compared patterns randomly, combinatad different steps
are allowed to arise. For examplephluscan be introduced over a macro allowing a
repetition of more than 1 step. This is shown in figure 5.16.

mp

mp
‘ and_def ‘ mp
and_def
‘ macrol macrol ‘
— —
spec macrolt
spec
macrol
‘ ‘ assumptio
and_def .
assumption
spec
assumption

Figure 5.16: How a repetition over more than one step can be found using the macro

identifier

As a copy of the initial population is kept when using thishieique unchanged
tactics can be re-examined. By inspecting both the origheare from the pattern
discovery process and the final score from this tactic foionadtep, it can be decided
whether they should be eliminated before the applicati@tguure. A tactic which
came from a pattern with a low frequency (very close to theghold) and which also
subsumes few, if any, other patterns at this stage (andaost score of close to 1), is
likely to be a less useful tactic and so can be discarded oicestlin importance when
it comes to the application stage.
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For the purposes of application, all the tactics have bephlat the tactic set has
been arranged so that these ‘weak’ tactics will always l@gited last.

5.6.2 Performance

As with the traditional GP approach, the efficiency of thidteique must be measured.
The size of the initial population and the time-out value\aged to ensure these are
not factors.

The tactics gained from this approach are discussed and parsan drawn be-
tween them with those obtained from traditional GP. As with pattern discovery
stage, only preliminary evaluation is carried out herehveitcomplete evaluation be-
ing carried out in conjunction with the applications.

At this point, of most interest is the comparison betweenwetechniques.

5.6.2.1 Results

A number of tactics have been evolved using the Pairwise Qumatibn technique.
They range from only having 2 steps and no operators to halMégteps and 7 oper-
ators. A fairly typical example with 5 steps and 3 operatsrshiown in figure 5.17.
Also shown are the steps that the manracrolis short for. This tactic represents a
sequence oénd deffollowed by specfollowed by mp and then am split. Theas-
sumptionstep should be applied to one subgoal and one or more repatitifimpl
thenassumptiorapplied to the other.

macrol and_def
mp macrol
/ \ spec
assumption (impty
assumption

Figure 5.17: Example of a tactic found using Pairwise Combination

This tactic could be applied within the proof oén junctl:

conjunctL : “[| P A Q|] = P’
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apply(unfold anddef)
to get:

VR(P— Q — R =P
then:

apply(drule spe¢
to get:

P—Q—R —R=P
then:

apply(drule mp
to get 2 subgoals:

R— P
and:P — Q — R
The first of these is solved witAssumptiorconcluding the first leg of the proof. To
the second:

apply(rule impl)
is applied to get:

P—Q —P
The next stepassumptioncannot be used at this point so thlesoperator is utilised:

apply(rule impl)
to get:

IP Q] = P
Which is solved byassumptionthus completing the proof.

From an input sample of 40 patterns and 2,000,000 iteratightactics remained at
the end of the entire IsaNewT process. Unlike with tradiio@enetic Programming,
the final population completely describes the initial papiein. While it would be
possible to also measure the increase in score againstdirtted approach, this cannot
be compared directly against the GP approach as the GP approatains tactics that
will be discarded.

As with GP, a measure of the usefulness of these tactics ogaibed by comparing
them against the test set to see how often they would be apjdic This measure is
shown most clearly in figure 5.18.

5.6.2.2 Efficiency

As the Pairwise Combination method is much more directed traditional GP, it
is a much more efficient technique. By measuring the size pfifaion against the
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number of iterations, a measure of how many patterns have bembined can be
gained. Therefore a measure of the efficiency of the Pair@@®abination technique
for IsaNewT’s purposes can be gleaned. This is shown in figur@. A full week-long
test was run but there were no further changes to the popualati

As can be seen from figure 5.19, above 1,000,000 iteratitrese tis very little
(often no) improvement. The initial population for this galmmwas 48. As with the
GP approach, a number of these graphs were compared to alotaiptimal number
of iterations. In this case it is roughly proportional to @30 for each member of the
initial population. This rough guide goes safely past tiwelleng out point of the that
graph is used as a termination criterion. Using the Pain@iembination technique,
increasing the initial population does not result in a diiecrease in the number of
iterations required as more potential matches exist to bado However, it does not
cost as much to continue with the iterations as time goes anfalling population
means that each iteration is faster.

5.7 Summary

Two methods based on Evolutionary Programming techniqaes been described
that are used to evolve the discovered patterns into tactcsne efficiency results

Use of tactics within proofs

18.00%

26.00Y

no tactics

[]1 tactic

Il 2 tactics

[ 3 or more tactics

25.00%

31.00%

Figure 5.18: No. of tactics applicable within proofs. This shows the percentages of

proofs which have: 0, 1, 2 or 3 or more tactics applicable to them.
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have been presented on the two techniques and some typasapées described.

Unsurprisingly, a comparison of the results obtained froen@&ic Programming
and from Pairwise Combination show that PC provides siganifily better results. Ge-
netic Programming relies on many random decisions whichbeawery useful when
dealing with a problem where the specification is poor. HevelsaNewT’s problem
- that of combining patterns to form tactics - has well-dedigeals.

Using random choicesanbe very useful; it has been used to choose the candidates
for crossover as initially there is no way to tell which sé¢less would make good
candidates. In spite of the ranking system implementedetiseno way to know if two
(or more) bad patterns might combine to make an excelletittaBy exploiting this
within a directed system, as done in Pairwise Combinatiarefficient evolutionary
procedure inspired by Koza’s GP algorithm has been created.

With a comparison of the worst case estimates of how mangtiters a run might
need, it is already clear that PC beats GP by a factor of 4. dhtime, PC performs
even better due to fewer operations in later iterationss(thibecause of a smaller
population size).

In terms of the tactics obtained, both GP and PC provide giaptions. Genetic
Programming will produce some tactics which could not haseerbfound simply us-

Population size vs no. of iterations
50,
45
40+
35+
301

Pop. size

0 25,000 50,000 75,000 100,000 125,000
No. of iterations

Figure 5.19: Measure of efficiency of Pairwise Combination.
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ing the initial population. This means that GP could conaely produce interesting
tactics that could not be discovered using the pattern desgatechnique (although
this was not observed during any of the tests). As IsaNewEssgthed to expressly
exploit such patterns to form new tactics, this feature ofiSRot necessarily useful
(even on the rare occasions it could produce a fantasticcthgtfluke) but may be
worth exploring in another context. Most of the tactics proedd by GP have at least
some part of them which is either redundant or inapplicablesome cases, GP will
produce tactics and parts of tactics which could never béiexhpand while most of
these will be weeded out by the scoring process it is inelattdiat some will linger.

Pairwise Combination produces only tactics which arisenftbe initial population
and because of this it can be guaranteed that all final taateespplicable in some
instances. Indeed, studying the number of proofs which eapabtially described by
at least 1 tactic, see figure 5.18 an improvement over sirsiitdistics from GP can be
seen.

Pairwise Combination shows an improvement both in tactgiegbility and in
efficiency when compared again to traditional Genetic Raogning for IsaNewT’s
purposes.






Chapter 6
Application

In order to test the new tactics which have been discoverdddiyewT and to demon-
strate whether they are in fact useful tactics, a simplg/falitomated theorem prover
within the Isabelle interactive prover has been developgaAUuto). In this chapter is
a description of this prover.

The implementation of IsaAuto is described along with soetaits about the type
of input which will be given for comparison. One of the morergaicated steps in
implementing the prover was the adaptation for each aligirain order to ensure that
a fair comparison was always maintained.

This chapter is concluded with some results on the perfoomanisaAuto. These
results do not provide an evaluation of the tactics but rgthevide the baseline so that
a good selection of theorems can be chosen for testing pesposhe evaluation.

6.1 Designing an Automatic Isabelle Prover

The Isabelle prover described here was designed with thesgpurpose of evaluating
the usefulness of the tactics. To that end, it was decidedtbgrover would perform
a naive search through all the possible rules and tacticsler @o find a proof. Evalua-
tion of the discovered tactics would occur by comparing #ersh described against a
search for a proof with these tactics added as heuristicaargies that an improvement
in time and in the number of theorems proved demonstratésitbaliscovered tactics
are indeed useful.

By using Isabelle as a basis for the prover, IsaAuto inhatitshe soundness of
Isabelle. In addition, IsaAuto has no way to check whethesrdradiction has been
found (i.e. atheorem is false) and will just report a failtmgrove the theorem.

85
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6.1.1 Isabelle Tools

Isabelle has a number of inbuilt tools designed to aid the insgeveloping an auto-
mated prover within Isabelle. These have been utilisederddégvelopment of IsaAuto.

6.1.1.1 Isabelle’s Inbuilt Tactics

Isabelle uses a different notion of tactics than the one usétinow. In order to avoid
confusion, the Isabelle tactics will from now on be refertedwvith the abbreviation
tacs Isabelle has a number tdcswhich are defined as “an abbreviation for func-
tions from theorems to theorem sequences” in the Isabdtearece manual [Paulson
(1986)]. In comparison to IsaNewT'’s tactics, Isabell@sscontain possible rules to
apply, along with the information on how these rules are tajyalied. Theséacscan
in fact be thought of as mini-provers.

Some of the more common or relevaats available within Isabelle are given
below, (commands in brackets show abbreviation availabtbé¢ most common).

resolvetac thms i(rtac) refines the proof state using the rules containedenligt
thms(normally introduction rules). It resolves a rule’s corgilbn with subgoal
i of the proof state

eresolvetac thms i(etacthm i) performs elim-resolution with the rules (normally
elimination rules). It resolves with a rule, proves its fipsgémise by assumption
anddeleteghat assumption from any remaining subgoals

dresolvetac thms i(dtacthm i) performs destruct-resolution with the rules (normally
destruction rules). This replaces an assumption by thdtresapplying one of
the rules

fresolve tac thms i(ftacthm i) like dresolvetac except the selected assumption is not
deleted

assumetac i (ataci) attempts to solve subgoiby instantiation
(eatacthm j i) performsetacthmthenj timesatac on subgoai
(datacthm j i) performsetacthmthenj timesatac on subgoal

(fatac thm j i) performsftac thmthenj time atac on subgoal
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ares tac thms itries proof by assumption and resolution; it abbreviassumetac i
ORELSE resolvetacthms i

rewrite _goalstac def (rewtacdef) unfolds the definitionslefsthroughout the sub-
goals of the proof state, leaving the main goal unchanged.

rotate_tac n i rotates the assumptions of subgodaly n positions from right to left
(left to right if nis negative)

6.1.1.2 Isabelle’s Tacticals

Isabelle has an inbuilt notion of tactical which are openagi ontacs They can be
thought of as high-level control structures.
Some of the more relevant ones are:

tac; THEN tac is the sequential composition of the twacs Applied to a proof
state, it returns all states reachable in two steps by apphygc; followed by
tac,. First, it appliesac; to the proof state, getting a sequence of next states;
then it appliegac, to each of these and concatenates the results.

tac; ORELSE tac, makes a choice between the two tactics. Applied to a state, it
triestac; and returns the result if successfultaitc; fails then it usesac,. This
is a deterministic choice; tfac; succeeds thetac, is excluded.

EVERY [tacy,...tac,] abbreviatesac; THEN .. THEN tac,. Itis useful for writing
a series of tactics to be executed in sequence.

FIRST [tacy,...,tac,] abbreviatesac; ORELSE .. ORSELSEtac,. It is useful for
writing a series of tactics to be attempted one after another

TRY tac appliestac to the proof state and returns the resulting sequence, if non
empty; otherwise it returns the original state

REPEAT tac appliestac as many times as possible (including zero), and allows
backtracking over each invocation tafc.

REPEAT1 taclike REPEAT tacbut always appliesac at least once.

Isabelle also has a number of search and control tacticailshvdre adapted in
order to provide the automated prover.
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DEPTH_FIRST satp tacreturns the proof state #at preturns true. Otherwise it ap-
pliestac, then recursively searches from each element of the ragidgquence.
In effect it appliesac THEN DEPTH _FIRST satp tac

BEST_FIRST (satpdistf) tac does a heuristic search, usidgst f to estimate the
distance from a satisfactory state. It maintains a listatiest ordered by distance.
It appliestacto the head of this list; if the result contains any satisiacstates,
then it returns them. OtherwidBEST_FIRST adds the new states to the list,
and continues. It will find a solution, if one exists

SOLVE tac appliestacto the proof state and then fails if and only if there are sub-
goals left

6.1.2 Implementation

A prover of the type required can be implemented in Isabelid & minimum of
effort using the inbuilt Isabelléacsand tacticals. A straightforward implementation
of a prover can be achieved usirntgc, dtac, etac andatac with the argumenthms
containing the names of all the rules used. As describedeeatthe entire Isabelle
system is based on a few basic axioms, and any rule can be siagrd into the
sequence of rules which made up the proof of its own theoremis Aas allowed the
restrict of the Isabelle database of rules (which is po#digtinfinite as more and more
lemmas are added with each new theory file) to around a hundred

However, the implementation described above has a numbgrobfems. Most
importantly, allowing rewrite rules to be applied in anyatition will leave the problem
of looping. Also needed is a method of unfolding definitiohkis contains the names
of any definitions available. Although this can also be a pidly lengthy list, none
will be applicable unless the object appears in the subgdbatac is removed then
there is an insistence that some part of the rule matchedlgxaith a part of the
subgoal (one of the assumptions &acand the conclusion faitac). Now a newtac
PER_SUBGOAL can be defined:

PER_SUBGOAL rules= etacrulesORELSE dtacrulesORELSE rewtacdefs

In Isabelle, subgoals are numbered sequentially. When aogosil is proved, the
rest are moved up (so when subgoal 1 is solved, 2 becomes togbs 2 etc.). By
default, atacis applied to the first subgoal unless otherwise stated.€Foes, in order
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to search for a progber_subgoalwould be applied repeatedly to the first subgoal until
a solution is found. Effectively:

IsaAutorules= SOLVE (REPEAT1 per_subgoalrules)

is being performed.

Backtracking occurs when an applicationREPEAT1 fails (i.e. no applicable
rule can be found), in such a situation, the last rule apptinas undone and search
continues as if this rule was inapplicable.

Now the discovered tactics are processed into Isabelletstysso that they can be
used in IsaAuto. Otherwise only the Isabebestraditionally used in writing proofs
by hand are used as the mechanism for IsaAuto.

erule_tac thmworks in the same way aacthmsbut only tries to apply one partic-
ular rule instead of one from a selection of rules.

drule_tac thmworks in the same way atac thmsbut only tries to apply one partic-
ular rule instead of one from a selection of rules.

Hence each theorem name can be adapted to a tacticsarsiegac , drule _tac,
ORELSE, REPEAT andTHEN. Thus a tactics such as that represented in 6.1 would
be represented by:

mp macrol
/ \ spec
assumption (impty
assumption

Figure 6.1: Example of a tactic.

branch_tac = ((REPEAT1 erule_tac impl) ORELSE (REPEAT drule _tac impl))
THEN assumption
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tactic = (rewtac and.def) THEN ((erule_tac spe¢ ORELSE (drule _tacspeg¢) THEN
((erule_tac mp) ORELSE (drule_tac mp))
THEN ((atacTHEN branch _tac) ORELSE (branch_tac THEN atac))

Although this is not a pretty format, it can be generated &igimple parser. This
allows an encoding to be generated for each of the tactitactis_n so that the prover
including the tactics would become:

prover_with _tactics=SOLVE (REPEAT1 FIRST [tactic_1,... tactic_n,per_subgoal
ruleq)

After a timeout, search is cancelled and a result of ‘no pfoahd’ is returned.
This is a very naive prover which will not perform well as a peo in its own right.
However, it is suitable for the purposes of being a testingjren for the discovered
tactics. Equal inefficiencies occur in both conditions, Ise tesults gained from the
tactics are fair.

6.2 Adapting the Prover for Different Abstractions

The description presented of IsaAuto and its implementatieals with the abstrac-
tion consisting solely of the rule names at each stage. Ttheatibns needed to adapt
IsaAuto for different abstractions must be discussed. Asatbstraction chosen repre-
sents the level of information from the corpus, it directffeats how much work the
prover will still have to do.

1. Rule name with direction
With tactics: This is almost trivial to adapt. Simply restrict those steygked
forward to theerule_tac application, and those marked backwarddnae _tac
Without tactics: In order to keep search as even as possible elimination and
destruction rules can be restrictedeitacanddtac respectively

2. Class of rule only

With tactics: Replaceerule_tac with etacand replace the name of the rule as
described above with the list of rules associated with tlasscl Each of
these possibilities must be searched through. Similarigifole _tac
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Without tactics: The test without tactics would remain the same.

3. Class of rule with direction

With tactics: This would be a direct combination of the two previous exam-
ples.

Without tactics: The test without tactics would remain the same.

4. Main proof operator:

With tactics: This information would be of little help at the applicaticiage.
If a rule is applicable then the subgaalistcontain the significant operator.
In fact, no extra theorems were proved and the average tikea t& prove
the theorems was worse with the tactics in place. This is npnising as
at every step of the tactic every rule with a matching mairratee would
have to be searched. Many of these will rarely be used anddmoot
normally be considered in a search until all other possiedihad been
discounted.

Without tactics: The test without tactics would remain the same.

5. Rule name with position in proof

With tactics: Restrict any steps marked ‘beginning’ to the first pass of the
loop of IsaAuto and restrict any marked ‘end’ to only be apghvhen they
solve the subgoal. However, it will not usually be known whatep will
solve a subgoal until it has been applied. Therefore allsstegrked ‘end’
would have to be attempted at every stage and the resultrdext it did
not solve the subgoal (even if it was applicable).

Without tactics: The test without tactics would remain the same.

The only change suggested to the prover without the taditise refining of the
theorem lists into elimination and destruction rules. AB la@ shown in the evaluation,
both examples of this have been tested. Although this reemeishows an improve-
ment in speed performance, occasionally it results in ardmeaot being proved that
would have been otherwise. This is due to the rare occasi@mwttiraditional elimi-
nation rule (or a traditionally destruction rule) is usecamunusual fashion.
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6.2.1 Performance

IsaAuto is not designed to be comparable with other fullypendted theorem provers.
It does not contain any clever heuristics or techniques torave performance and
search time. It was designed solely to form a basis for coispato test the discovered
tactics.

In this section some results gained from testing IsaAutdeit the tactics are
provided in order to gain a baseline for performance. Thisallow a determination
of the complexity of theorems that IsaAuto can reasonablgxpected to deal with.
This evaluation of performance also allows the time-ouéléw be set to return a ‘no
proof found’ result.

The type of theorems IsaAuto can deal with are examined fisstelection of
theorems for testing purposes should be chosen which wiliado both theorems that
IsaAuto can deal with along with theorems that it cannot.

This section continues by looking at a selection of theormasare successfully
proven and considering the time it takes for these to be pro®y varying the al-
lowed depth of search a level that will provide the best campse between reason-
able search times and number of theorems proved can be found.

6.2.1.1 Types of theorems

This section begins by rating some theorems based on thistirexlsabelle proofs.
The existing, hand-produced proofs are used as these shepuiglsent a good (not
wasteful or circuitous) proof. This would not be a reasoraddsumption for many
hand-produced proofs, especially those written by novees certain amount of
search will have been done during the proving process andwedlystill exist in the
proof. Nevertheless, the proofs which are held in the Idabiraries have been up-
dated many times over the years to keep compatibility to neessions of Isabelle.

The theorems are rated from a score of 1 (easy to prove) tody fomplex to
prove), the ratings are calculated on the following créeri

1. Number of steps in the proof.

e This reflects the amount of search that will be required to &rsblution,
as any proof found by the prover is likely to be at least as ldrgerefore,
this measure provides a measure of complexity.

2. Number of ‘special’ techniques used.
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e The term ‘special’ techniques denotes instances such wegisits where
the instantiation is specified, or a lemma is inserted widttht technique.
These weight heavily towards complexity as the prover withvibhout the
discovered tactics will be unlikely to find a proof for thebedrems.

e Use of automatic techniques sucheago. These techniques can represent
a large area of search space so they have a weight higherhbamum-
ber of steps. However, any of these tools can automaticallfobnd by
Isabelle so they have a complexity weight less than the pusvispecial’
techniques.

These criteria have allowed us to rank the theorems fromlginspch as:

t heorem

Q— PVQ
apply (rule inpl)
apply (rule disjl2)
apply assunption
done

to complex such as:

| emma atl east _free_SucD.| emma:
Ima. ma = None — (!c. atleast_free (ma] —c)) n) —
('b d. a $neg$ b — atleast _free (nmb| —d)) n)

apply (induct_tac "n")

apply auto

apply (ruletac x ="a" in exl)

apply (rule conjl)

apply (force sinp add: fun_upd_apply)
apply (eruletac V="ma = None" in thinrl)
apply clarify

apply (subst fun_upd_twi st)

apply (erule not_syn

apply (renane_tac "ba")

apply (druletac x = "ba" in spec)
apply clarify

apply (erule notE inpE)

apply (case_tac "aa = b")

apply fast+

done

Figure 6.2 shows the successfulness of IsaAuto without éetactics in solving
these different ranks of theorems.

As can be seen, IsaAuto understandably can only handle the sitople forms of
theorem, this is not a reflection on the quality of the tadhasis the result of such a
naive prover. Even in these levels, no proofs are found fonyvat these theorems.
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Only one theorem was proved in any section from rank 5 and@ltbis is probably
due to a mis-assignment. In fact examining this proof shdwas @ach step is in fact
simple, and that it was ranked due to the high number of agipdics ofsimp in the
proof script.

From this analysis it can be deduced that it would be mosulisefise a selection
of theorems ranked from 1 to 4 with a very small number rankeddsder to create a

realistic test set.

6.3 Summary

The inbuilt Isabelle toolstdcsandtacticalg have proved invaluable in implementing
IsaAuto. No use has been made of many of the more complicatéslavailable such
as those allowing more intelligent search techniques andsies.

Nevertheless, a simple Isabelle prover which can find primfgairly simple the-
orems has been developed. Although performance is slow amy more complex
theorems will not be proven by IsaAuto there now is a goodf@iat for testing the
usefulness of the discovered tactics.

Ranks of Theorems Proved

B Proved [ | Not
Proved

10 7 on A NN

Theorems Proved

0
1 2 3 45 6 7 8 9 10

Figure 6.2: Number of theorems proved with increasing complexity. X-axis shows an
increasing complexity rank. Y-axis show the number of theorems proved or not proved,

respectively.



Chapter 7
Evaluation

This chapter presents an evaluation of each stage of théoghewent of IsaNewT along
with an overall evaluation and analysis of the results.

Generally, evaluation of tactics can only truly be carried through application.
It is to this end that the IsaAuto prover has been developeaverer, it is possible to
carry out some evaluation of the tactics through manuakospn. This is particularly
useful when used to compare the evolved tactics to the maie patterns discovered
by the early stages of IsaNewT. The merit of a tactics can thggd by:

1. Its applicability - how broadly can it be used?
2. lts effectiveness - does it advance the state of a proof?

3. Its mathematical interest - how significant a concept doegattern describe?

The third point listed is best evaluated by means of mansglaation.

A re-examination of some of the patterns discovered eadiperformed. Various
measures and examination techniques can be used to indmataseful later tactics
formed from these patterns will be.

Next, results from the tactic formation stage are presename manual evalu-
ation techniques along with some analysis of the measusesiased with this stage
in the same way as with the patterns is performed. This psopagicularly rewards
complex tactics.

Most importantly the integral part of the evaluation, theuks of application are
presented. A variety of results from different test setdregjaquivalent results from

IsaAuto without the new tactics are shown. These test sets@npletely separate
from the training sets used to generate the tactics.

95



96 Chapter 7. Evaluation

The chapter continues with a discussion of the informatiaimgd from different
forms of abstraction. In particular, there is a focus on tifermation learned which
could not be exploited at the application stage.

This chapter concludes with a summary of the results.

7.1 Patterns

Already presented in previous chapters were some resulisaomual evaluation of the
patterns within the chapter on pattern discovery. That aexled on here with some
discussion about how manual evaluation can provide bothesateresting features
and how the measures used at this stage can be adapted toertbadactics at a later
stage.

7.1.1 Manual Evaluation

An important stage in the development of IsaNewT was thesoediery of an existing
theorem. As has been mentioned several times before, sotie ahore advanced
theorems have been deconstructed into their proofs. Feordlaison, it was postulated
that finding a pattern or tactic which described the proof &hawn theorem would
provide validation that the technique was sensible.

Imagine a theorerfoo (say) that has been deconstructed to its proof, it can be seen
that every time this theorem is used as a rule within any gbheof the sequence of
steps which make up this theorem would appear. In this wayttegorem that is used
as a rule a reasonable number of times should appear as ephttee technique is
working as intended.

Indeed, an early example of this was discovered in the pattescovery stage.
As the proof trees have been linearised down the branchesoitly to be expected
that only one branch of a proof would be found except in thes¢hat a proof has
no branches. The perfect example of the latter case is ddratet by the simple
propositional rule:
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lemma (P — Q A (Q — R
— (P — R

apply (rule inpl)

apply (rule inpl)

apply (drule conjE)

appl y(drul e inpE)
apply assunption
apply assunption

apply (drule inpE)
apply assunption+
done

After applying IsaNewT on the theorem set covering basididigdorder Logic and
propositional theorems (in which this rule is used often$ fattern (given in figure
7.1) can be found. As can be seen, this describes the firstib@inthe proof given
above.

impl

¢

impl

¢

conjE

%

impl

%

assumption

Figure 7.1: Discovered pattern representing one full branch of a proof.

The probabilities assigned to each pattern can be used asla tguthe order of
preference the tactics should be given at the applicategestTo any tactic is attached
the highest probability associated with the patterns thahéd it.

That is, if patterng, ..., patterng, are the patterns that were combined to make the
tactictacthen thepattern such that this pattern had the highest frequency score in the
pattern formation stage is located. This frequency now besa weight associated
with tac, weight(tac). This measure is used to rank the discovered tactics so tiest o
that would be expected be more applicable from the pattescogiery stage will be
attempted first during application.
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7.2 Tactics

7.2.1 Manual Evaluation

Many of the tactics discovered represent expected combimgtfor example, the strip-

ping away of quantifiers is one set of steps that would be @gpeo occur together.

Others among the tactics discovered, while not expectedeasily understandable
when the proof steps and the rules they describe are exarnyneaind. This is also an
invaluable tool for examining the original occurrence o tiactics discovered which
turn out to score badly. By looking for the instances withie training set that these
patterns were discovered from, it often becomes clear whyrarsual combination

occurs. This also allows identification of particular comdtions which might only be

used in a small number of proofs - if this combination alwagsuws in sequence then
a small number may well be enough to identify this set as @&patt

7.2.2 Usefulness

To evaluate against a test set, some metrics to measureduadivactics have been
devised. By measuring the percentage of proofs in a teshaetitie tactic can be
applied to (only one count per proof, even if the tactic cdaddapplied multiple times),
an estimate of how useful the tactic will be can be discoveBgdusing a different set
of proofs for the test set than those used for the trainingtdstpossible to ensure that
features peculiar to the training set are not rewarded.riggonultiple applications in
a single theorem ensures that this usefulness quality teflee percentage of proofs
that a tactic can be applied to. For example, if a tactic cbeldpplied 10 times within
one proof but not to any other proofs at all, it would not be aywsgseful tactic in a
general sense. Allowing multiple occurrences within oneogpito be counted could
give a false reading in the case of a very large but unusualfprof course in real
applications, multiple applications within one proof aexformed.
The usefulness score is given as a percentage.

7.2.3 Quality

In the same way as above, a measure of quality can be takenidpytimg usefulness in
favour of longer and more complex tactics. This preventsridisination for two-step
combinations which may appear (at least in part) due to ahambis technique pre-
vents longer tactics from being penalised for being lessmmom It would be expected
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that a widely applicable long or complex tactic would be miateresting than a short
tactic of the same applicability.

This is measured with a score which describes a trade-offd®t the complexity
and the applicability. This score is calculated with:

complexity((no. of steps+ no. of operatorg/(100—Usefulnesy «100 (7.1)

This technique does not guarantee a good measure of qualitgeems to offer a
reasonable solution to an extremely difficult question.

The quality score has a minimum of 2 (2 steps, no operatodsaarsefulness score
of 1). The maximum is theoretically unlimited as it dependstioee number of steps
and operators within a tactic. For practical purposes, tctaan be imagined to have
an upper bound complexity of 50 (although it is extremelerar find any tactic with
a complexity above 30). This would give an upper bound to thedity of 5000. This
would require an extremely long and complex tactic whichpiglecable to every proof
in the test set. It is not difficult to imagine how unlikely thveould be!

Even choosing a score of around 50, it is unlikely that anti¢adill come close to
this as an upper bound, an ideal tactic would still fall sledthis mark. An extremely
complex tactic which was applicable to 10% of the proof cermpwould only score
around 30.

7.3 Some Examples

A large number of discovered tactics are available but onkekected few which

demonstrate a range of styles, expressivity and quality lveldiscussed. The ex-
amples given here were generated from an initial trainingp$®89 theorem which

yielded 197 patterns. These patterns were generalisedrtoa?2 tactics. Of the final

122 tactics, 36 were discarded as they had a borderline dre;yuand had not been
improved by the Pairwise Combination stage of IsaNewT.

7.3.1 A Typical Tactic

A fairly typical tactic would have 3-4 steps (rule names) ame& operator A, V, +,
macros are not considered as operators because althoughahenake discovered
tactics easier to understand and compare, they do not atié tmimplexity).
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7.3.1.1 Scores Gained in Formation Step

From the training set the examples have been chosen fronavtdrage scores would
be: 0.063 in the pattern discovery stage, and 7 for the gepsggramming stage (this
is always Pairwise Combination). The pattern discovergestaas a percentage score
([threshold,100]). The tactic formation stage score réléwe number of other patterns
subsumed (including itself). This score can|bg| wheren is the number of patterns
found in the pattern discovery stage (usually 80-110).

7.3.1.2 Manual Evaluation

The average tactic could be fairly easily analysed manwelgescribed with the pre-
vious examples. However, the number of patterns and tadtscovered makes this
prohibitive, and it is mostly useful to manually examine few at each end of the
scale, along with a couple of random examples.

Usefulness

The average tactic has a usefulness score of around 17%mEaiss that the average
tactic can be applied to around 17% of the proofs in the test Beis reflects well
on the tactics, suggesting that the thresholds have helpéd produce some truly
significant tactics.

Quality

The average tactic scores around 4.5 for quality. This guabkore for an average
tactic is excellent as it demonstrates that IsaNewT has eairhe bogged down with
two-step sequences. In finding tactics with 3 or 4 steps amekfator which are widely
applicable justification of the claim that the tactics disa@d are truly useful begins
to appear.

7.3.2 A Simple Tactic

A simple tactic could consist of two proof steps with no otbperators. For example:
[atomizeeq,if fl] (7.2)

As in the case above, simple tactics can often be studiedryteesee why certain
steps would be likely to occur together. Many of the simptdita found have been
examined, and although many are more obscure than this éeaitip often possible
to see why such small sets appear. In fact it is normally eeguch small sets are
combined together by an author to form a new rule in some nearent theory file.
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7.3.2.1 Scores Gained in Formation Step

Simple tactics such as that in (7.2) do not change from thgarai pattern discovery
stage, therefore the scores assigned in the initial foongrovide a good indication of
what other evaluation methods find. However, they suffehengenetic programming
stage as they are never improved and therefore never sukmwrather tactics. This
example had a probability of 0.092 in the original pattenmfation and a score of 1 in
the genetic programming stage.

7.3.2.2 Manual Evaluation

These simple tactics are ideal candidates for manual eN@tuas it is generally easy
to spot why small combinations go together.
For example, if:

atomizeeq: (X=y)=x=Yy (7.3)

and:
iffl : [ P=QQ=P|=P=Q (7.4)

Then the two can be used in conjunction to reduce an equislentwo (simpler)
subgoals involving implication using backwards reasoning
Usefulness
These short simple tactics generally score well in the usefs category, as their
simplicity means that they are less likely to be theory-#peand more likely to be
applicable in many situations. However, it can be the caseetven simple tactics may
appear often in the training set and not at all in the test set.

This example could be applied to 11% of theorems in the tést se
Quality
All simple tactics are penalised heavily in the quality measdue to their simplicity.
Even a high usefulness rating is not enough to score well here

This example gets a score of 2.2

7.3.3 A Complicated Tactic

Much more complicated examples exist, such as:

impCE [mg] v [[(@llE)+] A [notE]] (7.5)
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where the macrong is
[notE,assumption (7.6)

Which is represented pictorially in figure 7.2 for ease ofliag. Examples containing

impCE Ms
l notE
pd Y
m, allE+/\ notE assumptiol

Figure 7.2: Example of Complicated Tactic

all operators, such as this one, are rare, but there are naatigd which contain one
or more operator (not including macros).

7.3.3.1 Scores Gained in Formation Step

Complicated tactics such as this are more likely to suffemfra less generous score
at the pattern discovery stage. They do not normally scorwedshere as simpler
patterns. However, the changes gained in the genetic prognag stage allow this
score to contribute.

This example scored 0.006 in the pattern formation (the-besting pattern which
it subsumes) and 9 in the genetic programming stage.

7.3.3.2 Manual Evaluation

These are the trickiest candidates for manual evaluatiohissot always clear how
the steps link together. However, referring back to placethe original proof script
where this tactic could be applied is a good way of finding aaw tsensible these
complicated tactics are.

(All the rules associated with each proof step name are givappendix A.)
Usefulness
These complicated tactics generally don’t score very wethe usefulness measure as
they are too specific to be widely applicable.
This tactic could be applied to 2% of the theorems in the teist s
Quality
These complicated tactics score very well in the quality, tegen when they have a
poor usefulness rating.
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This example scored 6.1 as a quality rating.

7.3.4 A Good Tactic

Unsurprisingly, some of the best tactics across all the iocgeeire some of the combi-
nations that originally were expected. Within the domairHagher Order Logic (i.e.
logic-based theorems as opposed to math-based theorbmbgdt combination found
was:

[specexiE] (7.7)

7.3.4.1 Scores Gained in Formation Step

The best tactics naturally have the most common occurreaoethe start and so score
very well in the pattern discovery stage. However, they drenonot changed by the
genetic programming stage so do not receive a good scorbifor t

This example scored 0.49 in the pattern discovery stage andhe genetic pro-
gramming stage.

7.3.4.2 Manual Evaluation

The best tactics are often the most obvious or expected.cbnmdination strips quan-
tifiers from a subgoal before other steps are applied. Thisctaeems so expected
because many people strip away quantifiers when performigfe Dale Miller sug-
gested that people liked to transform subgoals into a quasial form before trying
to find a proof [Miller and Nadathur (1987)].

In this examplespecis a rule which allows you to choose an instantiation for a
universal quantifier andxLE strips off an existential quantifier by automatic instanti-
ation.

Usefulness
These type of tactics are very useful as expected.

This tactic could be applied to 51% of the theorems in thegetst
Quality
These common tactics score reasonably in the quality testpife often being short,
simple tactics, the high usefulness score can improve thitgscore. However, they
still often don't score nearly as well as the most complidaeamples.

This example scored 4.1 in the quality test.
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7.3.5 A Bad Tactic

However, along with the good tactics, also discovered amgesoad ones.

[leastdef,the equalityconjE, [[allE] V [orderantisyn)|,orderantisym  (7.8)

7.3.5.1 Scores Gained in Formation Step

Tactics such as this are a prime example of how patternsfgpaxia small set can
be discovered as commonly occurring patterns although dleeryot occur often in a
wider setting. This example scored 0.5 in the pattern foimnascore and 1 in the
genetic programming stage.

7.3.5.2 Manual Evaluation

This tactic appeared as a commonly occurring pattern frarirdining set but did not
appear once in the test set. The first stegastde f ” only occurs twice in the set and
so this tactic covers all occurrences. However, the pafiader scores patterns on
how often a combination occurs after a step in relation tatlmaber of times this step
appears.

This example is only used for proving properties aboesist hence the reason the
definition is used here and not often elsewhere.
Usefulness
These type of tactics score 0 usefulness.

This tactic could be applied to 0% of the theorems in the teist s
Quality
This pattern can still gain a reasonable quality score. Thisot necessarily a mis-
take, because although it may never appear again, thigisitueould occur with a
mathematically interesting combination of rules.

This example scores 7 in the quality rating. This is due tacamplexity and
demonstrates the imperfections of the quality scoringesystThis system works well
in the average case but can be confused by some extremes.

7.3.6 Overall Evaluation

The new tactics can be evaluated as a group using the usefldnd quality measures.
From the test set associated with the same domain as thakanepkes were taken
from, 32% of the theorems could have at least one tactic egpdi them. In this case
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there is no attempt to apply these theorems, simply a cosgrabetween the tactics
and the existing proofs of the theorems in the test set. Esmdf 5 examined to see
if any complete tactic matches any part of the proof of a theor This means that
32% of the theorems could use the tactics in order to find afptéawever, this does
not specify if extra information would be needed (such agimgation information) in
order to apply the tactics.

The manual analysis techniques provide a wide range of petisps. There is a
measure for intuitiveness, and the usefulness and quabtgs give new ways to rate
the newly discovered tactics. The measure that most attestiould be paid to must
depend on the intention for the tactic (usefulness vs gyalitd on the type of tactic
itis (simple vs complex).

In particular the manual step can rely on the other measoresrne extent. For
example, if a ‘bad’ tactic scores 0 usefulness but a respkctpiality, it may well be
worth re-investigating the reasons for these steps to bleapp

However, in terms of automation, this kind of tactic (evemiithematically inter-
esting) would probably not be required often enough tofystiheuristic inclusion.

Ultimately, the overall score given to a tactic with theseaswges is only worth-
while when given some kind of context.

7.4 Application

In this section the details of testing the tactics with IstAis described. The section
begins with a description of the choice of test theoremdluding the variation of
complexity and mathematical similarity.

The section continues with an explanation of the choice dids to go into the
prover as heuristics. Also described is how this processbeafully automated in
order that no human intervention is required at any stepatidgeneration.

There have been many questions over the abstraction useldoandifferent ab-
stractions can and will affect the performance of the finetita. The abstractions that
can be applied to the prover are compared and the robusthélss technique with
respect to the choice of abstraction is discussed.

Comparisons of IsaAuto’s performance with and without #aits is shown in a
number of graphical displays. Explanations are given festhresults and how they
validate the claim that IsaNewT can automatically formeilaseful tactics. The best
and worst case examples discovered are discussed alongwgtiested reasons why
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these extremes have been found.

7.4.1 Test Theorems

In the previous chapter IsaAuto was tested to discover whraipbexities of theorems
it would be reasonable to include in the test set. It was destnated that the optimal
solution appeared to be theorems ranked at difficulty 5 oeldwy the ranking system
described. The results shown in the previous chapter demaded that for a com-
plexity greater than 5, the prover would not be able provaughdheorems to make a
comparison possible and lower than 5 would not present adlifienough challenge.

At the initial stages of this project each Isabelle theorgwpglit in half randomly.
This means that the tactics have been trained on theorersilibin and exceeding
this complexity limit. This will have no bearing on the resylas the capacity for
complex theorems is more dependent on IsaAuto than the @feddactics.

The theorems ranked above 5 were removed to bring the teth seteasonable
level. The theorems were left in groups according to thertheey originally occurred
in. This allows for a gauge of what type of theorem each is @®positional logic,
natural numbers, set theory).

By separating theorems into groups (some of which overtap)discovered tactics
can be linked to the best set of test theorems.

7.4.2 Choosing the Best Tactics

Tactics trained on a set of theorems perform best when apitheorems of a similar
type. This can be seen in hand-built tactics as these areafigraeveloped with a
particular type of problem in mind. Also in human mathemstiechniques learned in
a particular discipline are likely to be used to prove simileeorems within the same
discipline. Therefore it seems likely that the discoveractits will demonstrate the
best success rate when applied to theorems similar to tstisét.

Tactics have been learned from a variety of theory groupsayMd these overlap
and so testing has occurred over a range of specificity. Fimele, some of the tactics
have been discovered from all the theorems in the test setftOL, others only from
the group theory subset mentioned previously.

To prove whether or not tactics truly will perform better onest set of theorems
which is mathematically similar to the training set thereaisomparison of results
taken from a range of theory choices later in this chapter.
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7.4.3 Different Abstractions

At previous stages there has been discussion regardingfteeedt options available
as to the level of abstraction used. Figures 7.3 and 7.4 shewverage performance
over a range of test theorem sets of the different abstrastiBach test set comprises
50 theorems; 20 at complexity 1, 10 at 2, 10 at 3, 7 at 4 and 3 &&a6h test set is
taken from a different type of theory, the tactics were tegiron different theorems
taken from the same type.

The abstractions represented are ‘rule name amlg; ‘rule name with direction’
rnwd, ‘class only’co and ‘class with directioncwd

Average number of theorems proved
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Figure 7.3: Performance of different abstractions. Rule name only: rno. Rule name
with direction rnwd. Class only co. Class with direction cwd X-axis shows increasing

complexity. Y-axis shows the average number of theorems proved over 20 runs.

As can be seen, using classes instead of rule names resalssgnificant increase
in the time it takes to prove a theorem and a slight drop in tinalrer of theorems
proved (mostly due to time-outs). This was expected and doesecessarily mean
that the inclusion of classes as a measure does not giveanssting information.

There is a very slight time improvement when the directiomgtuded along with
the rule name. Although this is beneficial, it is offset by &xtra information which
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Figure 7.4: Time performance with different abstractions. Rule name only: rno. Rule
name with direction rnwd. Class only co. Class with direction cwd X-axis shows

increasing complexity, Y-axis shows increasing time.

must be carried at every stage of this project. The time as®es not significant
enough to make this a necessary adaptation, but neithes sptice requirement oner-
ous enough to make this undesirable. It appears that thesaistractions are compa-
rable in terms of their suitability.

This section has demonstrated that although choice ofaadt&tn does of course
play a part in the applicability of the discovered tactite technique is robust enough
that some flexibility in the choice of abstraction can beratied but also that some are

consistently better than others.

7.4.4 Tactic Application results

This section describes the most important part of tactituewen. The results from
the prover with and without tactics are compared when tryingrove theorems taken
from the test set. Both the average time taken to prove aé¢neand the number of
theorems from the test set which the prover successfullyggrare compared.
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7.4.4.1 Comparison of Domain Specific Training and Test Set

The first comparison shows the average performance of sdet&cned from a narrow
domain of theorems (such as well-founded recursion), thigtheorems are also taken
from this narrow domain (from those reserved for the test SBtis is represented in
figures 7.5 and 7.6

Average number of theorems proved

ou

B with tactics

[ | without
tactics

roven

Avg no.

rank rank rank rank rank
1 2 3 4 5

Complexity of theorems

Figure 7.5: Average numbers of theorems proved by Isabelle prover from theorems
taken from narrow groups. X-axis shows increasing complexity, Y-axis shows the aver-

age number of theorems proved

As can be seen, when the tactics are trained from narrow grthgre is a large
improvement both in the average time taken to prove a theamsiin the number of
theorems proven.

Best CaseTlhe best case in this example is shown by a proof found vegkguby the
prover with tactics against a proof not found by the provehaiit. Examination
of this shows that the quick proof is almost entirely dessxiby one single tactic
(only two steps in this proof are not represented by thedgacti

Worst Case In these test sets, no theorem proved by the prover withatictais
failed to be proved by the prover with the tactics includetlisTmeans that the



110 Chapter 7. Evaluation

Average Time Taken to Prove a Theorem

AN

with tactics N without tactics

rank 1 rank 2 rank 3 rank 4 rank 5

Average time taken (proportion of time allowed)

Complexity of theorems

Figure 7.6: Average times taken to prove a theorem by Isabelle prover from theorems
taken from narrow groups.

tactics have not slowed the prover down so much that timemretsalled upon.
This may not be the case for more complex theorems but thaecerisalistic way

to test this at present. However, there are a few examplesevwhe proof by the
prover with tactics takes significantly longer to find. Exaation of one of these
cases shows that a long proof was found but that no tactic pg@igcable at any

stage, the extra time was taken because each tactic mustéd &very time the
subgoals change.

7.4.4.2 Comparison of General Training and Test Set

Next to be compared is the average performance of tactiosdddrom a broad domain
of theorems (such as Higher-Order Logic), the test theormmslso taken from this
large group (from those removed for testing purposes). Ehispresented in figures
7.7and 7.8

As can be seen, when the tactics are trained from broad gtbeps is a smaller
improvement than obtained from the narrow groups. Thisrefiresents a noticeable
improvement both in time and in number of theorems proved.

Best CaseThe best case in this example is shown by a proof which conthiree
separate tactics at different stages.
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Figure 7.7: Average numbers of theorems proved by Isabelle prover from theorems

taken from a broad spectrum of theories.

Average Time Taken to Prove a Theorem
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Figure 7.8: Average times taken to prove a theorem by Isabelle prover from theorems

taken from a broad spectrum of theories.
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Worst CaseThere is a larger set of discovered tactics in this exampiethare are
the rare occasions where a proof solved by the basic prolemfaen the tactics
are added. However, this is rare (not more than 1 in 500 thesye

Defining the thresholds - retrospectivelhese measures were used on tactics discov-
ered from patterns with a range of significance threshotdsas discovered that
the best results were obtained when the threshold was sstteagae around 1
pattern for every 10 theorems. This generally meant thathtteshold should be
set at around 0.002. However, in order that patterns whichladviater be com-
bined into tactics are caught, a setup with a lower thresbb@d001 was chosen.
Any tactics which had not been improved (in the tactic foiorastage) and had
an initial probability (from the pattern discovery stagd)o@tween 0.001 and
0.002. This approach gave a very slight improvement butigemmore variety

of tactics to work with.
7.4.4.3 Specific Training, General Test

Next to be compared is the average performance of tacticsdddrom a narrow do-
main of theorems (such as proofs about hyperreals), thdhestems this time are
taken from a large domain. This is represented in figuresmd97al0

Average Number of Theorems Proved

¥ with tactics
B without tactics

Avg no. of theorems proved (out of 50)
\*)
(6]

rank 1 rank 2 rank 3 rank 4 rank 5

Complexity of theorems

Figure 7.9: Average numbers of theorems proved by Isabelle prover from theorems
taken from a broad domain of theories with tactics trained on a narrow domain of theo-

rems.
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Average Time Taken to Prove a Theorem

h with tactics \without tactics

rank 1 rank 2 rank 3 rank 4 rank 5

Complexity of theorems

Average time taken (proportion of time allowed)

Figure 7.10: Average times taken to prove a theorem by Isabelle prover from theo-
rems taken from a broad spectrum of theories with tactics trained on a narrow set of
theorems.

In this example there is still an improvement overall, butas been reduced to a
very slight improvement. It could be imagined that this i€digse most tactics will
only be applicable if the test theorem is also from the nargoaup. This setup was

not expected to provide promising results but it was exachinerder to be thorough
and consider every combination.

Best CaseThe best case in this example is shown by a tactic which iSGgigpé on
a number of occasions to theorems which did not come from dn@w group.

Worst CaseThere are a number of cases where no tactics are applicalsie, there
is at least one example of a tactic which is never used.

7.4.4.4 General Training, Specific Test

Next to be compared are the average performance of tactiosdd from a broad do-
main of theorems, the test theorems this time are taken froarr@w domain. This is
represented in figures 7.11 and 7.12

In this example a better improvement can be seen than in thhewas broad
example. This is because tactics learned from a broad speetill have applicability
across that spectrum.
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Figure 7.11. Average numbers of theorems proved by Isabelle prover from theorems
taken from a narrow group of theories with tactics trained on a broad spectrum of theo-

rems.
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Figure 7.12: Average times taken to prove a theorem by Isabelle prover from theo-
rems taken from a narrow group of theories with tactics trained on a broad spectrum of

theorems.
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Best CaseThe best case in this example is shown by a few tactics wheehvately
applicable (some can be applied in over 60% of theorems)

Worst Case Again, there are a number of theorem where no tactic is agipliéc
throughout the proof. It can be imagined that this is becdbese theorems
require a particular (e.g. mathematical) technique.

7.5 Other Abstractions

In this section some of the information gained that has nehlmpitalised on is ex-
amined. Potential uses of this information is discussed.

Two main pieces of information have been lost (describeliezavhen discussing
different possible abstractions) :

1. Classes

2. Main Rule Operator

While it has not been feasible to apply either of these twagsef information in
the application stage, they still say something intergstinout the way that people do
proofs.

The abstraction containing class information demonddrtitat most classes appear
in clumps. In particular, when fed through the pattern disep stage and then the
tactic formation stage tactics of the type

[(rewrite)+,(quantifier elimination)+,(rewrite)+,(sipfification)+]
are common. While this has no direct bearing on the IsaNewihoa®logy it de-
scribes a method which could be used as a heuristic in praotsevhen it is desirable
to produce a proof that would be more intuitive to a human.

Similarly, examining the type of patterns found when inehgithe main operator
information yields interesting results. In this case ddithore examination is nec-
essary in order to spot the patterns. If the operators anepg together (algebraic,
guantifier etc.) then a tendency for operators within theseigs to be clustered to-
gether is noticeable.
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7.6 Summary

This chapter has described the culmination of IsaNewT aadtkerall performance
of the discovered tactics. As a first attempt at providing ahoe for automatically
generating tactics, it was never to be expected that tastiesd be produced which
could be compared to those produced by humans. Insteads ibden claimed that
IsaNewT provides a method for automatically producing uls&ctics. The results
given in this chapter demonstrate that fact.

Some of the information gained from different stages of #utit discovery process
are discussed along with discussion of the use of differbstractions. Many of the
abstractions suggested cannot be directly tested, andsottiech have been tested
did not directly improve the usability of the discoveredties. Similarly, the manual
evaluation of the patterns and tactics provides an integegttellectual exercise but
does not improve the tactics in any way (but it was not inteneteexpected to). Some
of these techniques used to rank the tactics could possébdapted but the whole
aim is to avoid any kind of necessary human interventionlat al

It is the section on application which really demonstratesworth of the tactics.
Although there are some individual theorems that take lotmprove with the tactics
and (rarely) there are cases where this extra time will tasuh theorem not being
proved, it is important that no test set has resulted in amativéecrease in perfor-
mance.

Every single test set showed an average increase both inemsnol theorems
proved and in the average time taken to prove a theorem. Shisisurprisingly
more pronounced when the field is narrower. This undoubtpdbyes that the tac-
tics IsaNewT has automatically produced are indeed useful.



Chapter 8
Conclusion

This dissertation set out to provide a method of automdyiéatmulating tactics which
would prove to be useful in discovering new proofs. IsaNewffifed new tactics from
commonly occurring patterns found in the large corpus o$ixg Isabelle proofs.

These newly discovered tactics were tested using a numbeetifods, most im-
portantly a naive automatic prover formed within IsabellsaAuto. This automatic
prover allowed an evaluation of the new tactics’ usefulnéssomparison of the num-
ber of proofs completed and the time taken to complete sumbfpprovided a measure
of usefulness which allowed the tactics to be compared agaaive search at the rule
level.

The commonly occurring patterns discovered in the Isalwgltpus have provided
a good base from which - with Genetic Programming techniguegood selection
of new tactics have been formed. Evaluation has demondtthss these tactics can
certainly be described as useful. Using these new tactienasd to search (for a
proof) improves results and efficiency in all but a few cases.

8.1 Summary

This project required a number of early decisions such ashioéce of prover from

which the proof corpus was used, along with the level of aosimn that should be
used. A choice was made to use the Isabelle interactive gyadém as it satisfied all
the necessary criteria:

1. Alarge proof corpus.
2. The proof corpus stored in electronic form and easily ssitxe.

117
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3. Avariable specificity.
In chapter 3 we discussed in detail a number of possibleadigins such as:

1. Rule name only.

2. Rule name with direction.

3. Class of rule.

4. Class of rule with direction.

5. Main proof operator.

6. Rule name with subgoal information.
7. Main proof operator with direction.

8. Rule name with position in proof.

Evaluation of the different abstractions show that of teiestion, ‘rule name only’
or ‘rule name with direction’ are the two most viable optidosthe purpose of creating
new, useful tactics. However, some of the other abstraatjmions have provided
some interesting information. This is typified by the apaiion of the ‘class of rule’
abstraction which clearly demonstrates the preferenceasf@uthors for grouping
certain classes of steps (such as simplification) together.

The abstracted proof corpus (mainly the ‘rule name onlyi@ptwas data-mined
to find commonly occurring sequences. In searching for a ateluitable to use for
this process an examination was made of what is meanblbymonly occurringFor
IsaNewT it was appropriate to define@ammonly occurring patterto be a sequence of
rule steps which occur together with a probability aboveec#ped threshold. Variable
Length Markov Models are a probabilistic process which dbscthe probability of
an event occurring after a given sequence of events. Theedwoe was well suited to
IsaNewT.

No pattern discovery technique was found that could copk thie tree structure
of the proofs, so linearisation down the branches was pmddron the proofs. The
loss of connection across the branches was deemed to be ahigind a method to
reconstruct as much information as possible was given irgéreetic programming
section of the dissertation.
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Experimentation with the (mathematical) properties ofgh@ofs used in the train-
ing set and with the threshold we used to dersimificanceallowed the process of
producing a good pattern set to be refined. Patterns trainexdset of proofs with a
similar mathematical background produced better tactiesadl. In order to avoid the
restrictions caused by requiring proofs to be preseledad,to keep the entire pro-
cess automated, methods of automating this process wemngiree@ Like most other
theorem provers (automated and interactive), Isabelbastiag proofs are stored in
grouped theory files, each theory file containing a group milar theorems. Similar
theory files are grouped together in named directories. Aikigrchy allows use of the
existing grouping as the preselection criteria. Althoudyetter preselection could no
doubt be made with careful manual selection, the given nietlatisfies the criteria of
being completely automated.

The third stage of IsaNewT involved the formation of tacficsn the discovered
patterns. The language used to describe our tactics alléovédur new operators to
be introduced at this stage:

1. Macro
2. V branching
3. A branching

4. + repetition

As the most cursory examination of any commonly occurringggras shows, they
can be combined in a number of ways, even when there is noss&adly one ideal
set. If a patternR1) could be combined with anothB to formP3 or with a different
one P4 to produce a different new tactié®, but bothP3 andP5 perform equally
well in tests, then there is no way to know which would be thst lmhoice for the
long term and so there is no ideal solution. In order to fomtrikhe best tactic set it
was desirable to use a technique which would allow increalémiprovements which
could be evaluated at each step. Genetic programming tpobsprovide exactly this
advantage along with the benefit of having a solution at eitergtion, removing the
need to wait on an ideal solution which may not exist.

In many applications the random elements of GP are one of #ie advantages
to this technique. For the purposes of forming new tactiomfthe existing patterns,
which has a well defined goal, it was more efficient to have ectidd approach. To
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this end, the Pairwise Combination technique was develofgdiescribed in chapter
5, this technique has many similarities to the traditionBl Bowever, results show it
produces patterns which are directly connected to thalhjtiliscovered patterns - this
is sometimes lost in the random mutations of more traditi@fa The PC technique
also allows for a concrete aim towards reforming the brasdbst in the abstractions.
All significant links are rediscovered to some extent.

PC, the directed genetic technique is much more efficientsaredessfully com-
bines the discovered patterns into compound tactics.

The final stage of the IsaNewT methodology involves testimgrew tactics to
discover if they are in fact useful and applicable in a nundfecases. To this end
IsaAuto, an automatic prover within the Isabelle systens developed. This prover
was developed to search exhaustively through the avaisbpes to search for a proof.
No sophisticated heuristics or proof techniques were usddmthis prover, but the
intention was not to develop a good automated prover, butdeige a platform for
testing the tactics.

The tactics performed well when added as a heuristic to tteaated prover. This
is demonstrated fully in chapter 6. This testing demonstréihat using tactics learned
from a preselected set provides better results. In additigoroducing patterns which
have a higher probability in the patterns discovery stage tactics performed much
better when used against a test set of similar theorems. guki hierarchy within
Isabelle as described earlier, test sets can be formedafeims similar to the ones the
tactics were generated from.

Using such a selection of tactics and test set, the discdvargics perform well
across the board. On average, the automated prover withd¢ties added outperforms
the basic prover in both time taken to prove theorems and timeber of theorems
proven. Although search time takes longer when the tacéitdd be useful, this is
outweighed overall because a successful application oftec teemoves the need for
the search for a number of individual steps.

This application demonstrates that IsaNewT’s newly disced tactics can indeed
be described as useful. They are applicable in a varietyta@dsons and do not require
a prohibitive level of search.
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8.2 Critique

Many of the decisions made during the course of this projerevonly one of a num-
ber of available alternatives. For example, the choice abédie as the foundation
prover was made in spite of a number of alternatives whichldvbave been suitable
for NewT. There is no reason why the techniques and pringiplghin this project
could not be used with any other prover. Indeed, any provechvbatisfies the initial
constraints would be suitable.

In this case, all that would be required to adapt our systeamtther prover would
be a formatter to parse the existing corpus into a suitaliadbfor the pattern discov-
ery process. The tactic applicator here is presented fduaiian purposes, a different
system could use the tactics in any way it wished. This pesot dependent on
the rule names specific to Isabelle, nor does it depend oruteaenames being of the
Isabelle structure. Each “rule step” is read in as a strintigt point. Therefore, if
the corpus of a new proof was abstracted to a suitable prepffstrmat, it could be
applied directly to the tactic formation system.

It would have been desirable to apply NewT to a number of gthevers in order
to check the robustness and ensure that the successfukresalvn with the Isabelle
automatic prover would be reflected with other provers buetdid not allow, this is
planned as future work.

A variety of abstractions were tested, and one was seledtezhywroduced the best
results for tactic discovery. However, NewT’s techniquesloot allow for any sub-
goal information (such as instantiation information).|uston of subgoal information
would allow learning of patterns that are used in specifigagibns as opposed to just
those which are used frequently. Subgoal information calsd be used to indicate
when the tactics should be applied, this would remove someagssary search when
attempting to apply our tactics.

In discovering patterns, a technique of linearisation heenbdevised and used to
circumvent the problem of pattern discovery within tre@istures. Ideally a technique
which learns directly from the tree structures would be ugeithough no such tech-
niques had been found, some suggestions have since beeranthdes planned to be
carried out in future. However, during the tactic format&tage, any patterns which
match up to a branching point will be joined together. Altgbiuthis means that a
pattern may reach a point where several branches must bercfrosn, it also means
that any significant links across branches will be regroujpggther. As such, these



122 Chapter 8. Conclusion

connections may be applied together during the applicatiage.

In applying the tactics, they have been tested with a naigseckemethod. This
type of method is extremely inefficient and so although the teetics perform well
in this setting it is doubtful that they would perform wellagst any automatic prover
which uses more sophisticated techniques. It would bedsterg to examine their
performance when added as an extra heuristic to a more swplesl prover.

8.3 Related Work

Before this project the Leafdmatic project was the most similar attempt to automat-
ically formulate tactics. In chapter 2 we described how kerdamnik, Pollet and
Benzmiller utilised the technique of least general gdisatégon to learn new proof
methods for various domains.

Their project requires that a family of similar proof be datly hand chosen. Al-
though we have previously described a method to autombtigedup proofs together
in order that the resulting tactics will be more successhig grouping is still far more
general than that used by Le&matic. Unlike IsaNewT, the Leafimatic approach
learns prooimethodsvhich encompasses preconditions, postconditions andia tac
order to construct proof plans. Their higher-level apploawreases complexity re-
sulting in the requirement that every proof to be learnt frmnst be an instance of the
pattern.

The IsaNewT approach learns patterns from a lower-leveiiwithe proof, so no
additional information is required and learning can be @enied from any diversity
of proof corpus. Restricting the proof scripts to specifienddns is not necessary, it
simply provides a better quality of final tactic. In any caagsigning proofs to domains
as suggested can be fully automated.

Both Silver (1984) and Desimone’s (1987) work with precaiodi analysis learn
new proof steps which can be equated to learning new tacfiles.reuse of existing
proofs in both cases has a direct relation to the work presehére. However both
Silver and Desimone generalised single successful proadsder to develop an new
method. IsaNewT differs significantly from this approachtiat a broad range of
proofs are examined in order to find similarities which caertlbe reused.

Recently, Alison Mercer has written an extension to IsaNewilch uses the pat-
terns discovered in the initial stages of IsaNewT as a priimea recommender sys-
tem within Isabelle. Her work (PGTips) is integrated inte froof General [Aspinall
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(2000)] scripting system to provides users with a ‘recomdheption while they write
a proof. At the beginning of an Isabelle theory file, the useismnput any depen-
dencies on existing theory files. This dependency is usedléztsthe set of patterns
which should be used (the patterns are grouped accordirfgetedts of theories they
were trained on).

When a user reaches a point within a proof where they requiee@nmendation,
the click Mercer’'s ‘recommend’ button in the Proof Generahaow. This button
prompts PGTips to match the commands previously used inria po any patterns
existing in the pattern set. Up to three patterns with théésg probability are chosen
and their subsequent steps are returned as a recommendation

Having Mercer’s project developed with the patterns digced here is an ideal
usage of IsaNewT. It would be more complicated but intemgdth see a similar system
which used the final tactics discovered in our project as @lmput.

8.4 Further Work

The IsaNewT methodology provides an original way to autdcadly produce tactics
which can be useful in a number of situations. There are a eambimprovements
and extensions which would be interesting.

Firstly, IsaNewT uses only proof step information. Thereusrently no method to
include information from the subgoal. This could be a usgfcdlusion to the tactics. It
would allow more specificity about the occasions when thastcs should be applied.
Inclusion of subgoal information would also allow learniafypatterns of the form
‘when the subgoal containg then applyy rather than the current ‘ia thenb are
applied, then applg’. It may be possible for techniques which allow relationshio
be quantified to be utilised to this affect.

Inclusion of subgoal information would have the further &ktof allowing termi-
nating conditions for the final tactics. This would allow aariehment of the current
grammar, permittingf ...thenandwhile statements. In particular, this would allow an
enrichment of thelusoperator by giving it termination conditions.

Discussed in the critique was the desire to extend NewT torapass other theo-
rem provers. Provers such as COQ, NUPRL, PVS, Mizar and LE®GGIdvbe ideal
candidates for this extension. Correctly formatting thepos from any one of these
would allow direct application of NewT.

In applying the IsaNewT techniques to other provers the eamrid be opened to
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extending Mercer’s recommender system to be used with thesers also. Using
the finished tactics as a basis for recommendation instedweohitial patterns would
allow a more sophisticated and robust recommendation ebhddercer’s system cur-
rently provides 3 recommendations when a request is madien(the patterns that
form these recommendations would be combined into onectattihe tactic forma-
tion stage. A good extension to both projects would be torekthis recommender to
utilise the finished tactics in other provers along with kléh

Many sophisticated automated provers exist. It would besheial to examine
the possibilities for incorporating tactics discoverethgsNewT into a sophisticated
hierarchy. This would allow further testing of the qualit the tactics along with,
hopefully, providing another concrete usage.

A final extension to IsaNewT would be to learn from more cowgied tactics.
At the current stage, it is reasonable to test the tacticenaga basic prover setup
as the tactics were learned from such low-level proof stépsiould be hoped that
if NewT’s techniques were applied to a corpus consistingarhplex tactics that it
would be possible to learn in turn even more complicateddsctFor example, it
must be considered that if NewT is applied as it stands, theryeavailable position
in a proof is replaced with the applicable tactic in placehs tule name sequences,
there would be a good basis for reapplying the tactics disgogrocess. In this way
it could be possible to incrementally increase the compjexfithe corpus, and hence
the tactics being discovered.



Appendix A
Glossary

V branch An V branch in a tactic can be read as @R doy’. Described fully in
chapter 5.

A branch An A branch in a tactic can be read as “lto subgoal 1 AND THEN do
y to subgoal 2”. These are designed to reflect the originlatanches in a proof
structure. Described fully in chapter 5.

crossover Creation of two new programs (or tactics) by combining rantfochosen
parts of two existing programs. Described fully in chapter 2

+ repetition The + operator reflects a “1 or more” repetition. Described fulty i
chapter 5.

abstraction We have produced several viable abstractions of the Isapedbf corpus.
Each abstraction contains the information from the corfat tve use as an
input to our pattern discovery process. Each abstractidessribed in detail in
chapter 3.

Automatic theorem prover A fully automated theorem prover is one which requires
no human intervention to find a proof of a mathematical thewore

class For the purposes of abstraction, we have in some cases grabpeules into
classes. These describe the type of rule used, such asfsatpn rule, defini-
tion, rewrite etc.

direction Proofs in Isabelle can be formed either forwards or backwamirection
denotes which way the rule should be applied.
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drule, rule, erule, frule These are the directional instructions used in Isabellefpro
steps. They are described full in chapter 3.

Genetic Programming (GP) Genetic Programming is an evolutionary technique pio-
neered by John Koza which is used to incrementally adapt alatpn to satisfy
a specified criteria. It is described in detail in chapter 2.

Interactive theorem prover An interactive prover is a theorem prover which is often
designed to be closer to a proof assistant. At each stage enuseinput the next
proof step(s) and the prover then ensures that a correct pasdeen generated.

macro A macro (ny) is used to denote a common subtactic as shown in figure 5.12.
Described fully in chapter 5.

mathematically similar We define the notion of mathematically similar to describe
theorems which prove facts in a similar domain. These candrewap of theo-
rems such as theorems on geometry to the basic theoremsloé-gder Logic.

Pairwise Combination (PC) Pairwise Combination is our own GP process inspired
by evolutionary programming and GP in particular. It is désed in detail in
chapter 5.

pattern Patterns in this project are commonly occurring sequentgsaof steps.
These can also be thought of as simple tactics.

proof step A proof step for our purposes is based on our abstractionortains the
information in our abstraction which describes the traasifrom one subgoal
to the next. This is usually a rule name or a rule name with treetion it should
be applied, although for some abstractions it may just beldss a rule has been
assigned to.

reproduction Copying of an existing program into new population. Desadilfully
in chapter 2.

rule name The rule name is simply the name of the rule applied within@opstep.
In Isabelle each rule name is the name of the theorem, defiroti axiom that is
applied at that point.

sequenceA sequence is a sequence of proof steps. These are potexiteiys but we
do not yet know how frequently they occur.
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significance threshold The significance threshold is probability above which agratt
in the pattern discovery phase is deemed to be significanscried fully in
chapter 4.

split token The name given to a proof step which results in a branch.

tactic A tactic is a function which furthers the state of a proof. Vée tactics to mean
a combination of rule steps. Our tactics can be anything f@imple sequence
of proof steps to a more complicated arrangement of progissiéhich contain
operators such as andVv branching.

Theory We use ‘theory’ in the Isabelle sense to mean a (usually $roallection
of mathematically similar theorems. In Isabelle, everydimuser inputs new
theorems, he must group them in a new theory file.

Variable Length Markov Model (VLMM) A Variable Length Markov Model is a
probabilistic technique which models sequences or varigngth and assigns
them a probability.
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Appendix B

Isabelle rules and theorems

B.1 Rule definitions
and def: “PAQ=VR (P—-Q—R — R’

all _dupk: " [| Vx. Px; [| Px; VXx. Px|]] = R]|]] = R

alleE: ** [| VX. PX;, Px = R|] = R’
alll: “*(I'x. Px) = Vx. Px"’
atonize eq: ‘‘x =y =x =y’
atomze_all: " (I!'x. Px) =V x. Px"’

assunption unifies the subgoal with an assumption
box_equals: *‘[| a=Dh; a=c¢, b=d] = c=4d"
ccontr: **(-~ P = False) = P’

conffE “‘[| PAQ [| P, Q] = R|] = R’
conjl: “*[| P, Q|]] = PAQ’

contrapos_nn: ‘‘[| - Q P=Q|] = - P’
disjd: *“( Q=P = PV Q’

disjet *'[| PYVQ P=R Q= R] = R’
disjll: "“P= PV Q’

disjl2*'Q= P v Q’

exlE “'[| I x. Px; !!x. [| Px; Vy. Py —y=x|] = R|] = R’
Ex def: ““3P=VQ (VX. px — Q — Q'
exB: "'[| Ix. Px; !IIx. Px = Q|] = Q’

exl: ““Px = dx. Px"’
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iffl: "'[| P=Q Q= P|] = P=Q"
inpl: *""(P—=>Q —= P — Q@

impCE: “‘'[| P—Q - P=—=R Q= R|] = R’

Least _def: ‘‘Least P=THEX. PXx A (Vy. Py — x <y)’

m: “'[| P—Q P] = Q’

note “‘[| =P P|]] = R’

notl: **(P = False) — -~ P

order_antisym ‘‘[| x <y; y <x|] = x =Y

sonel_equality: “‘[| 3 x. Px; Pa|] = (SOME x. Px) =a"’
sonel: ‘‘Px = P (SO x. Px)"’

spec: 'V X. PXx = PXx

ssubst: *‘[| t =s; Ps|]] = Pt

swap: ‘‘[| - $P 2%, - $P1$ — P 2% |] — P’

sym ‘'s =t =1t =¢

the_equality: *‘[| pa !!x. Px = x=2a] = (THEx. Px) = a

trans: “‘[|r =s; s=t|]] = 7r =t"’

B.2 Some complete proof scripts

| enma box_equals:"[| a=b; a=¢; b=d]|] = ¢ =d"
appl y(drul e trans)
appl y(assunpt i on)
appl y(rule trans)
appl y(rule sym
appl y(assunpt i on)
appl y(assunpt i on)
done

lemma conjl:"[| P, Q|]] = PACQ
appl y(unfol d and_def)

apply(rule alll)

appl y(rule inpl)

appl y(drul e np)

appl y(assunpt i on)

appl y(drul e np)

appl y(assunpt i on)

appl y(assunpt i on)

done

P i
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lemma contrapos_nn: ‘‘[| Q P= Q|] = P’
apply (rule notl)

apply (rule_tac P=Qin notE)

apply sinp

apply assunption

done

lemma disjl1:"P = P v Q
appl y(unfold or_def)
apply(rule alll)

appl y(rule inpl)

appl y(rule inpl)

appl y(erul e np)

appl y(assunpt i on)

done

lenma exl: '* Px = I x. Px.’
apply (unfold Ex_def)

apply (rule alll)

apply (rule inpl)

apply (erule allE)

apply (erule np)

apply assunption

done
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