

Brock University

Department of Computer Science

Real-Time Competitive Evolutionary Computation

Adam Hewgill
Technical Report # CS-02-17
June 2002

To be presented at GECCO-2002, NYC, July 2002.

Brock University
Department of Computer Science
St. Catharines, Ontario
Canada L2S 3A1
www.cosc.brocku.ca

 Real-Time Competitive Evolutionary Computation

 Adam Hewgill

Computer Science Department
Brock University

St. Catharines, ON
ahewgill@hotmail.com

Abstract

In this paper, a system of evolutionary
computation will be presented that uses real-time
competition to evolve individuals that effectively
utilize the environment in which the competition
takes place. This system can be used to create
computer-controlled enemies for gaming systems
with little programmer effort. The evolved
individuals will be able to react to changes in the
environment in real-time, which is necessary for
most user interactive applications.

1 INTRODUCTION

When using evolutionary computation techniques such as
Genetic Algorithms (GA) (Holland, 1992) or Genetic
Programming (GP) (Koza, 1992) you must calculate the
fitness of each individual in the population before a
generation can be computed and the evolution can
continue. Once the fitness is obtained, the algorithms
perform the natural selection steps (crossover, mutation
and/or replication) to form the next generation of the
population. The fitness scores and the system structure
both guide the evolution of the individual chromosomes
toward an optimal solution. This continues for a specified
number of generations, and once completed, returns the
best chromosome encountered over the entire run of the
algorithm. Fitness is one of the most important parts of
the evolutionary strategy, because it directly relates to
what traits are desirable in the population. This
correlation is what guides the evolution towards the
optimal traits. The fitness is essentially a “score” for the
individual represented by the chromosome.

The research presented in this paper uses competition
between every individual in the population to produce the
fitness value for each chromosome. Previous work by
Karl Sims (Sims, 1994) had individuals compete in one-
on-one competitions over a resource to gauge their
fitness. The approach used here, however, is for every

individual to compete against every other individual for a
fixed length of time. The evaluation rounds are
essentially mass melees during which time each
individual scores points by attacking and/or killing other
members of the population. The goal of the evolution is
to produce an individual that uses the competition
environment to its fullest, and is essentially a very good
autonomous unit that could be used as a computer-
controlled entity. These initial experiments use very
simple environments and representations for the
individuals in order to test the viability of the real-time
competitive model.

The first experiment used a GA to evolve an array of
floats [0...1), each element of which was mapped to a
characteristic of a 3D fish, which inhabited a boundless
virtual aquarium. The elements of the array represented
things like: size, speed, color, turning agility, strength,
etc. For the evaluation of the chromosomes, the fish
would each attack each other, and at the end of a certain
number of animation frames the GA would produce the
next generation. This application evolved a fish that
utilized the environment efficiently due to its superior
chromosome. The actual results of this experiment are
interesting because they show that the best individual may
not always be what is expected even in a simple system.

In the second experiment, a GP was used to evolve
"brains" for robots. Each brain was essentially a decision
tree that contained if-then nodes and states as leaves. The
states were simple actions like: run toward, run away,
idle, run randomly, etc. When the competition round was
in progress, each individual had their "brains" scanned in
order to determine the action that best suited the
individual at the current time in the simulation. The
environment in which the robots compete is a very simple
2D plane, and uses only a minimal set of rules that robots
must follow. Evolution resulted in a very simple but
effective strategy for a consistent high score in the simple
environment.

2 GENETIC ALGORITHM
EXPERIMENT

In the first experiment in mass competition, the initial
goal was to create fish that fought with each other; a
decision was made to use a GA to evolve the best fighting
fish to use in the aquarium.1

2.1 AQUARIUM ENVIRONMENT

The virtual aquarium that the fish occupy is a simple
boundless 3D area in which the fish may compete. Fish
can only turn at a certain rate and cannot simply stop on a
dime, turn 180°, and start in a new direction. This
provides a simple challenge for the fish and adds to the
realism of the simulation. When a fish comes in contact
with another fish, both of these fish are attacking each
other until they are no longer touching. This is a very
simple system but provides some interesting problems for
the fish. Firstly, a fish cannot just attack any other fish,
because if the attacking fish is weaker then it will die
before the bigger fish. Secondly, fish that are smaller do
not stand much of a chance, even though they get a speed
bonus, because there is no way for them to compete in the
overall simulation. See Figure 1 and 2 for screenshots of
the system.

Figure 1: Virtual Aquarium during Competition

2.2 COMPETITION ALGORITHM

The competition of the fish is all based on a function the
fish use to select another fish to attack. The only thing
the fish do during a frame is to select a fish to attack and
move toward it one unit based on their speed. The target
selection heuristic is a driving force for evolution of the
fish. Since all fish use the same target selection function

1 The experiment (executable on windows) is available for download at
http://www.cosc.brocku.ca/Offerings/3P98/programming/GAfish/GAfis
h.zip

the weakest fish are killed quickly, causing them to have
low fitness scores. The result is that only the strong fish
survive, just as evolution dictates.

Once a fish dies, it is dead for the rest of the evaluation
round and can no longer gain fitness. The competition
rounds end after a specified number of frames of
animation, and then the GA carries on to the next
generation.

The target selection function uses the properties of the
other fish to give a score to each fish. Once every fish is
scored the highest valued fish is selected to attack. The
score is based on: distance, size, speed, relative size,
relative speed, relative strength and color. The closer a
fish is the more attractive if is since less distance must be
traveled to catch it. Relative size, speed, and relative
strength both compare the selecting fish's size, speed and
strength to the fish that is being scored. If the other fish is
bigger, faster or stronger then it will score low. Bright
coloring is given a higher score since it is very attractive
to other fish. So fish with bright colors are more likely to
be selected.

2.3 FITNESS EVALUATION

Each fish is given one point for every frame that it is alive
and the rest of the evaluation comes from killing other
fish. One hundred points is issued to a fish that kills
another fish.

The total of frame points and kill points is used as the
fitness score of an individual fish during the evolution
step of the GA.

2.4 CHROMOSOME REPRESENTATION

Each fish is created from a chromosome comprised of an
array of floating point numbers in the range [0...1). There
are eleven numbers in the chromosome, which are used to
build a fish. The attributes of the fish are: speed, size,
attack strength, hit points, turning agility, RGB
characteristics of the ambient and diffuse properties of the
material used when lighting the fish in OpenGL. All of
these characteristics are used to define what a fish can do
and how attractive it is to other fish.

2.5 GENETIC OPERATORS

The crossover, mutation and replication operators used
are very standard. There was no research done towards
which types of crossover and mutation operators were
best and only the crossover rate and mutation rate were
changed while trying to improve the results of the
simulation.

“Two Point” crossover is used to create the two children
from the parents' chromosomes. This is a very simple
way to produce children that are a mixture of their two
parents and quite different from their sibling. It was found
that a crossover rate of 1.0 produced better fish than when
the rate was lower.

The mutation is a simple swap of two floating-point
values in a chromosome that is applied after crossover.
Two distinct indices into the array are selected and the
values at these positions are swapped. A mutation rate of
0.2 was used. When new chromosomes are created using
crossover or replication, there is a 20% chance that the
chromosome will become mutated.

The mutation operator that is currently being used is not
optimal and could easily be improved. An example of a
simple improvement would be to randomly choose an
index into the chromosome and replace the value with a
new randomly generated float in the range [0...1). This
mutation would not only produce the desired "small"
change to the chromosome, but would introduce new
random numbers into the population which are normally
static after the initial population creation.

Figure 2: Best (Top) and Worst Fish Of Generation

2.6 RESULTS

The results for this experiment were very interesting and
were quite unexpected. The fish did learn to adapt to the
competition environment but not in a manner that would
be obvious to a programmer. Numerous experiments
were run and the best chromosomes from each were
analyzed for similarities. When looking at the averages
for each gene in the chromosome it turned out that size,
speed, strength and hit points were high while turning

agility was low and color was in the middle. Size and
speed were not as high as strength and hit points and in a
few instances were low. Color was not very consistent
but when averaged showed that a medium color was
desirable.

After the averages were examined the standard deviation
of the chromosomes from the average was analyzed.
These standard deviations were the most interesting result
because they showed that three of the attributes were
more important than the rest. Strength, hit points and
turning radius all had standard deviations around 10%
where the rest of the genes ranged from 19% to 29%. The
fish discovered that these genes were more important to
have within the optimal ranges.

The results were found while using a population size of
100 over 100 generations where each competition round
lasted approximately 20 seconds. The averages and
standard deviations were calculated using 10 runs with the
previously mentioned parameters.

3 GENETIC PROGRAMMING
EXPERIMENT

The next experiment was designed to improve upon the
results of the previous system by making some
modifications to the competition algorithm until better
results were found. The overall complexity of the
environment was also simplified to give the search a
better chance at finding an optimal solution. A GP was
used to simulate "brains" for each individual robot in
order to allow for different personality traits. This was a
large improvement over the previous system where all
fish used the same target selection algorithm. The final
results for this experiment were very good.

3.1 ENVIRONMENT OVERVIEW

The robots must follow the rules of the system when
acting on what their "brains" decide to do. Each robot has
a fixed amount of energy to use during the simulation.
Movement, attacking, and being attacked all decrease the
energy of the robot until it can no longer do anything.
The robot can rest and gain back energy, but it cannot do
anything else during this time and is open to attack by
other robots. Robots can only fire a certain maximum
distance and then have to wait for several frames before
their weapons are ready to use again.

When a robot is killed, it is brought back to life and
randomly positioned in the environment so it can continue
competing during the evaluation round. This rule helps to
avoid the “unlucky” factor where a good fish might be
killed early and not have a chance to prove itself.

If a robot is not moving when it is shot by another robot,
the shot inflicts full damage. If the robot is moving then
only half damage is done. This rule exists to make
motion a desirable trait and mimics real life since it's
harder to hit moving targets.

3.2 FITNESS EVALUATION

During the evaluation round each robot in the population
collects points by competing with other robots in the
environment. There are two ways to get points: attacking
and killing. In order to balance out another problem with
the previous experiment points were given for attacking
another robot. These points add a better score gradient to
the population. Each robot also gains points for each kill
it makes.

3.3 CHROMOSOME REPRESENTATION

Each individual robot used a chromosome of the GP for
its "brain". The chromosome was a tree made up of nodes
and leaves which is a typical setup for a GP chromosome.
The nodes of the tree were "if-then statements" which
asked various yes/no questions. The leaves of the tree
were states that the robot would go into. For every frame
of the animation, each robot would be asked what state it
is going into.

The "if-then statements" implemented were: if-tired, if-
enemy-close and if-state-is. The first was true if the
robot's power level was lower than ten percent of its
maximum power and false otherwise. The second was
true if another robot was within a certain distance and
false otherwise. The third was more complicated because
it was a three-position if statement. The first value was
the state to compare the robots current state against, the
second was the true branch and the third the false branch.
This third "if-then statement" added a great deal of
complexity to the trees and improved the results of the
experiment.

The states that made up the leaves were: idle, rest, fire,
runaway, runrand and runto. The first state would cause
the robot to do nothing at all, which meant not moving,
firing nor recharging. The second state was the same as
idle, except the robot would recharge, gaining back some
of its lost energy. The third state was the attack state,
which caused the robot to try to shoot at its closest enemy
if it was in range. The last three states are movement
states, all of which cost the robot energy and move it
either away from the closest enemy, toward a random
location or toward the closest enemy, respectively.

3.4 GENETIC OPERATORS

All of the GP genetic operations and tree evaluation were
done using the lil-gp GP system (Punch-Zongker, 1995).
All of the nodes and leaves were specified and written,
then given to the lil-gp system to run.

3.5 RESULTS

Initially, the best robot "brain" was simply: constantly rest
until another robot came by to shoot at. Once the
movement damage rule was added this result changed.
Instead the results tended towards robots that moved,
even though the resting robots still scored highly.

A typical best individual for the experiment was a very
good utilization of the system and its simple rules. The
robot would run toward its closest enemy and then fire at
it until it died. It would then continue on to the next
closest enemy in an endless pattern. The actual “brains”
were, in most cases, too complex to analyze so the
observed results are described after watching the
individual in competition. Figure 3 is a representation of
a typical individuals “brain”, which has been simplified to
be slightly more human readable.

(if-enemy-close

 (if-state-is

 (if-state-is RUNTO REST RUNTO)

 IDLE

 (if-state-is

 (if-tired RUNTO FIRE)

 IDLE

 (if-state-is REST FIRE RUNTO)))

 (if-state-is

 FIRE

 (if-tired IDLE REST)

 (if-state-is IDLE RUNRAND RUNAWAY)))

Figure 3: “Brain” of Best Individual

4 GENERAL COMPETITION
ALGORITHM

In general, the competition of individuals in the
population works well to evolve better results for an
evolutionary system. This has been seen constantly in
nature and has been shown in evolutionary systems by the
works of previous researchers (Angeline-Pollack, 1993).

When the whole population competes in a mass melee
there are certain considerations that must be taken into
account so that the evolution will generate good results.
When these things are properly setup, the resulting best
individual utilizes the competition environment very
efficiently and when placed in competition with a
randomly generated population, will quickly dominate.

Firstly, when an individual dies, it must be respawned so
that it has an opportunity to gain points throughout the
competition round. This will prevent the statistical
clobbering of deviant chromosomes and allow the
population to improve via evolution instead of remaining
average.

Secondly, the scoring gradient must be set up well. It is
not efficient to have individuals competing over a kill and
have the “lucky” one who gets the killing blow have all
the points. It is much better to give all the robots a
portion of the points of the kill depending on the amount
they contributed to the attack. This will cause the scores
to be nicely distributed instead of very granular. In an
evolutionary system, the better the fitness gradient is, the
better the evolution will perform.

Another very important aspect of the competition is the
building blocks from which the individuals build their
“intelligence”. It is a well-known fact in evolutionary
computation that the smallest adequate set of building
blocks is the most effective. If the components being
used are so specific that they exactly specify the final
behavior desired, then the system will not evolve anything
interesting and will give disappointing results. In other
words, primitives can negatively bias the search. It is
quite possible that what the biased primitives will find a
solution that is much worse than the best solution, since
the best solution might not always be logical to human
understanding. This has been found in other systems
where computer generated heuristics are better than the
best possible human created solution (Prieditis, 1993).

Lastly, we define an interface as the connections the
individuals are able to use to interact with the competition
environment. If the interface to the system is too complex
or too simple, then the competing individuals will not
have a very good chance of finding an optimal way of
using the system to its full advantage.

In the case of a simple interface, the individual might not
be able to adapt to certain very important features of the
system since it cannot explore them during the
competition. An example of the simplicity problem
would be target selection. If there is a primitive for target
selection, such as pick closest, then there is no way for the
individual to pick a different target which is not as close
but is much weaker; which would be desirable.

If, instead, the interface is too complex then the search
space for the evolution is greatly magnified, and the
chance of an individual finding the important features of
the interface and utilizing them efficiently is very low,
leading to disappointing results.

It is also important that the evolved individuals compete
in real-time. This is due to the fact that it is necessary for
the individuals to react to the changing environment in
which they compete. When these best individuals are
used in the system against/with a user they must react in
real-time.

5 FUTURE WORK

It would be an interesting test to see how complex the
rules of the universe could become and still have the
competition evolve a strong best individual. The ultimate
goal being to see how well the competition could evolve
robots for a multiplayer first person shooter that has very

complex 3D rules and interaction methods for the
individuals. Alternatively, any system that needs to have
a computer-controlled user could simply evolve one
quickly and effectively.

If this were to work well, then this system could be used
to create enemies and computer controlled users for
complex gaming or other systems to save on valuable
programmer time.

6 CONCLUSIONS

Real-time competitive evolutionary computation is an
effective process for evolving individuals who utilize an
environment very well. It is useful for creating computer-
controlled opponents for gaming systems or for other
applications. Overall, the evolutionary system could help
save programmers time for more important aspects of the
application, like usability and feature implementation.

There are a few pitfalls that must be avoided but once
they are successfully circumvented, the system’s results
will be good and quite consistent.

The evolved individuals operate in real-time and can
respond to user changes immediately. This real-time
aspect is a must for applications like gaming system.

Acknowledgments

Thanks to GECCO Student Travel Award Program for the
funding assistance supplied to bring this research to the
2002 Genetic and Evolutionary Computation Conference.

Conference entry fee and other travel expenses paid for
through NSERC grant 138467.

 References

Holland JH. (1992). Adaptation in natural and artificial
systems. Cambridge, MA: MIT Press

Koza JR. (1992) Genetic programming: on the
programming of computers by means of natural selection.
Cambridge, MA: MIT Press.

Sims K. (1994) Evolving 3D Morphology and Behavior
by Competition. In Artificial Life IV Proceedings, ed. R.
Brooks & P. Maes: MIT Press, 28-39.

Punch B., Zongker D. (1995) lil-gp genetic programming
system http://garage.cps.msu.edu/software/lil-gp/lilgp-
index.html

Angeline PJ., Pollack JB. (1993). Competitive
Environments Evolve Better Solutions for Complex
Tasks. In Proceedings of the 5th International Conference
on Genetic Algorithms, ed. by S. Forrest, Morgan
Kaufmann 264-270.

Prieditis AE. (1993) Machine discovery of effective
admissible heuristics. In Machine Learning Vol.12 :117-
141.

