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Abstract

GENR8 is an architect’s design tool that generates surfaces. It is powerful and in-
novative because it fuses expressively powerful universes of growth languages with
evolutionary search. Unlike traditional CAD-tools, GENR8 can create new designs
and help the user to come up with new ideas.

Developed via the API of Alias|Wavefront’s Maya, it combines 3D map L-systems,
that are extended to an abstract physical environment with evolutionary computa-
tion. GENR8 uses Grammatical Evolution and a BNF of the grammar to specify the
grammar that governs the growth. GENR8 addresses key issues arising from exploit-
ing evolutionary adaption within a creative interactive tool framework. EAs typically
adapt ‘off-line’ but GENR8 is designed to sensitively accommodate the nature of the
back and forth control exchange between user and tool during on-line evolutionary
adaptation.

GENR8 addresses how users may interrupt, intervene and then resume an EA
tool. It also forgoes interactive subjective design evaluation for computationalized
multi-criteria evaluation that permits wider search in shorter time spans.

Thesis Supervisor: Una-May O’Reilly
Title: Research Scientist
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Chapter 1

Introduction

1.1 Background and motivation

Evolutionary algorithms have traditionally been used to solve optimization problems.

However people have tried to use them for creative purposes, for instance to generate

artificial life forms [28] or as a design aid. Lately they have been used for evolutionary

art [29] [12], helping the artist to create new forms by exploring a wide range of forms.

In evolutionary design (ED), focus is less on aesthetics, but more on the functional

and engineering perspectives of creating artifacts. Bentley gives an overview [3] and

a description of evolutionary design projects [1].

This thesis is in the field of emergent design; it is an area that combines evolu-

tionary computation (EC), artificial life (ALife) and design. The concept of the field

is to combine the generative and combinatorial aspects of ALife with an evolutionary

search component. This allows us to generate novel designs bottom-up, combining

primitive elements in a non-linear fashion.

Emergence can be defined as (there is no formal definition) ‘the whole is more

than the sum of the parts’. This means that we can not predict the outcome of the

system just by studying the mechanics and constituents at the local level. The most

striking example is perhaps the human brain. Each brain cell is in itself incapable of

thought; it is an emergent property of the brain as a whole.

The thesis is part of the work of the Emergent Design Group at MIT [7]. It unites
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Figure 1-1: The field of Emergent Design. It is the union of EC, ALife and design.

architects from the School of Architecture and Planning and computer scientists from

the Artificial Intelligence Lab (and visiting students from Chalmers). The architect

members of the group embrace a process of design that stresses emergence. The task

of the computer scientists is to develop new software tools that allow the architects to

explore new designs with the aid of emergent techniques. These investigations entail

such different realms as morphology, material, structure and program.

Developing this kind of software is obviously a challenging task in itself for a

computer scientist, but it also entails some interesting points within the computer

science (CS) field. Complex systems and ALife have previously been used mostly

in pure research, to investigate various phenomena, like flocking [21], plant growth

[20] and chemical reactions. With GENR8 we are trying to use these techniques as

a foundation for a software application. GENR8 solves its task, creating surfaces,

with a complex systems’ approach. This is a necessary step in order to bring complex

systems out of the world of academia and use them as a basis for new technology,

where they have great potential.

More information and the latest news about GENR8 (including the tool itself and
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the source code) can be found at the GENR8 Official Website

(http://www.ai.mit.edu/projects/emergentDesign/genr8/).

1.2 Purpose

One purpose of this thesis is to create a tool that is useful to a designer. It is certainly

beyond the scope of this thesis to create a tool that takes all aspects of architectural

design in consideration. The focus of GENR8 is on growth, and in particular we

want to mimic biological growth. Architects are intrigued by natural form and they

find organic qualities in design very compelling. Furthermore, the architects desire a

growth process that takes place in a specific environment and reacts to the elements

of the environment.

To narrow it down even further, we decided to create a tool that generates surfaces.

Surfaces are obviously very useful to a designer and they can be used in a wide range

of contexts; from buildings and cars to handbags and remote controls.

1.3 Description of GENR8

GENR8 is a surface modeling tool that simulates organic growth of surfaces in an

environment. We found map L-systems to be suitable model for this kind of growth.

However, we had to extend the map L-system model [20] to make it work in three

dimensions, and we have added environmental elements that influence and interact

with growth. The details of GENR8’s growth process will be described in Chapter 2.

The universe of possible surfaces described by extended map L-systems is over-

whelming and it is impossible to explore by hand. It is also very hard to construct a

map L-system grammar by hand and we needed to automate the process; so that a

designer can merely look at the final result, the surface. To search the universe of pos-

sible surfaces, GENR8 uses evolutionary computation. Using evolutionary algorithms

(EAs) has two benefits; the first is that the parallel population based search gives us

multiple solutions to the design problem. This is a feature that was requested by the

17



designers; they do not want just one solution, but several alternatives on the same

theme. Evolutionary algorithms also accommodate discovery within the extremely

large universe of surfaces; it is selective and explorative yielding adaptation and dis-

covery. GENR8 uses an EA called grammatical evolution (GE), it will be discussed

in Chapter 3.

Yet, EAs also have short-comings. The fitness evaluation is a particularly tricky

part for creative evolutionary systems. In GENR8 we forgo a subjective user inspec-

tion and approach via ranking an automated solution that must embody quantitative

criteria. Fitness evaluation will be discussed in Section 4.3.

Another issue for evolutionary design tools is control of the creative process. Who

has control, the tool or the user? The traditional way is to set up the evolutionary

run, let it run to completion and then give the user access to the final output. How-

ever, architects desire more control of the creative process. They want to be able

to direct the system and have it react to their changing desires at any point in the

design process. In Section 4.2, we discuss how user tool control is negotiated and

implemented in GENR8.

If GENR8 is to have any practical value to a designer it must fit into the architects’

tool box. Architects have a wide range of tools that can be used for different purposes

and in different stages in the design process. In Section 4.1 we elaborate upon how

GENR8 fits a niche within a more comprehensive design process.

1.4 Related work

In Table 1.1 we present an overview of some of the work that is related to GENR8.

We focus on three fields, architecture, evolutionary design and plant modeling. We

investigate how EC, environmental influence and developmental models have been

used in these projects. The common trait for these projects is that they focus on

creating designs, plants, creatures etc.

The table column headers are:

Research project The name of the project or the person(s) behind it.
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Application The field that the work is done within.

Level of interactivity How much can the user interact with the tool? There are

three levels: none, interactive evolutionary computation (IEC, described in Sec-

tion 4.3) and interruption, intervention and resumption (IIR, described in Sec-

tion 4.2).

Influence from the environment Does the tool create its artifacts within a simu-

lated environment that affects the outcome and is it reactive to the environment?

EA Does the tool contain an evolutionary search component?

Model for development Is there a developmental model (eg L-systems) that gov-

erns the creation of new designs?

A short description of each of the related systems follows:

MoSS [31] [18] is the predecessor of GENR8. There is no evolutionary search, the

environment is more restricted and it does not have any user interaction.

AgencyGP [19] is another project by the Emergent Design Group. The purpose

of the project is to develop a new tool for designing office spaces for a non-

hierarchical organization.

Broughton et al [5] use ordinary L-systems and genetic programming to evolve

architectural designs. This work has a completely different approach than

GENR8, the fitness evalution is done with a traditional optimization function

and the structures are displayed with spherical building blocks.

Rosenman and Gero [22] evolve architectural floor plans.

Nishino et al [17] work with traditional IEC, that is, the fitness evaluation is en-

tirely up to the user. This work involves a 3D modeler for creating rough

sketches rapidly.
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Research
project

Application Level of
Interac-
tivity

Influence
from the
environemt

EA Model for
develop-
ment

GENR8 Architecture IIR Yes Yes Yes
MoSS Architecture None Yes No Yes
AgencyGP Architecture IIR No Yes No
Broughton
et al

Architecture None Yes Yes Yes

Rosenman
and Gero

Architecture IEC No Yes No

Nishino et al Design IEC No Yes Yes
GADES Design None Yes Yes No
Cambrian
art

Art IEC No Yes No

Kókai et al Image repre-
sentation

None No Yes Yes

Curry Plant model-
ing

IEC No Yes Yes

Jacob Plant model-
ing

None No Yes Yes

Green Plant model-
ing

Unknown Yes Yes Yes

L-parser Plant model-
ing

IEC Yes Yes Yes

Kovács Plant model-
ing

None Yes No Yes

Lantin and
Fracchia

Cellular
structures

None Yes No Yes

Sims Artificial
creatures

None Yes Yes Yes

Table 1.1: Categorization of the related work.
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GADES [2] is a multi-purpose design tool. It can be used to design cars, heat sinks,

coffee tables and hospitals.

Cambrian art [12] is a website where the user can create works of art through IEC.

Kókai et al [10] use EC to find an L-system that will generate a pattern that

matches the blood vessels in the eye. This allows for efficient storage of the

pattern.

Curry [6] uses a genetic algorithm to control the parameters of an L-system. The

purpose of his research is to create a tool for plant modeling that can be used

without knowledge of the underlying L-system grammars.

Jacob [9] models L-systems with the aid of Mathematica.

Green [15] is a tool for modeling natural elements using stochastic L-systems.

L-parser [14] is an L-system interpretor that is available online.

Kovács [11] uses an L-system model that focus on the effects of tropism and bound-

aries.

Lantin and Fracchia [13] try to model the cellular development of organisms.

Sims [28] uses evolutionary algorithms to create artificial creatures living in an arti-

ficial world.

1.5 Contributions

1.5.1 Computer Science

There are several issues when using evolutionary computation for design applications.

Some of the things to keep in mind are:

• The control of the creative process, how is it mediated between the tool and

the user.
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• How the evolutionary process is understood by the human designer.

• How to allow genotype and phenotype modifications for a given representation.

• To make the EC component seamlessly integrated into the tool.

• Design evaluation.

• What is the output of the tool and how is it represented.

Moreover, we have explored and extended the map L-system growth model to

make it work in three dimensions (3D). We have added some of the more advanced

concepts from ordinary L-systems to the map L-system model. This thesis also shows

that map L-systems can be useful outside their biological origins.

We have also applied the fairly new concept of grammatical evolution to a real

problem and showed that it was a very useful and powerful abstraction. In doing

this, we gave the map L-systems a Backus-Naur formulation (BNF). Furthermore, we

identified several interesting sub-universes of this BNF that were particularly useful

to GENR8.

1.5.2 Architecture

For a designer, the tool itself is a central part of the design process. Increasingly

powerful computers give designers entirely new possibilities but in order to be useful, a

designer has to be able to use it comfortably. Computation allows for more exploration

than would be possible with just pen and paper and it can be viewed as a new

paradigm in architecture.

Today there are several computer aided design (CAD) tools available. The prob-

lem with these tools is that they can be categorized as drawing aids (nevertheless

powerful ones). They are not generative or creative in any sense and they do not

provide any help on that part. The architect still has to come up with what to draw.

Our goal is to develop a tool that is cooperative and stimulating to work with and

that can help the designer to come up with new ideas.
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Another novelty that has recently been introduced to the field of architecture

are new materials. This has brought a radical change to how a building can be

constructed. It is no longer necessary to have supporting structure as before, the

walls can be supporting in themselves.

Figure 1-2: The Guggenheim Museum in Bilbao, a building where novel materials
and techniques have been used (Frank O Gehry and partners, 1997).

A related issue are the new techniques for casting and construction. It is possible

to combine structural elements in completely new ways. A famous example of this is

the Guggenheim Museum in Bilbao. To explore these new concepts, architects need

new tools.

This work is part of a larger process of developing and understanding design tools

based on computation. The advent of powerful computers has brought new possibili-

ties to the field of architecture. Emergence is a phenomenon that is particularly well

suited to study with the aid of computers. It also harbors many interesting concepts

that so far has not been explored for use within the field of architecture. Neverthe-

less it is a concept that architects can easily grasp and it is something that they use
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in their work. However, the architects lack adequate software tools to exploit and

harness the concept of emergence.
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Chapter 2

Growth Model

GENR8 needs to grow surfaces in an organic fashion. We use map L-systems, an

extension of the more familiar L-systems as a basis for its growth model. To search

the universe of possible grammars, we use the grammatical evolution EA. The EA

relies on a BNF representation of the map L-systems, defining a universe of grammars.

Grammatical evolution employs a BNF to map a fixed length integer genome to an

executable structure. GENR8 has two mapping processes, one that maps a genome

to a grammar and another that interprets the grammar and constructs a surface

(phenotype). We will start by describing the second step, the growth model. This

may seem odd, but it is necessary in order to understand what we are trying to

achieve in the first step.

2.1 L-systems

Lindenmayer systems, or L-systems for short, were introduced by biologist Aristid

Lindenmayer in 1968 as a method to describe the development of plants. L-systems

have also been used to generate a wide variety of fractals and space filling curves. A

comprehensive description of L-systems can be found in [20].

However, L-systems have also interested computer scientists as a basis for formal

language theory. From this perspective L-systems can be seen as parallel rewriting of

strings (in contrast to the Chomsky grammars which are sequential). The simplest
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L-system are deterministic and context-free (later we will relax both these conditions)

and here follows a formal definition (according to [20]) of their operation.

L-systems 1 (Alphabet) Let V denote an alphabet, V ∗ the set of all words over

V , and V + the set of all nonempty words over V .

L-systems 2 (Context free) A string context-free L-system is an ordered triplet

G =< V, ω, P > where V is the alphabet of the system, ω ∈ V + is a nonempty word

called the axiom and P ⊂ V × V ∗ is a finite set of productions.

L-systems 3 (Productions) If a pair (a, χ) is a production, we write a→ χ. The

letter a and the word χ are called the predecessor and the successor of this production,

respectively. It is assumed that for any letter a ∈ V , there is at least one word χ ∈ V ∗

such that a→ χ. If no production is explicitly specified for a given predecessor a ∈ V ,

we assume that the identity production a→ a belongs to the set of productions P .

L-systems 4 (Deterministic) A context-free L-system is deterministic if and only

if for each a ∈ V there is exactly one χ ∈ V ∗ such that a→ χ.

L-systems 5 (Generation) Let µ = a1...am be an arbitrary word over V . We will

say that the word ν = χ1...χm ∈ V ∗ is generated by µ and write µ⇒ ν if and only if

ai → χi for all i = 1, ...,m. A word ν is generated by G in a derivation of length n if

there exists a developmental sequence of words µ0, µ1, ..., µn such that µ0 = ω, µn = ν

and µ0 ⇒ µ1 ⇒ ...⇒ µn.

Before we go on and explore how L-systems can be used to represent fractals and

surfaces, let us illustrate the mechanics of the rewrite rules with a simple example.

Our productions are:

a→ ab

b→ bc

c→ ba

Starting from a single letter a, the above productions generate the following sequence.
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a

ab

abc

abba

abbbab

abcbcbcabc

abbabbabbaabba

...

2.2 Turtle rules

Now that we have a growth model, we must find a suitable graphical interpretation

so that the strings can be viewed as surfaces. We also need to show that this model

actually bears any resemblance to organic growth. To do this, all the information

needed to generate the surface must be present in the string.

Drawing an L-system is often described as a set of turtle-rules [20]. One can think

of it as a turtle moving around in 3D space and drawing lines. The state of the turtle

is defined by its spatial coordinates (x, y, z) and its orientation. The orientation is

represented by three vectors, H, L, U indicating the turtles heading, direction to the

left and up, respectively. These vectors are orthogonal to each other and normalized.

A change of direction can be described by a 3 × 3 rotation matrix R.

[H′ L′ U′] = [H L U]R

For ordinary L-systems we need to define to parameters for the turtle, the length

of each step and the turn angle. For map L-systems, we no longer need the first one,

except for the starting seed.
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2.3 Brackets

With the above rules, we are only able to draw a single line. All the characters in the

interpreted string represent line segments that must be connected to each other.

Turtle Command Meaning
Ai, Bj , Ck, ... Move forward and draw a line.

+ Turn left δ.
- Turn right δ.
& Pitch down δ.
ˆ Pitch up δ.
/ Roll left δ.
\ Roll right δ.
∼ Change direction of the segment.
[ Push state on stack.
] Pop state from stack.

Table 2.1: Turtle commands and their meaning.

Therefore we introduce two new symbols, ‘[’ and ‘]’. When then ‘[’ is encountered,

the current state of the turtle is saved and pushed on to a stack. As the ‘]’ is

encountered (they must come in pairs), a state is popped from the stack to replace

the current state of the turtle. This allows us to draw branches from the main line.

All of the turtle commands used by HEMLS can be found in Table 2.1.

2.4 Map L-systems

Ordinary L-systems interpreted by a set of turtle-rules have successfully been used to

produce realistic images of plants and models of how real plants develop (an example

of this can be found in Figure 2-1) [11] [15] [9] [6]. However, the very nature of the

model gives us an arboreal structure, which is clearly not suitable for surfaces.

Map L-systems were originally developed as a model for cellular development.

Formally it can be seen as a method for rewriting planar graphs with cycles. They

work in a similar fashion to ordinary L-systems, but during each growth step we now

have two phases. During the first phase segments are rewritten as before. In the

second phase pairs of matching branches are connected to form new segments. An
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Figure 2-1: An example of an ordinary L-system. The string is interpreted using
turtle rules to produce a realistic image of a plant.
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example of a simple map L-system can be found in Figure 2-2.

Figure 2-2: A simple map L-system. The productions are shown in the top row. The
successive application of these productions to the seed, leftmost in the middle row,
are shown in the two bottom rows.

2.5 Hemberg Extended Map L-systems

The map L-systems are defined in two dimensions and since we want to handle surfaces

in 3D space it was necessary to extend the model. We have also added some of

the variations that exist for ordinary L-systems to our model. We call our model

Hemberg extended map L-systems (HEMLS) and our additions will be described in
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the following sections.

An interesting property for HEMLS (and all L-systems for that part) is that

growth is a local phenomenon. All productions are applied locally (synchronously or

asynchronously, as we shall see in the next section) and we only need a very limited

knowledge of the global state. This makes our growth process emergent, according

to the definition in Chapter 1.

2.5.1 Branches

In the basic model we only have to consider what region the branch is pointing into.

However, when we extend to three dimensions we must keep track of the spatial

orientation of the branch instead. For ordinary map L-systems, the following criteria

must be fulfilled if two branches are to connect:

• They enter the same region.

• They have the same type.

• One branch is oriented away from the main axis, while the other is oriented

towards the main axis.

For HEMLS, the last criterion has been replaced by:

• The dot product of their orientations is less than a given tolerance.

The tolerance is a parameter (BranchAngle, it can be set by the user), that controls

how easily branches are merged. If the tolerance is low, the branches need to be

better aligned in order to merge.

In the HEMLS model there are two ways of connecting the branches, synchronously

or asynchronously. The synchronous method is the same that is used by ordinary map

L-systems, first all the productions are applied and then the branches are connected.

In the asynchronous mode, we try to connect branches after each production has been

applied. The choice between the synchronous and asynchronous mode can have great

impact on how a surface will be subdivided. An example of this can be found in

Figure 2-3 and 2-5.
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Figure 2-3: This is the same grammar and environment as in Figure 2-5, only the
branch merging mode has been changed from asynchronous to synchronous.
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2.5.2 Context sensitivity

We wish to have some sort of interaction between the elements of the string, this will

affect the resulting surface and the growth will be more non-linear and unpredictable.

One way to achieve this is to introduce context sensitivity. That means that we

only apply a production to a letter if it has the right context, ie it is surrounded by

some specified letters. This allows more complex productions and more expressive

grammars where different parts of the string behave in differing ways. The context

sensitivity can be used to model information exchange between neighboring segments.

Formally, context sensitive L-systems are on the form (k, l)L-systems where k is

the number of letters to the left and l is the number of letters to the right. For a

(1, 1)L-system we have b < a > c → χ, the letter a can produce the the word χ if

and only if it is preceded by the letter b and followed by the letter c. The context

sensitivity used in GENR8 is presented in Table 2.2.

Symbols Context
a Context-free.

b < a Left-side context sensitive.
a > b Right-side context sensitive.

b < a > c Left and right side context sensitive.

Table 2.2: Context sensitivity for the L-systems in GENR8.

Since we represent the strings as directed graphs, each segment can be preceded

and followed by several segments. Thus it is enough if one of the predecessors or

successors satisfy the context constraint. In Table 2.3 line (1) is a context sensitive

production.

2.5.3 Time variation

By introducing a counter (written as an index) to each segment, we can have different

behaviors depending on the value of the counter. Phases, delay mechanisms and

temporal variations can now be incorporated into the growth model. The growth

process may be altered as it progresses so that we use different productions for each

time step. Lines (2) and (3) in Table 2.3 are examples of time varying productions.
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2.5.4 Stochastic rules

The deterministic L-systems that we have seen so far will always produce the same

results. One way to introduce variation is to have stochastic productions. We do this

by assigning a probability to each production. We have probability π(p) for applying

each production to a given predecessor. In Table 2.3, lines (4) and (5) are examples

of stochastic productions.

Seed: A+B + C +D
(1) A < B → A [ [ + +D ] −− D ] B
(2) Ci → Ci+1 [ [ + +D ] −−D ] Ci+1 If i < 2
(3) Ci → Ci+1 If i > 1
(4) D → +D −−D p = 0.5
(5) D → −D + +D p = 0.5

Angle 45

Table 2.3: A simple stochastic time-varying context-sensitive map L-system.

2.6 Implementation of GENR8

GENR8 is implemented through the Maya application programmer’s interface (API).

The code is written in C++, the language used by the API. Some of the communica-

tion with Maya is done via the Maya embedded scripting language (MEL). GENR8

has its own internal model of the surface, it does not rely on the Maya representa-

tion, and we try to do as much as possible of the computation in that model. One

reason for this is speed, the computations are faster if we can limit the interaction

with Maya. Another reason is control; in our own model, we have full control of what

is going on. If we ask Maya to calculate something for us, we can not be sure of

exactly what is being done or how it is being done. Also, it is beneficial to have the

growth model as independent as possible, facilitate a switch to another host software

should that be necessary in the future. The general strategy is to use Maya as a user

interface, it has great capabilities for setting up the scene and inspecting the output.

We use C++ where it comes to best use, fast calculations.
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Figure 2-4: A schematic view of GENR8 and how it is incorporated into Maya.

2.6.1 Internal representation

The HEMLS model is represented as a graph data structure. Since the graph is sparse,

it is stored as a linked list. In GENR8, it is necessary to keep track of information

regarding the vertices, the edges and the regions (the areas enclosed by the edges),

in order to be able to perform all our operations. This means basically that there is

more book-keeping, it does not increase the complexity of the algorithms.

It is the vertices of the graph that are moved by the growth and the environment.

On the other hand it is the edges that are affected by the productions and drawn in

the Maya scene. Since the graph is in 3D, it is essential to keep track of the regions,

the areas enclosed by edges, in order to connect branches.

What is interesting about this representation is that we only have topological

knowledge about the graph, we do not have explicit knowledge about the spatial

ordering of the nodes. The main advantage of this data structure is that it is fast and

easy to add new nodes (complexity O(1)) and traverse the graph (complexity O(n)).

The main drawback is that we have very little information that is globally structured.

Any information that can not be obtained locally, eg if two non-neighboring nodes

are close to each other, is expensive to obtain.
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2.6.2 Maya representation

When GENR8 is started it takes elements from the Maya scene (boundaries, user-

defined seeds, attractors and repellors) and extracts the relevant information from

the Maya objects. The only use of Maya during the computation is to find intersec-

tions with the boundaries (Maya has a powerful algorithm that allows us to find the

intersection of a ray and an arbitrary surface). Finally, we use the API to draw the

resulting surface in the scene before handing over control to the user. At all points

(except when the CPU is busy) the user has full access to all features in Maya.

HEMLS are general in the sense that they can generate arbitrary surface. Unfor-

tunately, Maya is not as versatile, and it is hard to construct a nurbs-surface that is

not four-sided, when working from the API. There are two solutions to this problem.

One is to use Maya’s built in meshing-algorithm. The main limitation of this ap-

proach is that the surface is polygonal. The other solution is to use a scaffold model

to visualize the surface. This means that we draw ordinary lines instead. It is trivial

to interpret the scaffold as a surface, they have been used in all the figures in this

thesis. The scaffold model is not very useful if one wants to continue working with the

surface in Maya, or export it to another program. But, since the lines are B-splines,

they are smoother than the polygonal surface mesh.

2.7 Environment

One of our goals was to have a reactive growth model, one that dynamically interacts

with the environment. In the L-system vocabulary, this is called tropism and it can

be understood as the influence of external forces on the growth.

GENR8 has a very powerful environment that has great impact on the devel-

opment of a surface. In the general case it is impossible to predict what a certain

grammar will result in, unless you know what the environment looks like.

Figure 2-6 shows the growth of a surface in an environment with five repellors.

The grammar is the same as in Figure 2-5, but the repellors affect the growth.
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Figure 2-5: A surface grown in an empty environment

Figure 2-6: The growth of a surface in an environment with five repellors.
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2.7.1 External forces

The GENR8 environment models forces. There are three types of forces; attractors,

repellors and gravity. The forces have a Newtonian character and are intuitive to use.

Attractors and repellors

The user may place attractors and repellors in the scene. Attractors and repellors

work like magnets, and can be used to control the direction of the growth. They are

situated in space and their effect depends on the relative location of the surface.

An attractor (or repellor) has two parameters, a constant, c (a non-negative real

number), and exponent, e (a non-negative integer). Together with the distance, d,

and the mass, m, of a surface element they give the magnitude of the displacement,

f on that part of the surface through the equation f = c · d−e/m. The direction of

the displacement is in the direction of growth for an attractor and the opposite for a

repellor.

The singularity in d = 0 is obviously a source of trouble. If a vertex gets too close,

it will move unpredictably and in very large steps. To deal with this problem, we

have implemented another attractor function, that does not have this singularity. It

can be written as;

d =


c

mde
d > 1

c · d d ≤ 1

Gravity

Gravity is a uniform force that has the same effect on all vertices, regardless of its

position (unlike attractors and repellors). The effect of gravity can be seen in Figure

2-8, where we once again have the same grammar as in Figure 2-5.
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Figure 2-7: The displacement as a function of distance for an attractor/repellor.

Figure 2-8: This surface is pulled downwards by gravity, but it is blocked by the
sphere.
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2.7.2 Internal forces

The heading of this section is somewhat misleading, although some of the parameters

to be described can be considered Newtonian forces. The parameters control the

growth in such a way that some vertices are forced to behave in a different way than

in an empty environment.

Repelling points

This is actually a true force, in the same sense as the external forces. Each vertex

gets a small repelling force, affecting all the other vertices in the graph. This will

force each vertex to move to push away all the other vertices. This adds interaction

on the phenotype-level and not only in the grammar.

Uniform cells

Figure 2-9: A surface where the cells have been made uniform, this is to be compared
with the other figures in this chapter, where the cells tend to be subdivided by straight
lines.
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This parameter is similar to the repelling points, but another algorithm is used

to reorder the vertices. After each growth step, all the vertices on the perimeter

are fixed. The position of the remaining vertices are adjusted so that they try to

maximize the distance to their neighbours. As the name implies, the subdivisions get

a more uniform size and a more organic appearance; this can be seen in Figure 2-9.

Fixed perimeter

Figure 2-10: A surface with fixed perimeter in an environment with a repellor. The
internal vertices are free to move and they are pushed away by the repellor.

We can choose to fix the perimeter, giving us a membrane like behaviour. This

analogy should not be pushed too far though, since the other vertices tend to move

away from the center as the surface grows. An example of this can be seen in Figure

2-10, where we have bag-shaped design.

Fixed center

We can also choose to fix the center. This means that the center of the surface always

stays in the same position. In Figure 2-11, we can see how the surface is stretched
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Figure 2-11: A surface with fixed center in the vicinity of an attractor.

out towards the attractor, rather than moved towards it.

Random noise

Finally we can also add noise to the environment so that the growth is no longer

deterministic. There are two types of noise, one that affects the position of the

vertices and one that affects the segment type. The latter kind of noise changes the

symbols in the string being interpreted. In Figure 2-12 we once again have the same

grammar and empty environment as in Figure 2-5. This time however, we have a

random noise component which gives us a somewhat rugged surface. At some places

the vertices have been perturbed so much by the noise that the branches were unable

to connect, leaving larger cells.
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Figure 2-12: A surface where the random noise introduces some ruggedness.

2.7.3 Boundaries

The user may draw surfaces and volumes that act as boundaries. Convex boundaries

are guaranteed to work, though concave boundaries will work in many cases. The

walls can affect the growing surface in three different ways yielding different results.

Default

Using the default wall behaviour, the surface will ‘slide’ along the boundary as it

collides and continues to grow. The default wall behaviour has been used in Figure

2-8 and 2-13.

Cut-off

If we instead use the cut-off behaviour, the parts of a surface that hits the bound-

ary stops dead and it will not continue to grow. In Figure 2-14 we have the same

parameters and values as in Figure 2-13, except for the wall behaviour.
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Figure 2-13: Surface inside a bounding box. The repellor in the upper left corner
pushes the surface into the corner of the bounding box.

Figure 2-14: Surface inside a bounding box. The repellor in the upper left corner
pushes the surface into the corner of the bounding box, but once the perimeter of the
surface hits the walls, they stop moving (compare with Figure 2-13).
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2.7.4 Parameters

The remaining parameters are relatively simple and straightforward to understand

and they will only be described briefly.

Steps The number of growth steps. Since the growth is exponential, the surface

grows very fast. None of the surface depicted in this chapter have used more

than six growth steps.

Scale This parameter controls how much the surface will grow in each step. It

governs how much the vertices will move during each step and thus the spatial

extent of the surface. It is possible to have differing values for the scale in the

x, y and z directions.

Start length The length of the sides of the genotypically encoded starting seed.

Start position The coordinates for the center of the starting seed.

Random seed Set the seed for the random number generator. This does not affect

the growth, but it is useful if you want to be able to repeat a run.

Mass The only way to set the mass for a vertex is if you define your own starting

seed. Otherwise, all vertices have the same mass.

Angle This parameter controls how much the turtle will turn. It must be encoded

in the grammar.
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Chapter 3

Evolution

Even though the recursive growth and the complex interactions of HEMLS are de-

terministic, the emergent properties of the growth make it very hard to predict the

outcome. To predict what kind of surface a HEMLS grammar will produce is indeed

a very hard task. Constructing grammars by hand is tedious and difficult1 and we

can not expect a person without considerable expertise to accomplish this. In order

to make HEMLS useful for designers who are interested in creating surfaces, we use

an EA to generate and evaluate grammars.

3.1 Evolutionary Algorithms

Evolutionary Algorithms is an umbrella term for a set of algorithms that use Dar-

winian evolution as an inspiration. They share the conceptual basis of a population

of candidate solutions to a problem. The individuals of this population are tested for

fitness, ie they are evaluated to find out how well they solve the problem at hand.

This is all done in a generational loop and the individuals undergo recombination and

mutation during the process.

1To exemplify this, it can be said that the author of this thesis is able to construct L-systems
that do what he desires, provided that the task is not too complex and that he has a lot of time. His
advisor, who has a PhD in computer science, has a hard time understanding the rules as he explains
them to her. However, there remains some doubt if this is due to the difficulty of the grammars, the
pedagogic abilities of the author or the intellectual capabilities of the advisor.
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EAs provide a massively parallel search and they do so based on a phenotypical

selection mechanism. Each member of the population has a genotype that is mapped

to a phenotype. The inheritance is done with a blind mechanism operating on the

genotype. This ensures that on the average, the population will improve in the next

generation.

3.1.1 Grammatical Evolution

GENR8 employs an EA invented by O’Neill and Ryan called grammatical evolution

[24] [23] [25], based on standard genetic algorithms (GAs). It uses standard genetic

operations on a fixed length vector of bits. These integers are then used to generate

an executable structure from a BNF-specification of the language. This introduces

an additional mapping that does not exist in traditional GAs.

With this extra step, there is a clear distinction between the genetic operations

and the language used to solve the problem at hand. This modularity makes it easier

to use; the two issues of representation and recombination are completely separated

and there is no need to constrain the genetic operations (as in genetic programming)

to make sure that the expression is valid. At the same time, the language is more

expressive (we can use any language with a BNF) than the parameterized values as

is most common in GA.

Ryan and O’Neill [24], argue that GE is more similar to ‘real’ evolution, since it

mimics more of the biological mapping steps. In the cell, DNA is transcribed to RNA

that carries the encoded instructions to proteins in the ribosomes. Here proteins are

assembled from amino acids. In GE, transcription maps a binary string to an integer

string. The production rules translate these integers into a grammar.

In GENR8 the terminals of the BNF production rules are of course the words that

constitute the grammar. Thus we can argue that GENR8 goes one step further and

extends the analogy; the mapping of a grammar to a surface, could be compared to

proteins building more complex structures in the cell. At this point, the environment

affects the process, both in the cell and GENR8.

Grammatical evolution provides genetic degeneracy. That is, there are multiple
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Figure 3-1: A comparison between biology, grammatical evolution and GENR8.
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gene encodings that map to one decoding. For example, if there are three outcomes

of a production rule, the gene values 42 and 897 will result in the same mapping,

since 42 Mod 3 = 897 Mod 3 = 0. With the first step of its two step genetic mapping

process (BNF to HEMLS to surface), grammatical evolution allows GENR8 to provide

users with different universes of HEMLS. For example, there is a subset of BNF that

produces symmetric surfaces.

3.2 BNF-grammar

For GENR8 we have adopted a syntax that varies slightly from the one used in

Chapter 2 and [20]. The motive for this is mainly to have something that is easier to

parse.

BNF is a formal method for specifying grammars that is widely used in computer

science [16] [4]. A grammar is represented by a tuple {N, T, S, P}, where N is a set

of non-terminals, T is a set of terminals, S is a start-symbol (it has to a member of

N) and P is a set of production rules that maps the elements of N to T. For GENR8

our most general BNF is:

N = { L-System, Axiom, RewriteRule, Operator, Predecessor, Successor,

Modifier, Condition, Segment, Constant }

T = { +, -, &, ^, \, /, ~, [, ], <, >, ->, Edge, i, If, Angle, Sync,

BranchAngle, Weight, EdgeX, EdgeY, EdgeZ, Edge_i, Edge_i+1,

Edge_i-1, = }

S = { <L-System> }

The production rules are defined as

<L-System> ::= <Axiom> <RewriteRule> { <RewriteRule> } Angle Constant

[ Sync ] [ BranchAngle Constant ]
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<Axiom> ::= <Segment> [ ~ ] + <Segment> [ ~ ] + <Segment>

{ [ ~ ] + <Segment> }

<RewriteRule> ::= <Predecessor> -> <Successor> [ <Condition> ]

<Successor> ::= { <Modifier> } <Segment>

<Predecessor> ::= <Segment> { <Segment> } |

<Segment> ‘‘<’’ <Segment> |

<Segment> ‘‘>’’ <Segment> |

<Segment> ‘‘<’’ <Segment> ‘‘>’’ <Segment>

<Modifier> ::= { <Segment> } |

<Modifier> ‘‘[‘‘ <Successor> ‘‘]’’ <Modifier> |

<Operator> <Modifier>

<Operator> ::= + |

- |

& |

^ |

\ |

/ |

~

<Segment> ::= Edge |

EdgeX |

EdgeY |

EdgeZ |

Edge_i |

Edge_i+1 |
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Edge_i-1 |

<Condition> ::= If i ‘‘<’’ Constant |

If i ‘‘>’’ Constant |

If i ‘‘=’’ Constant

<Constant> ::= 0 | 1 | 2 | 3 | ...

The terminal Angle is the parameter that controls how much the turtle should

turn. If the Sync terminal is present, the branch merging is synchronous; if not it

will be asynchronous. BranchAngle controls how the the tolerance when merging the

branches.

Each Edge is assigned a type, written as a number after the word Edge. All EdgeX

terminals in a production will be assigned the same type. EdgeY and EdgeZ work in

the same way.

It is also possible to have probabilistic RewriteRule, which means that there are

several possible Successor to a Predecessor and the choice is random (according

to some predefined distribution). The Weight terminal gives the relative weight of

a Successor when determining which production should be chosen for stochastic

grammars.

3.2.1 BNFs for the EA

For the GE we use four BNFs, symmetric, reversible, probabilistic and default, that

are slightly more restricted than the BNF described above. The reason for this is to

narrow down the search space and obtain interesting results faster. These BNFs define

different universes of surfaces, which gives the user greater control and flexibility. Full

details on these BNFs can be found in Appendix A.

If a grammar contains an Edge that does not have any productions (or just the

identity production), that Edge is essentially a ‘dead’ symbol (unless it is used in the
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context of the other productions). To avoid a situation where none of the productions

can be applied and to generate more interesting grammars, we have added a repair

mechanism to the EA. It checks that there is at least one production for each edge

type and if not, it creates one.

Since some of the rules are recursive, there is a maximum depth that restricts the

expansion, limiting the length of the productions. When this depth is reached, we

choose a production that only produces terminals. The default value for the maximum

depth is five.

Symmetric

One of the BNFs create symmetric surfaces. This is achieved by starting out from a

symmetric surface and then making sure that all productions conserve this property.

In that way, we can guarantee that the surface will have at least one line of symmetry.

Figure 3-2 shows a surface that was created using this BNF.

Figure 3-2: A surface that was evolved using the symmetric BNF.
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Probabilistic

There is also one that creates probabilistic rewrite rules (the other three always pro-

duces deterministic rules). This leads to more unpredictable behaviour, but it also

opens up new possibilities in a larger universe of surfaces.

Reversible

The third BNF produces reversible rules. We have implemented a function that can

invert the mapping for this subset of BNFs. This allows us to map a grammar back

to a genotype. More on this can be found in Section 4.2.1.

Default

There is a BNF that is set as default for the EA. It has been chosen to produce a lot

of branches, which in turn produces many subdivisions. This is in general a desired

property (otherwise the tendency is to get a loop that scales up and not much is

happening, as can be seen in Figure 4-6). A grammar generated by the default BNF

may look like this:

Edge1 + Edge1 + Edge2 + Edge2 + Edge2 + Edge3

Edge1 > Edge1 -> & [ [ - - Edge1 ] + + Edge1 ] ^ Edge3

Edge2 > Edge2 -> [ [ - - Edge0 ] + + Edge0 ] Edge2

Edge1 < Edge2 -> ~ [ [ - - Edge3 ] + + Edge3 ] Edge0

Edge3 -> + [ [ - - Edge3 ] + + Edge3 ] - Edge1

Edge0 > Edge0 -> / Edge3 Edge3 \ Edge2

Angle 45
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BranchAngle 75

The resulting surface can be seen in Figure 3-3.

Figure 3-3: A surface that was evolved by the system from a population size of 15
after 20 generations

3.2.2 Mapping the genotype to BNF grammar

Commencing from a start symbol, S, the genome is read to determine what production

rule should be used. Standard to Ryan and O’Neill, the gene values dictate the

corresponding production rule. In the cases where a terminal or non-terminal in the

production rule is optional or may occur multiple times, the genes are used to make

the choice. In the case of multiple occurrences we use a method that is similar to

an exponential probability distribution, so that there is no fixed upper limit to the

number of occurrences of the terminal (or non-terminal). We illustrate the whole

procedure with a short example, a longer example can be found in Appendix B.
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Example

We start with a genome:

617 666 800 8

And we are want to expand the following expression:

{ <Segment> }

The brackets surrounding the non-terminal indicate that we are going to have an

optional number of <Segment>. We use the genes to determine how many; by testing

617 Mod 2 = 1. This is greater than the current number of expansions from this

node, so we add an Edge node. Next we test 666 Mod 3 = 0, which is less than the

number of expansions, so we stop expanding this node. We continue by expanding

the <Segment> terminal. We have seven productions to choose from so the choice is

made by taking 800 Mod 7 = 2. Finally we determine the type of the Edge by taking

8 Mod 4 = 0, where the modulo is the current number of edge types (in this example

arbitrarily set to 3) plus one. Thus we end up with Edge0, when the expansion is

finished
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Chapter 4

GENR8 as a tool

Evolutionary Algorithms can be exploited successfully in a design software. They

offer powerful search within the universe of possible designs. However, this is not

enough to make them a useful tool. The EA component has to be integrated into the

rest of the tool seamlessly so that it can be used in an intuitive way.

To make GENR8 easily accessible for designers it has been implemented as a plug-

in to an existing design tool. In this way it is easier to become familiar with it and,

from a developing point of view, we get a lot of functionality for free. The downside

of this is that we are restricted by the host software. Designers have a plethora of 3D

tools at their disposal. These tools occupy specific niches and architects use them at

different stages of the design process; this implies that it is paramount that designs are

portable among the different tools. After consulting the architects in the Emergent

Design Group, the choice of host software was Alias|Wavefront Maya. Many designers

use this software and it has good support for writing plug-ins. The API is easy to use

as it is implemented as C++ classes. In addition it has MEL that works on a higher

level (it is a scripting language) and in many cases it is more handy than the API.

The EA component of GENR8 can be seen as a tool within a tool within a tool.

At the top level, Maya is just one of many 3D-modeling software tools available to

designers. GENR8 is just one of the many tools available when using Maya. Finally

EAs is the tool used by GENR8 to create novel surfaces.

The user needs to have a basic understanding of Darwinian evolution to use EA
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component of GENR8. It is not required that the user possesses in-depth knowledge

about EAs, one barely has to grasp the essential notion of evolution; fitter individuals

are recombined to produce new offspring. All this is intuitive to most people and there

should not be any difficulties understanding the basic concepts of GENR8.

GENR8 includes two predefined grammars that are very useful, they produce

regular three and four sided surfaces. Most of the figures in Chapter 2 used the four

sided grammar. These grammars are a good way for the designer to get familiar with

GENR8 and its environment since they produce a predictable result (with a complex

environment and an evolved grammar it is hard to tell if it was the grammar or the

environment that caused a certain phenomenon). Even without the EA, GENR8 is a

powerful tool and a lot can be accomplished just with these two grammars.

There are also two predefined grammars that generate fractals. They have limited

use when designing a surface. But fractals are interesting in themselves and generating

fractals comes ‘for free’ with our model. In Figure 4-1 the Koch-curve has been

generated with the aid of GENR8.

Figure 4-1: The Koch-curve, also known as the snow-flake.

The third way to provide the system with a grammar is to write your own and save
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it to a file. The file can be parsed by GENR8 and the grammar will be interpreted as

a surface. This feature is particularly useful if you want to try a small modification

to a grammar produced by the system. The downside is that it is quite hard to

understand what a grammar does and to know what changes to make to get a certain

surface.

4.1 Integration into Maya

GENR8 is implemented as a MEL-command (Maya Embedded scripting Language)

and one invokes it via command line in the same way as any other MEL command.

Because MEL is based on a command line interface, which makes it somewhat un-

wieldly, we have implemented a graphic user interface (GUI).

From the GUI (and the command-line), one can set all the parameters (environ-

mental and EA-related) for a design foray. The GUI is more user-friendly since it

prevents the user from entering invalid combinations. To make life even easier for

the user, there are help files in HTML-format readily available. Figure 4-2 shows a

screen shot of the GUI.

The reader has probably deduced from Chapter 2 and 3 that there are a lot of

parameters that can be adjusted. Fortunately, they all have default values, so one

does not have to set them each time. Moreover it is possible to save the settings to

a file. By doing this it is possible to reload them at a later time, sparing the user of

the job of remembering the settings and changing the default values each time.

The user can set up a scene with the environment, working with Maya as usual.

This is done outside GENR8 and the experienced Maya user will feel comfortable at

home-turf.

4.1.1 Setting up the environment

Boundaries are set up using ordinary Maya surfaces and they will be treated as walls

by GENR8 if they are on the selection list when the run is started. Attractors and

repellors can be placed and edited using special-purpose commands. They are drawn
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Figure 4-2: A screenshot of the GUI. Menus can be expanded or collapsed by clicking
on the bars with the arrows.
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in separate layers, so that it is easy to make them invisible after the run.

The user may draw a curve and that curve will be used as a starting point for the

growth (this will override the genotypically encoded Axiom which always is a regular

polygon). If the user chooses not to provide the system with a starting curve, it is

possible to specify the location and size of the seed.

4.1.2 Examining the output

When the design foray is finished, relevant data is presented in a window. It includes

the ranking of the population and the fitness value for each individual. For each

member of the population, the grammar that generated it and the different fitness

criteria (see Section 4.3) are displayed. The genome, the grammar or the Maya-scene

can be saved by pressing a button in the GUI.

The surfaces are drawn in separate layers which makes it easy to toggle the visi-

bility. This is very useful when inspecting the population. If the user wants to study

an individual closer, there is a feature that allows one to re-grow that member and

thus study it in closer detail. It is also possible to save both the grammar, the genome

and the actual Maya surface.

4.2 Interruption, intervention and resumption

The traditional way to use EAs in design tools is to have the user set up a design

foray and then wait for the output. This can be very frustrating to a designer since

it may alienate him or her from the process. We do not want to create a black box

that simply spits out a finished design; instead we are trying to make a tool that

cooperates with the designer.

Our goal is to allow the designer to take an active role in the evolutionary process

and to have a sense of control. An analogy that might be helpful is that of a car

on cruise control. The car goes forward by itself but the driver is still in control of

the steering and may hit the brakes, regaining full control. We have labeled this idea

interruption, intervention and resumption [19]. The user should be able to interrupt
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Figure 4-3: A screenshot of the output window. The visibility of the individuals is
turned on and off as the menus are expanded or collapsed.
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the EA at any time, for instance, the user might spot an interesting design. Next,

the user should be able to intervene by changing parameters (eg mutation rate) and

the environment (eg add an attractor). Finally it should be possible to resume the

process from where it was interrupted.

Interruption is straightforward to implement. The requirements are that the user

should be continuously updated on the results of the design process and have some

sort of control that interrupts the design foray. In GENR8, the designs are shown

on the screen as they evolve. Relevant data and statistics are displayed in another

window. By pressing the Esc-key, the design foray is interrupted.

Intervention is trickier to deal with. Ideally it should not only be possible to

change the parameters and the environment before resuming. We would also like

to be able to modify the phenotype and have those changes mapped back to the

genotype. We have not been able to implement this in GENR8 due to the complexity

of the growth model because HEMLS are extremely complex to invert. However, we

have been able to invert the first mapping, from genotype to grammar. This process,

termed regn8, is described in the next section. When a design foray is ended (or

interrupted) the user may change any parameters or set up a new environment before

continuing, with the old population. It is also possible to make copies of an individual

and insert those into the population, indirectly nudging the evolutionary process in

the desired direction. Moreover, one can load a saved population from a file if one

wishes to introduce specific genetic material into the population.

The requirement for resumption is that we should be able to restart the process

with updated parameters. It is interrelated with intervention and if intervention is

cleverly implemented, resumption is very easy to implement. Thus it is intervention

that is the trickiest part of IIR.

4.2.1 regn8

Although it would be desirable to allow the user to change the phenotype and have

those changes mapped back to the genotype, it has not been implemented in GENR8.

The reason for this is the difficulty of inverting HEMLS, ie deducing what grammar
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created a given surface. However, it is possible to invert the first mapping in GENR8,

from genotype to grammar.

Thus a user can construct a grammar by hand or modify an evolved grammar and

give that as input to regn8. Regn8 then inverts the mapping and outputs a genome.

This user-defined genotype can be inserted into the population as the starting point for

further design forays. Since the grammars are quite hard to understand, this feature

may be of limited use to a designer with limited knowledge of computer science.

Since we know the production rules for expanding the BNF, we can use that

knowledge to reverse the process. As the grammar is expanded, a tree-structure is

built up where the leaves constitute the resulting grammar. If the multiple (eg {

<Segment> } ) and optional (eg [ <Sync> ] ) terminals and non-terminals are used

restrictedly, it is possible to reconstruct the entire tree just from the grammar (ie

the leaves). The reversible BNF has been chosen so that this is possible and we can

construct one of the genomes that will give us the input grammar.

4.3 Design evaluation

A key issue for EAs is the fitness evaluation, it determines which individuals will be

reproduced in the next generation. For creative design this is obviously a very hard

task, since it involves aesthetic criterion rather than an objective goal function.

The most common approach is to determine fitness either by using a mathematical

function to evaluate the design (and thus we are once again back to optimization) or

fitness is directly determined by the user. Since it is obviously very hard to capture

the nature of the outcome of a creative design process in a mathematical function,

this approach has some severe limitations. This approach is more useful when trying

to optimize an existing structure or recombining existing elements.

The latter approach is called interactive evolutionary computation [26] [8] [27] [30]

[17] and it deviates from traditional AI-techniques in one important aspect; instead of

trying to model the behaviour of the human user, it tries to incorporate the user into

the system. The main advantage with IEC is that it does not constrain the creative
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process and there is no need to create a fitness function.

Traditional IEC often runs into problems with human fatigue [30] [17]. The user

has to evaluate the entire population between each generation, which means that

the user must do a lot of work. This limits the population size and the number of

generations in practical use. To circumvent this problem, IEC approaches tend to

focus on getting faster convergence, using enhanced interfaces to trying to predict the

user’s preferences.

In GENR8, the user can set the fitness values for the population by hand as is

standard in IEC. However, that is not how the tool is intended to be used primar-

ily. GENR8 instead allows the user to express his or her preferences by setting the

parameters for the fitness function (described below). Another more indirect way to

direct the evolution is to change the environment. Altering the environment will make

the grammars produce different surfaces. Since the selection and fitness evaluation is

based on the surfaces, this will affect the breeding.

4.3.1 Fitness function

The concept of a fitness function with multiple components serves the designer well.

It is easy to emphasize the features that one is most interested in and it gives the

system some of the human ability to be responsive to several criteria at the same time.

The parameters are independent and can be used to express multi-level, non-linear

and possibly conflicting goals of a designer. Recall, the weight and parameters of any

criteria can be changed at any time during a design foray.

For each criterion there is a weight associated that controls the relative impor-

tance of that criterion when calculating fitness. The user sets a target value for each

criterion, and deviations from that value are penalized.

Size

Size is a measure of the extent of the surface in the x and the y direction. Other ways

to control the size of the surface is by adjusting the scale and the starting length of
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the seed or to use a fixed perimeter and a user defined seed.

Smoothness

Figure 4-4: A rugged surface. The view is from the side.

The smoothness criterion has two components, one local and one global. The

global smoothness, undulation, simply measures the difference between the minimum

and the maximum z values. The local component calculates the difference in z values

for each vertex and its neighbours.

Soft boundaries

This is, in fact, a fourth wall-behaviour and thus it is only useful in an environment

where boundaries are present. If this wall behaviour is used, the surface can grow

through the boundary, but it incurs a fitness penalty as it does so.

Subdivisions

This is a measure of how subdivided a surface is. Subdivisions are created when

branches are merged. The criterion is calculated as the ratio between the number of
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Figure 4-5: A surface with many subdivisions.

vertices and edges.

Symmetry

Symmetry measures how the vertices are distributed with respect to the x and y axis.

If a completely symmetric surface is desired, it is better to use the symmetric BNF;

it always produces symmetric surfaces. This criterion only penalizes deviations from

the ideal, it does not prevent them from being created.

Example

Figure 4-6 shows the best individual in a (randomized) starting population of size

50. When the parameters of the fitness function have their default values. If we then

change the parameters to increase the number of subdivisions, after 5 generations, we

get the result shown in Figure 4-5. If we wish to then make the surface more rugged

rather than flat, we change the smoothness criteria. The result can be seen in Figure

4-4.
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Figure 4-6: A randomized starting individual. Since no branches have merged, there
are no subdivisions.
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Chapter 5

Future Work

5.1 Solids

GENR8 creates surfaces, but we would like to extend the tool so that we can grow

solid objects as well. In the next incarnation we could use a solid modeler instead

of Maya (it can only model surfaces). Solid modeling permits one to analyze the

structural and material properties of the designs and incorporate this in the fitness

evaluation. This could, for instance, be done using some finite element method.

An open question at this point is how to modify HEMLS so that they can be used

to generate solids. There are three major issues that must be addressed; grammar,

growth and interpretation. We need an entirely new grammar to represent a solid ob-

ject, the current one can only produce surfaces. Then we have to consider the growth

model; will it still be adequate for solids? Finally we must find a suitable graphical

representation. Will turtle graphics still be a good way to draw the design? It is

quite possible that we end up with something that does not bear much resemblance

to L-systems whatsoever.

5.2 3D-Visualization

GENR8 creates surfaces in 3D space and it would certainly be interesting to be

able to view and evaluate the surfaces in a 3D environment rather than on a 2D
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monitor. Thus we would like to extend GENR8 through the use of some virtual

reality technology.

5.3 Learning User Behaviour

An interesting feature would be a machine learning system that observes the users’

behaviour and deduces the users’ preferences. This would lead to even more efficient

and personalized fitness evaluation. There are two possible strategies for how this

could be implemented. One way is to have a set of parameters for each user that are

updated as the tool is used. The other strategy is to have the same set of parameters

updated by all (or a group of) users. This could lead to an interesting (and possibly

frustrating) mix of preferences.
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Chapter 6

Conclusions

6.1 Computer science

6.1.1 ALife

In this thesis we have extended the map L-systems model to make them work in

3D. We have also incorporated concepts from ordinary L-systems to make it a more

powerful and expressive model. These features are context sensitivity, time-variation,

stochasticity and environmental influence. The environment is especially interesting

and important, because it makes the growth reactive.

6.1.2 Evolutionary computation

EAs are very useful for optimization problems and have been used in that field for

decades. We are trying to use them for generative purposes, a much harder task

because it involves aesthetic aspects.

In GENR8 we have implemented IIR, to give the user greater control of the evo-

lutionary process. The user does not have to await the final output, he or she is free

to intervene at any time, giving the user greater control of the creative process.

We have exploited the grammatical evolution EA in a field that the inventors most

likely did not expect it to be used. A part of this work was to give a BNF specification

of the grammar describing HEMLS.
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GENR8 has been seamlessly integrated into Maya and for someone who is familiar

with Maya, it is intuitive to use. The output of the system are ordinary Maya objects

and the user can use any other tool in Maya to continue working on the surface that

was produced by GENR8.

One does not need an expert knowledge of EAs in order to use GENR8, the GUI

allows the user to express his or her preferences without any knowledge of what is

going on ‘behind the monitor’. The user does not have to assign a fitness value

to each surface, this is done by a fitness function with multiple parameters. The

parameters express different aspects and qualities of a surface. This greatly reduces

human fatigue.

6.1.3 Combining EC and HEMLS

As we mentioned in Chapter 1, this thesis is in the field of emergent design. One of

the main concepts in emergent design is to combine EC and ALife. By doing this, we

can use the searching capabilities of EC and the combinatorial and generative aspects

of ALife. Thus we are able to search a large universe of designs.

6.2 Architecture

We have developed a new tool that is much more cooperative than ordinary CAD-

tools; which is rare in current architect tools. GENR8 is creative and it can help

the designer by suggesting new concepts. Ordinary computers sit on the architects

deskspace, but do not usually provide more than basic CAD tasks. The computer is

certainly powerful enough to perform creative tasks. However, this requires new tools

such as GENR8.

The main notion behind GENR8 is emergence; a concept that is well suited for

architectural design. Emergence is an interesting phenomenon and it allows us to

construct designs in a bottom-up fashion. Thus we can create designs that consists

of primitive elements that combine to form intricate structures.

72



Appendix A

BNF Specifications

In the following sections we give the specifications of the BNFs as they are imple-

mented in GENR8.

A.1 Default

In Appendix B there is an example of how the BNF is used to map a genotype to a

grammar.

N = { L-System, Axiom, RewriteRule, Predecessor, Successor,

Modifier, AngleValue, BranchAngleValue }

T = { +, -, &, ^, \, /, ~, [, ], <, >, ->, Edge, Angle, Sync, EdgeX,

BranchAngle }

S = { <L-System> }

P = {

<L-System> ::= <Axiom> <RewriteRule> { <RewriteRule> } Angle
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AngleValue [ Sync ] BranchAngle BranchAngleValue

<Axiom> ::= <Edge> [ ~ ] + <Edge> [ ~ ] + <Edge>

{ [ ~ ] + <Edge> }

<RewriteRule> ::= <Predecessor> -> <Successor>

<Successor> ::= { <Modifier> } <Edge>

<Predecessor> ::= <Edge> { <Edge> } |

<Edge> ‘‘<’’ <Edge> |

<Edge> ‘‘>’’ <Edge> |

<Edge> ‘‘<’’ <Edge> ‘‘>’’ <Edge>

<Modifier> ::= { <Edge> } |

+ <Modifier> - |

- <Modifier> + |

& <Modifier> ^ |

^ <Modifier> & |

\ <Modifier> / |

/ <Modifier> \ |

~ <Modifier> |

<Edge> ‘‘[‘‘ ‘‘[‘‘ + <EdgeX> ‘‘]’’ - <EdgeX> ‘‘]’’

<Edge>

<Edge> ‘‘[‘‘ ‘‘[‘‘ + + <EdgeX> ‘‘]’’ - - <EdgeX>

‘‘]’’ <Edge>

<AngleValue> ::= 30 | 45

<BranchAngleValue> ::= 15 | 30 | 45 | 60 | 75 }
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A.2 Reversible

We only needed a minor modification to the default BNF to make it reversible.

N = { L-System, Axiom, RewriteRule, Predecessor, Successor,

Modifier, AngleValue, BranchAngleValue }

T = { +, -, &, ^, \, /, ~, [, ], <, >, ->, Edge, Angle, Sync, EdgeX,

BranchAngle }

S = { <L-System> }

P = {

<L-System> ::= <Axiom> <RewriteRule> { <RewriteRule> } Angle

AngleValue [ Sync ] BranchAngle BranchAngleValue

<Axiom> ::= <Edge> [ ~ ] + <Edge> [ ~ ] + <Edge>

{ [ ~ ] + <Edge> }

<RewriteRule> ::= <Predecessor> -> <Successor>

<Successor> ::= <Modifier> <Edge>

<Predecessor> ::= <Edge> { <Edge> } |

<Edge> ‘‘<’’ <Edge> |

<Edge> ‘‘>’’ <Edge> |

<Edge> ‘‘<’’ <Edge> ‘‘>’’ <Edge>
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<Modifier> ::= { <Edge> } |

+ <Modifier> - |

- <Modifier> + |

& <Modifier> ^ |

^ <Modifier> & |

\ <Modifier> / |

/ <Modifier> \ |

~ <Modifier> |

<Edge> ‘‘[‘‘ ‘‘[‘‘ + <EdgeX> ‘‘]’’ - <EdgeX> ‘‘]’’

<Edge>

<Edge> ‘‘[‘‘ ‘‘[‘‘ + + <EdgeX> ‘‘]’’ - - <EdgeX>

‘‘]’’ <Edge>

<AngleValue> ::= 30 | 45

<BranchAngleValue> ::= 15 | 30 | 45 | 60 | 75 }

A.3 Symmetric

The strategy behind this BNF is to start out with a symmetric seed and then make

sure that all operations preserve that quality.

N = { L-System, Axiom, RewriteRule, Predecessor, Successor,

Modifier, BranchAngleValue }

T = { +, -, &, ^, \, /, ~, [, ], <, >, ->, Edge, Angle, Sync, EdgeX,

EdgeY, EdgeZ, BranchAngle }
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S = { <L-System> }

P = {

<L-System> ::= <Axiom> <RewriteRule> { <RewriteRule> } Angle 45

[ Sync ] BranchAngle BranchAngleValue

<Axiom> ::= <EdgeX> + <EdgeY> + <EdgeX> + <EdgeY> |

<EdgeX> + <EdgeY> + <EdgeX> + <EdgeY> + <EdgeX> + <EdgeY> |

<EdgeX> + <EdgeY> + <EdgeZ> + <EdgeY> + <EdgeX> + <EdgeZ> |

<EdgeX> + <EdgeY> + <EdgeX> + <EdgeY> + <EdgeX> + <EdgeY>

<EdgeX> + <EdgeY>

<RewriteRule> ::= <Predecessor> -> <Successor>

<Successor> ::= <Modifier> <Edge>

<Predecessor> ::= <Edge> { <Edge> } |

<Edge> ‘‘<’’ <Edge> |

<Edge> ‘‘>’’ <Edge> |

<Edge> ‘‘<’’ <Edge> ‘‘>’’ <Edge>

<Modifier> ::= { <Edge> } |

+ <Modifier> - |

- <Modifier> + |

& <Modifier> ^ |

^ <Modifier> & |

\ <Modifier> / |

/ <Modifier> \ |

~ <Modifier> |
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<Edge> ‘‘[‘‘ ‘‘[‘‘ + + <EdgeX> ‘‘]’’ - - <EdgeX>

‘‘]’’ <Edge>

<BranchAngleValue> ::= 15 | 30 | 45 | 60 | 75 }

A.4 Probabilistic

The probabilistic BNF do not use the Weight terminal, if the terminal is abscent,

GENR8 gives each successor an equal weight by default.

N = { L-System, Axiom, RewriteRule, Predecessor, Successor,

Modifier, AngleValue, BranchAngleValue }

T = { +, -, &, ^, \, /, ~, [, ], <, >, ->, Edge, Angle, Sync, EdgeX,

BranchAngle }

S = { <L-System> }

P = {

<L-System> ::= <Axiom> <RewriteRule> { <RewriteRule> } Angle

AngleValue [ Sync ] BranchAngle BranchAngleValue

<Axiom> ::= <Edge> [ ~ ] + <Edge> [ ~ ] + <Edge>

{ [ ~ ] + <Edge> }

<RewriteRule> ::= <Predecessor> -> <Successor> { <Successor> }

<Successor> ::= { <Modifier> } <Edge>
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<Predecessor> ::= <Edge> { <Edge> } |

<Edge> ‘‘<’’ <Edge> |

<Edge> ‘‘>’’ <Edge> |

<Edge> ‘‘<’’ <Edge> ‘‘>’’ <Edge>

<Modifier> ::= { <Edge> } |

+ <Modifier> - |

- <Modifier> + |

& <Modifier> ^ |

^ <Modifier> & |

\ <Modifier> / |

/ <Modifier> \ |

~ <Modifier> |

<Edge> ‘‘[‘‘ ‘‘[‘‘ + <EdgeX> ‘‘]’’ - <EdgeX> ‘‘]’’

<Edge>

<Edge> ‘‘[‘‘ ‘‘[‘‘ + + <EdgeX> ‘‘]’’ - - <EdgeX>

‘‘]’’ <Edge>

<AngleValue> ::= 30 | 45

<BranchAngleValue> ::= 15 | 30 | 45 | 60 | 75 }

79



80



Appendix B

Example of how a genotype is

mapped to a grammar

We start with a genome, an array of integers:

212, 187, 632, 832, 800, 122, 517, 338, 197, 39, 878, 185, 954, 863,

660, 276, 909, 321, 545, 240, 670, 231, 292, 158, 494, 999, 658, 844,

316, 710, 362, 27, 194, 144, 171, 243, 260, 414, 337, 790, 309, 344,

456, 30, 134, 13, 774, 162, 911, 222

This array is going to be used to expand the L-system grammar by choosing appro-

priate production rules. We start out with the start symbol, S and use the production

rules for the default BNF (Appendix A.1). <L-System> has only one production rule,

so the gene, 212, is irrelevant as the non-terminal is expanded to

<Axiom> <RewriteRule> { <RewriteRule> }

Next the <Axiom> is expanded, again there is only one rule, so we get the same result

regardless of the gene:

<Edge> "+" <Edge> "+" <Edge> { "+" <Edge> }

<RewriteRule> { <RewriteRule> }

In fact there is a special end-symbol which allows GENR8 to keep track of where

the rules end, but we do not have to worry about that now. For the edges we must
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determine what type they are going to have. Type = (number-of-types+1) Mod gene.

Thus we have a decreasing probability of introducing new types. From the beginning

there are two types, so we have 632 Mod 3 = 2.

Edge2 + <Edge> "+" <Edge> { "+" <Edge> }

<RewriteRule> { <RewriteRule> }

We have two more edges and the genes are 832 and 800 which gives us 832 Mod 4 =

0 and 800 Mod 4 = 0.

Edge2 + Edge0 + Edge0 { "+" <Edge> }

<RewriteRule> { <RewriteRule> }

The next symbol, , tells us that we are going to have 0 or more of whatever is between

the brackets. We determine the exact amount in a way that is similar to what we did

with the edge types. To see if we are going to have another <Edge>, we test for (gene

Mod (occurrences + X)) > occurrences we add another <Edge>. Occurrences starts

at 0 and is increased each time we add a new Edge. X is an integer >= 2 that can

be used to adjust the probabilities, in our example, X is 2. We have 122 Mod 2 = 0,

which means that there will be no more symbols for the seed.

Next we let the 517 expand the <RewriteRule>.

Edge2 + Edge0 + Edge0

<Predecessor> -> <Successor>

{ <RewriteRule> }

For the <Predecessor> we have four different production rules, and the gene is 338

Mod 4 = 2 which means that we should take the third production rule.

Edge2 + Edge0 + Edge0

<Edge> ">" <Edge> -> <Successor>

{ <RewriteRule> }

For the predecessors we do not want to introduce new edge types (this could lead to

dead rules) so instead of number-of-types+1 we use number-of-types, which gives us

197 Mod 3 = 2 and 39 Mod 3 = 0.
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Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> <Successor>

{ <RewriteRule> }

In the next step, 878 is used to expand the <Successor>

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> <Modifier> <Edge>

{ <RewriteRule> }

The next gene, 185 Mod 9 = 5 gives us the next expansion.

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> "^" <Modifier> "&" <Edge>

{ <RewriteRule> }

Once again we expand a <Modifier> with 954 Mod 9 = 0.

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> "^" { <Edge> } "&" <Edge>

{ <RewriteRule> }

Now we have the brackets again and the next gene (again X=2), 863 Mod 2 tells us

that we should have an Edge. The next gene 660 Mod 4 = 0 sets the type. We test

to see if we should have another Edge, but 276 Mod 3 = 0 means that we should stop

adding edges.

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> ^ Edge0 & <Edge>

{ <RewriteRule> }

Going on we expand the <Edge> with 909 Mod 4 = 1. Next we test if we are going to

add more <RewriteRule> (X=5), with the gene 321 Mod 5 = 1, continuing, we have

545 Mod 5 = 0, which means that we should only add one more <RewriteRule>.
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Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> ^ Edge0 & Edge1

<RewriteRule>

It is left as an exercise for the reader to verify that the <RewriteRule> is expanded

to.

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> ^ Edge0 & Edge1

Edge0 > Edge1 -> [ [ + + Edge0 ] - - Edge0 ] Edge0

Now we see that we do not have any productions for Edge1, which means that it is

a ‘dead’ Edge, once we create something with type one, there will be no interesting

developments for that segment. To get around this problem, there is a repair mech-

anism that makes sure that there is at least one production rule for each segment

(although the context sensitivity may make the production rules useless anyway).

Analyzing the above set of rewrite rules, we see that we need to add a production

rule where Edge1 is the predecessor. During the repair phase, we are not allowed to

increase the number of edge types. After a few expansions we get:

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> ^ Edge0 & Edge1

Edge0 > Edge1 -> [ [ + + Edge0 ] - Edge2 ] Edge0

Edge1 -> Edge0

Finally, we are going to set the value for the parameters, using the genome. First

we set the angle to ((gene Mod 3)+1)·15, giving us ((337 Mod 3)+1)·15 = 30. Then

we find out if we are going to have synchronous growth by testing 790 Mod 2 = 0

(which means that we are going to have asynchronous growth). The BranchAngle is

determined by ((gene Mod 5)+1)·15, in our case 75. We are now finished and after

having used 41 genes, we have grammar that we can use to generate a scaffold.

Edge2 + Edge0 + Edge0

Edge2 > Edge0 -> ^ Edge0 & Edge1
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Edge0 > Edge1 -> [ [ + + Edge0 ] - Edge2 ] Edge0

Edge1 -> Edge0

Angle 30

BranchAngle 75

If you type the above into a txt-file, you can use GENR8 to find out what it looks

like. The result may vary depending on the environment, so it is hard to draw any

immediate conclusions (although I think that it will be a very boring structure that

unable to subdivide in an interesting way).
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