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Abstract 
 

 

In this paper, a system of evolutionary 
computation will be presented that uses real-time 
competition to evolve individuals that effectively 
utilize the environment in which the competition 
takes place. This system can be used to create 
computer-controlled enemies for gaming systems 
with little programmer effort.  The evolved 
individuals will be able to react to changes in the 
environment in real-time, which is necessary for 
most user interactive applications. 

1 INTRODUCTION 

When using evolutionary computation techniques such as 
Genetic Algorithms (GA) (Holland, 1992) or Genetic 
Programming (GP) (Koza, 1992) you must calculate the 
fitness of each individual in the population before a 
generation can be computed and the evolution can 
continue.  Once the fitness is obtained, the algorithms 
perform the natural selection steps (crossover, mutation 
and/or replication) to form the next generation of the 
population.  The fitness scores and the system structure 
both guide the evolution of the individual chromosomes 
toward an optimal solution.  This continues for a specified 
number of generations, and once completed, returns the 
best chromosome encountered over the entire run of the 
algorithm.  Fitness is one of the most important parts of 
the evolutionary strategy, because it directly relates to 
what traits are desirable in the population.  This 
correlation is what guides the evolution towards the 
optimal traits.  The fitness is essentially a “score” for the 
individual represented by the chromosome.   

The research presented in this paper uses competition 
between every individual in the population to produce the 
fitness value for each chromosome.  Previous work by 
Karl Sims (Sims, 1994) had individuals compete in one-
on-one competitions over a resource to gauge their 
fitness.  The approach used here, however, is for every 

individual to compete against every other individual for a 
fixed length of time.  The evaluation rounds are 
essentially mass melees during which time each 
individual scores points by attacking and/or killing other 
members of the population.  The goal of the evolution is 
to produce an individual that uses the competition 
environment to its fullest, and is essentially a very good 
autonomous unit that could be used as a computer-
controlled entity.  These initial experiments use very 
simple environments and representations for the 
individuals in order to test the viability of the real-time 
competitive model. 

The first experiment used a GA to evolve an array of 
floats [0...1), each element of which was mapped to a 
characteristic of a 3D fish, which inhabited a boundless 
virtual aquarium.  The elements of the array represented 
things like: size, speed, color, turning agility, strength, 
etc.  For the evaluation of the chromosomes, the fish 
would each attack each other, and at the end of a certain 
number of animation frames the GA would produce the 
next generation.  This application evolved a fish that 
utilized the environment efficiently due to its superior 
chromosome.  The actual results of this experiment are 
interesting because they show that the best individual may 
not always be what is expected even in a simple system. 

In the second experiment, a GP was used to evolve 
"brains" for robots.  Each brain was essentially a decision 
tree that contained if-then nodes and states as leaves.  The 
states were simple actions like: run toward, run away, 
idle, run randomly, etc.  When the competition round was 
in progress, each individual had their "brains" scanned in 
order to determine the action that best suited the 
individual at the current time in the simulation.  The 
environment in which the robots compete is a very simple 
2D plane, and uses only a minimal set of rules that robots 
must follow.  Evolution resulted in a very simple but 
effective strategy for a consistent high score in the simple 
environment. 



2 GENETIC ALGORITHM 
EXPERIMENT 

In the first experiment in mass competition, the initial 
goal was to create fish that fought with each other; a 
decision was made to use a GA to evolve the best fighting 
fish to use in the aquarium.1 

2.1 AQUARIUM ENVIRONMENT 

The virtual aquarium that the fish occupy is a simple 
boundless 3D area in which the fish may compete.  Fish 
can only turn at a certain rate and cannot simply stop on a 
dime, turn 180°, and start in a new direction.  This 
provides a simple challenge for the fish and adds to the 
realism of the simulation.  When a fish comes in contact 
with another fish, both of these fish are attacking each 
other until they are no longer touching.  This is a very 
simple system but provides some interesting problems for 
the fish.  Firstly, a fish cannot just attack any other fish, 
because if the attacking fish is weaker then it will die 
before the bigger fish.  Secondly, fish that are smaller do 
not stand much of a chance, even though they get a speed 
bonus, because there is no way for them to compete in the 
overall simulation.  See Figure 1 and 2 for screenshots of 
the system. 

 

 

 

Figure 1: Virtual Aquarium during Competition 

 

2.2 COMPETITION ALGORITHM 

The competition of the fish is all based on a function the 
fish use to select another fish to attack.  The only thing 
the fish do during a frame is to select a fish to attack and 
move toward it one unit based on their speed.  The target 
selection heuristic is a driving force for evolution of the 
fish.  Since all fish use the same target selection function 

                                                           
1 The experiment (executable on windows) is available for download at 
http://www.cosc.brocku.ca/Offerings/3P98/programming/GAfish/GAfis
h.zip 

the weakest fish are killed quickly, causing them to have 
low fitness scores.  The result is that only the strong fish 
survive, just as evolution dictates. 

Once a fish dies, it is dead for the rest of the evaluation 
round and can no longer gain fitness.  The competition 
rounds end after a specified number of frames of 
animation, and then the GA carries on to the next 
generation. 

The target selection function uses the properties of the 
other fish to give a score to each fish.  Once every fish is 
scored the highest valued fish is selected to attack.  The 
score is based on: distance, size, speed, relative size, 
relative speed, relative strength and color.  The closer a 
fish is the more attractive if is since less distance must be 
traveled to catch it.  Relative size, speed, and relative 
strength both compare the selecting fish's size, speed and 
strength to the fish that is being scored.  If the other fish is 
bigger, faster or stronger then it will score low.  Bright 
coloring is given a higher score since it is very attractive 
to other fish.  So fish with bright colors are more likely to 
be selected. 

2.3 FITNESS EVALUATION 

Each fish is given one point for every frame that it is alive 
and the rest of the evaluation comes from killing other 
fish.  One hundred points is issued to a fish that kills 
another fish. 

The total of frame points and kill points is used as the 
fitness score of an individual fish during the evolution 
step of the GA. 

2.4 CHROMOSOME REPRESENTATION 

Each fish is created from a chromosome comprised of an 
array of floating point numbers in the range [0...1).  There 
are eleven numbers in the chromosome, which are used to 
build a fish.  The attributes of the fish are: speed, size, 
attack strength, hit points, turning agility, RGB 
characteristics of the ambient and diffuse properties of the 
material used when lighting the fish in OpenGL.  All of 
these characteristics are used to define what a fish can do 
and how attractive it is to other fish. 

2.5 GENETIC OPERATORS 

The crossover, mutation and replication operators used 
are very standard.  There was no research done towards 
which types of crossover and mutation operators were 
best and only the crossover rate and mutation rate were 
changed while trying to improve the results of the 
simulation. 

“Two Point” crossover is used to create the two children 
from the parents' chromosomes.  This is a very simple 
way to produce children that are a mixture of their two 
parents and quite different from their sibling. It was found 
that a crossover rate of 1.0 produced better fish than when 
the rate was lower. 



The mutation is a simple swap of two floating-point 
values in a chromosome that is applied after crossover.  
Two distinct indices into the array are selected and the 
values at these positions are swapped.  A mutation rate of 
0.2 was used.  When new chromosomes are created using 
crossover or replication, there is a 20% chance that the 
chromosome will become mutated. 

The mutation operator that is currently being used is not 
optimal and could easily be improved.  An example of a 
simple improvement would be to randomly choose an 
index into the chromosome and replace the value with a 
new randomly generated float in the range [0...1).  This 
mutation would not only produce the desired "small" 
change to the chromosome, but would introduce new 
random numbers into the population which are normally 
static after the initial population creation. 

 

 

 

Figure 2: Best (Top) and Worst Fish Of Generation 

 

2.6 RESULTS 

The results for this experiment were very interesting and 
were quite unexpected.  The fish did learn to adapt to the 
competition environment but not in a manner that would 
be obvious to a programmer.  Numerous experiments 
were run and the best chromosomes from each were 
analyzed for similarities.  When looking at the averages 
for each gene in the chromosome it turned out that size, 
speed, strength and hit points were high while turning 

agility was low and color was in the middle.  Size and 
speed were not as high as strength and hit points and in a 
few instances were low.  Color was not very consistent 
but when averaged showed that a medium color was 
desirable. 

After the averages were examined the standard deviation 
of the chromosomes from the average was analyzed.  
These standard deviations were the most interesting result 
because they showed that three of the attributes were 
more important than the rest.  Strength, hit points and 
turning radius all had standard deviations around 10% 
where the rest of the genes ranged from 19% to 29%.  The 
fish discovered that these genes were more important to 
have within the optimal ranges. 

The results were found while using a population size of 
100 over 100 generations where each competition round 
lasted approximately 20 seconds.  The averages and 
standard deviations were calculated using 10 runs with the 
previously mentioned parameters. 

3 GENETIC PROGRAMMING 
EXPERIMENT 

The next experiment was designed to improve upon the 
results of the previous system by making some 
modifications to the competition algorithm until better 
results were found.  The overall complexity of the 
environment was also simplified to give the search a 
better chance at finding an optimal solution.  A GP was 
used to simulate "brains" for each individual robot in 
order to allow for different personality traits.  This was a 
large improvement over the previous system where all 
fish used the same target selection algorithm.  The final 
results for this experiment were very good. 

3.1 ENVIRONMENT OVERVIEW 

The robots must follow the rules of the system when 
acting on what their "brains" decide to do.  Each robot has 
a fixed amount of energy to use during the simulation.  
Movement, attacking, and being attacked all decrease the 
energy of the robot until it can no longer do anything.  
The robot can rest and gain back energy, but it cannot do 
anything else during this time and is open to attack by 
other robots.  Robots can only fire a certain maximum 
distance and then have to wait for several frames before 
their weapons are ready to use again. 

When a robot is killed, it is brought back to life and 
randomly positioned in the environment so it can continue 
competing during the evaluation round.  This rule helps to 
avoid the “unlucky” factor where a good fish might be 
killed early and not have a chance to prove itself. 

If a robot is not moving when it is shot by another robot, 
the shot inflicts full damage.  If the robot is moving then 
only half damage is done.  This rule exists to make 
motion a desirable trait and mimics real life since it's 
harder to hit moving targets. 



3.2 FITNESS EVALUATION 

During the evaluation round each robot in the population 
collects points by competing with other robots in the 
environment.  There are two ways to get points: attacking 
and killing.  In order to balance out another problem with 
the previous experiment points were given for attacking 
another robot.  These points add a better score gradient to 
the population.  Each robot also gains points for each kill 
it makes. 

3.3 CHROMOSOME REPRESENTATION 

Each individual robot used a chromosome of the GP for 
its "brain".  The chromosome was a tree made up of nodes 
and leaves which is a typical setup for a GP chromosome.  
The nodes of the tree were "if-then statements" which 
asked various yes/no questions.  The leaves of the tree 
were states that the robot would go into.  For every frame 
of the animation, each robot would be asked what state it 
is going into. 

The "if-then statements" implemented were: if-tired, if-
enemy-close and if-state-is.  The first was true if the 
robot's power level was lower than ten percent of its 
maximum power and false otherwise.  The second was 
true if another robot was within a certain distance and 
false otherwise.  The third was more complicated because 
it was a three-position if statement.  The first value was 
the state to compare the robots current state against, the 
second was the true branch and the third the false branch.  
This third "if-then statement" added a great deal of 
complexity to the trees and improved the results of the 
experiment.   

The states that made up the leaves were: idle, rest, fire, 
runaway, runrand and runto.  The first state would cause 
the robot to do nothing at all, which meant not moving, 
firing nor recharging.  The second state was the same as 
idle, except the robot would recharge, gaining back some 
of its lost energy.  The third state was the attack state, 
which caused the robot to try to shoot at its closest enemy 
if it was in range.  The last three states are movement 
states, all of which cost the robot energy and move it 
either away from the closest enemy, toward a random 
location or toward the closest enemy, respectively. 

3.4 GENETIC OPERATORS 

All of the GP genetic operations and tree evaluation were 
done using the lil-gp GP system (Punch-Zongker, 1995).  
All of the nodes and leaves were specified and written, 
then given to the lil-gp system to run. 

3.5 RESULTS 

Initially, the best robot "brain" was simply: constantly rest 
until another robot came by to shoot at.  Once the 
movement damage rule was added this result changed. 
Instead the results tended towards robots that moved, 
even though the resting robots still scored highly. 

A typical best individual for the experiment was a very 
good utilization of the system and its simple rules.  The 
robot would run toward its closest enemy and then fire at 
it until it died.  It would then continue on to the next 
closest enemy in an endless pattern.  The actual “brains” 
were, in most cases, too complex to analyze so the 
observed results are described after watching the 
individual in competition.  Figure 3 is a representation of 
a typical individuals “brain”, which has been simplified to 
be slightly more human readable. 

 

 

(if-enemy-close  

    (if-state-is  

        (if-state-is RUNTO REST RUNTO)  

        IDLE 

        (if-state-is  

            (if-tired RUNTO FIRE)  

            IDLE 

            (if-state-is REST FIRE RUNTO))) 

    (if-state-is  

        FIRE  

        (if-tired IDLE REST) 

        (if-state-is IDLE RUNRAND RUNAWAY))) 

 

 

Figure 3: “Brain” of Best Individual 

 

4 GENERAL COMPETITION 
ALGORITHM 

In general, the competition of individuals in the 
population works well to evolve better results for an 
evolutionary system.  This has been seen constantly in 
nature and has been shown in evolutionary systems by the 
works of previous researchers (Angeline-Pollack, 1993). 

When the whole population competes in a mass melee 
there are certain considerations that must be taken into 
account so that the evolution will generate good results.  
When these things are properly setup, the resulting best 
individual utilizes the competition environment very 
efficiently and when placed in competition with a 
randomly generated population, will quickly dominate. 

Firstly, when an individual dies, it must be respawned so 
that it has an opportunity to gain points throughout the 
competition round.  This will prevent the statistical 
clobbering of deviant chromosomes and allow the 
population to improve via evolution instead of remaining 
average. 



Secondly, the scoring gradient must be set up well.  It is 
not efficient to have individuals competing over a kill and 
have the “lucky” one who gets the killing blow have all 
the points.  It is much better to give all the robots a 
portion of the points of the kill depending on the amount 
they contributed to the attack.  This will cause the scores 
to be nicely distributed instead of very granular.  In an 
evolutionary system, the better the fitness gradient is, the 
better the evolution will perform. 

Another very important aspect of the competition is the 
building blocks from which the individuals build their 
“intelligence”.  It is a well-known fact in evolutionary 
computation that the smallest adequate set of building 
blocks is the most effective.  If the components being 
used are so specific that they exactly specify the final 
behavior desired, then the system will not evolve anything 
interesting and will give disappointing results.  In other 
words, primitives can negatively bias the search.  It is 
quite possible that what the biased primitives will find a 
solution that is much worse than the best solution, since 
the best solution might not always be logical to human 
understanding.  This has been found in other systems 
where computer generated heuristics are better than the 
best possible human created solution (Prieditis, 1993).  

Lastly, we define an interface as the connections the 
individuals are able to use to interact with the competition 
environment.  If the interface to the system is too complex 
or too simple, then the competing individuals will not 
have a very good chance of finding an optimal way of 
using the system to its full advantage.   

In the case of a simple interface, the individual might not 
be able to adapt to certain very important features of the 
system since it cannot explore them during the 
competition.  An example of the simplicity problem 
would be target selection.  If there is a primitive for target 
selection, such as pick closest, then there is no way for the 
individual to pick a different target which is not as close 
but is much weaker; which would be desirable. 

If, instead, the interface is too complex then the search 
space for the evolution is greatly magnified, and the 
chance of an individual finding the important features of 
the interface and utilizing them efficiently is very low, 
leading to disappointing results. 

It is also important that the evolved individuals compete 
in real-time.  This is due to the fact that it is necessary for 
the individuals to react to the changing environment in 
which they compete.  When these best individuals are 
used in the system against/with a user they must react in 
real-time. 

5 FUTURE WORK 

It would be an interesting test to see how complex the 
rules of the universe could become and still have the 
competition evolve a strong best individual.  The ultimate 
goal being to see how well the competition could evolve 
robots for a multiplayer first person shooter that has very 

complex 3D rules and interaction methods for the 
individuals.  Alternatively, any system that needs to have 
a computer-controlled user could simply evolve one 
quickly and effectively. 

If this were to work well, then this system could be used 
to create enemies and computer controlled users for 
complex gaming or other systems to save on valuable 
programmer time. 

6 CONCLUSIONS 

Real-time competitive evolutionary computation is an 
effective process for evolving individuals who utilize an 
environment very well.  It is useful for creating computer-
controlled opponents for gaming systems or for other 
applications.  Overall, the evolutionary system could help 
save programmers time for more important aspects of the 
application, like usability and feature implementation. 

There are a few pitfalls that must be avoided but once 
they are successfully circumvented, the system’s results 
will be good and quite consistent. 

The evolved individuals operate in real-time and can 
respond to user changes immediately.  This real-time 
aspect is a must for applications like gaming system. 
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