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Abstract

This report examines the use of Support Vector Machines and Genetic Pro-
gramming Classifiers (GPCs) to distinguish between classes of cancer based on
gene expression data. The effect of feature selection on classifier accuracy and
on the convergence time of GPCs is experimentally investigated, with the goal
of making classification problems on gene expression data tractable to GPCs.
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Chapter 1

Introduction

Throughout biology today scientists are being deluged in data, and they are
unable keep up with this constant stream without specialised tools. For this
reason computational methods and computer software are being developed to
help biologists cope and come to grips with the quantity of information available
to them. These methods and their study are part of the expanding field of
Bioinformatics, also known as Computational Biology, and has been vital in
making sense of all the biological data available.

Originally this excess of data mainly came from sources such as DNA and
protein sequencing, but recently microarray technology has become more com-
mon place. Microarrays are used to detect the expression levels of thousands of
genes within cells, allowing biologists to extrapolate gene interactions and how
these genes may regulate one another. The advent of this technology has brought
to data analysts broad patterns of gene expression simultaneously recorded in
a single experiment(Fodor 1997).

Another use of these gene expression data is in the domain of tissue classifi-
cation. Although all cells within an organism contain the same set of genes, not
all of these are expressed in all tissues and this is an important behaviour for
tissue differentiation. Therefore, the pattern of genes expressed in a particular
tissue sample should allow us to categorise the samples site of origin.

Cancer can arise from the improper expression of genes. such as genes in-
volved in cell death (apoptosis) being switched off, or over expression of genes
involved in cell proliferation. Thus the pattern of genes expressed by cancerous
tissue will be altered from that of normal tissue and detection of these alter-
ations by machine learning categorisation techniques allow us to classify between
cancererous and normal tissue.

A further issue is being able to differentiate between cancerous tissue. For
example, given a cancerous tissue sample, can we determine its tissue of origin?
Since the gene expression patterns between normal tissues are different, we can
assume that tumours originating from these normal tissues will also exhibit
different gene expression patterns. Although there are likely to be certain genes
that show a commonality in their expression among many tumours. Being
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able to differentiate between cancerous tissue is useful when a tumour is first
discovered within a patient, because it is initially unknown whether this tumour
originated in the tissue it was found in or is a secondary tumour resulting from
a primary tumour metastasis.

Microarray data is often made available to the public online in a manner
similar to the human genome project. A dataset of 280 human tissue samples
that under went microarray processing was retrieved from (Ramaswamy 2001).
These tissue samples were taken from both healthy individuals and from tu-
mours in individuals suffering cancer. The original paper was interested in
classifying the data using Support Vector Machines (SVMs) within a One Vs.
All (OVA) scheme.

The aim of this project is to make use of Support Vector Machines (SVMs), a
machine learning classifier, to classify between cancer types and normal tissue.
SVMs are very good at what they do, but are unintuitive to Novamente, an
artificial intelligence engine designed to show the emergence of true general
artificial intelligence. The way SVMs store the classification model prevents
Novamente from being able to (easily) draw inference from the learning of cancer
classes. We propose to determine what features of the cancers are relevent via
SVMs and Recursive Feature Elimination, then use these features in Genetic
Programming predictors. Genetic Programming results in rules much closer
to the underlying architecture of Novamente. A comparison of the accuracy
between SVMs and genetic algorithms using the same set of features will be
made.

1.1 Overview

Further background material is presented in Chapter 2 where cancer and mi-
croarrays are discussed, as well as details on Support Vector Machines and
Genetic Programming. Chapter 3 specifies the technical details of the exper-
iments carried out for this report, with the results presented in Chapter 4.
Chapter 5 provides a discussion of some interesting points, and further work to
be done in the area of classification from gene expression data. Finally, Chapter
6, concludes the report.
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Chapter 2

Background

Currently the diagnosis of cancer involves the interpretation of clinical and
histopathological data with the goal of ultimately placing a tumour into one
of the currently accepted categories. There are a number difficulties here. For
instance, there is a wide spectrum of cancer morphology and many tumours
are atypical, lacking morphologic features often used in diagnosis (Ramaswamy
et al. 2001). To this effect there have been calls for mandatory second opinions
in all surgical pathology cases (Tomaszewski & LiVolsi 1999).

These difficulties hinder our ability to give patients the optimum care pos-
sible as well as increasing the expense of caring for them. Differences between
tumours classified similarly by doctors may even confound clinical trials for new
anti-cancer treatments.

Molecular diagnostics promise precise objective classification of tumours.
However, characteristic molecular markers have yet to be identified for most
tumour types (Connolly et al. 1997). Gene Expression diagnostics have the
advantage that expressions of genes with unknown functions can be monitored.

Genes important to the development of cancer are potential places to look
for creating molecular markers. They may encode for altered proteins specific
to a cancer class and molecular diagnostic markers based on these proteins can
be made.

Ramaswamy ((2001)) explored the possibilty of creating a reference database
of tumour gene expression data for all common malignancies. This could then
serve as test bed for testing new cancer classification methods. Ramaswamy
tried several machine learning methods on the initial version of their reference
database, including k-Nearest Neighbour, Weighted Voting and Support Vector
Machines. They also investigated using unsupervised clustering.

2.1 Microarrays

A microarray allows a researcher to view the expression levels of thousands of
genes simultaneously at a particular point in time by taking advantage of an
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intermediary step in the expression of genes. At this step, DNA is transcribed
into messenger RNA (mRNA) before being transported to ribosomes where it
is translated into a protein, which carries out the function of the gene.

In order to construct a microarray, precisely measured quantities of single-
stranded cDNA (copy DNA) transcribed from mRNA are bound to spots on a
glass slide. These slides are then rinsed with fluorescently labelled mRNA from
the cells whose expression levels wish to be observed. The strands of fluorescent
mRNA that are complementary to those on the slide will bind, and when the
slide is developed the brightness of individual spots indicate a quantitative mea-
sure of how much of each mRNA strand was present in the cells at the moment
of sampling. This measure indicates how much the gene is being expressed - the
more mRNA molecules that are transcribed from a particular gene the more
protein that can be translated.

In essence this means a microarray provides a snapshot of all the genes that
are of interest and their levels of expression. The collated data from a set
of microarray experiment form a gene expression matrix where each column
represents a tissue sample and each column refers to a gene.

2.2 Novamente

Novamente is an artificial intelligence (AI) engine that has the lofty goal of gen-
eral artificial intelligence (GAI), developed by the Artificial General Intelligence
Research Institute (AGIRI)1. Thus, it differs from other AI engines in that it
will be capable of being applied to any domain and will be able to formulate
its own goals and beliefs. The creators behind this engine are fully aware of
the failed attempts of other similar projects, but believe that the fundamental
design of the Novamente mind will result in emergent intelligence (Goertzel et
al. 2003+).

This project does not rely on any of the explicit GAI properties of the
Novamente engine, so that belief in whether GAI is possible or not will not affect
Novamente’s use as a powerful machine-learning tool. Novamente combines
numerous AI paradigms, both symbolic and connectionist views, allowing it to
exhibit traditional domain-specific AI behavior.

One of the most promising points about Novamente in relation to bioin-
formatics, is that it can incorporate background knowledge from biological
databases when datamining. Such behaviour is still in a state of development
within Novamente, so it was decided to forego using this background knowledge
during experiments.

The basic architecture of the Novamente AI engine is similar to a neural
network in that it is composed of numerous nodes and the relationships be-
tween them. These nodes and relationships can then be acted upon by MindA-
gents that carry out the system dynamics. Some nodes contain instructions for
carrying out more complicated actions and these instructions are executed by
MindAgents.

1http://www.agiri.org
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Novamente was a progression from a previous but similar engine called Web-
mind. Due to commericial reasons the company behind Webmind dissolved, but
the core developers went on to develop Novamente for AGIRI. Novamente was
designed from Webmind, but significant changes were made made based on the
teams experience. For example, Webmind was programmed in Java, whereas
Novamente is implemented in C++.

2.3 Machine Learning

The term learning can embody a wide scope of processes. Dictionary definitions
often emphasize the acquisition of skill and knowledge and the associated cogni-
tive processes. Learning is most often prescribed to living creatures when their
behaviour changes based on past experience. However, the same term can (and
is) used to describe machine behaviour when the machine takes into account
past experience to act in the present.

“[A] machine learns whenever it changes its structure, program, or
data (based on its inputs or in response to external information) in
such a manner that its expected future performance improves.”(Nilsson
1996)

Machine learning, like the term it is named after, also embodies a wide scope
of processes. Here we a primarily interested in classification.

2.3.1 Classification

Classification is the process of dividing instances into classes according to the
values of an instance’s features. Each sample occupies a point in feature space
which is a theoretical N-dimensional space where each feature is uniquely as-
signed to an orthoganal axis (Kuravilla et al. 2002).

Figure 2.1 shows a feature space for samples with two features and hence
two dimensions.

Unsupervised Classification

Unsupervised classification, otherwise known as clustering, attempts to group
instances without reference to predetermined classes. This is often based on the
proximity of the instances within feature space (Eisen et al. 1998). Clustering
can be useful in identifying subtypes of cancer, and in detecting previously
unrecognised similarities.

In order to carry out clustering, a distance matrix must be constructed
where entry (x, y) is the distance between instances x and y. The entry values
are determined from a distance metric and therefore choice of this metric can
affect the outcome of clustering. The distance metric is often the Euclidean
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Figure 2.1: An example of a two dimensional feature space containing samples
of three different classes.

distance2 between points or the related Pearson correlation which is invariant
to scaling.

Supervised Classification

Supervised Classification makes use of a training set containing instances for
which the classes they belong to is known. After processing of this training
set a class predictor is created for classifying unlabelled instances (Radmacher
et al. 2002). For cancer this involves assigning the clinically defined tumour
class to each gene expression profile in the training set.

2.3.2 Support Vector Machines

Support Vector Machines (SVMs) are powerful supervised classification systems
based on a variation of regularization techniques for regression (Vapnik 1998)
(Evgeniou et al. 2000). They provide extremely good performance in a wide
range of binary classification domains with computational advantages over their
contenders(Cristianini & Shawe-Taylor 1999). SVMs are a regularization of an
older machine learning method called the perceptron(Rosenblatt 1962) (Minsky
& Papert 1972). The perceptron tries to find a hyperplane that seperates pos-
itive from negative classes, and in general there may be any number of such
hyperplanes. SVMs specify that this hyperplane must have the maximal mar-
gin (the distance from the hyperplane to the nearest point).

2The Euclidean distance equals the square root of the sum of the distances between points
on each axis.
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The creation of the hyperplane for the SVM is an optimisation problem,
where the SVM must construct a hyperplane to maximise the distance from the
hyperplane, W , and the closest instances to the hyperplane. This distance is
calculated in N-dimensional euclidean space, where N corresponds to the num-
ber of features in each instance. Training an SVM and finding this hyperplane
requires solving a convex quadratic problem with as many variables as train-
ing points. Kernels may be employed by SVMs to transform the data so that
non-linear seperation can be captured. Different kernels or methods of trans-
formation exist, the simplest being linear which performs no transformation. A
polynomial kernel allows the SVM to capture any arbitary seperation by finding
the order-N polynomial that best fits. Similarly for the gaussian kernel.

The class of an unknown test sample is determined by which side of the
hyperplane it lies on. It is given the same class as the training samples on the
side of the hyperplane which it is located on.

SVMs have been applied to several biological domains, including gene ex-
pression microarrays (Mukherjee 1999)(Brown et al. 2000) and are particularly
suited to gene expression based categorisation since they can handle the large
number of features often produced in this domain.

For further information on Support Vector Machines, including mathemati-
cal proofs, see either (Vapnik 1998) or (Evgeniou et al. 2000).

2.3.3 Genetic Programming

Genetic Classifiers come under the broader term of Evolutionary Algorithms
(EAs) which was popularised by (Holland 1975) and is inspired by Darwin’s
evolutionary theory (Darwin 1859).

“[All the fields within evolutionary computing] share a common con-
ceptual base of simulating the evolution of individual structures via
processes of selection, mutation, and reproduction. The processes
depend on the perceived performance of the individual structures as
defined by an environment.”3

EAs can be thought of as an optimisation problem, searching through po-
tential solutions to find the optimal one (Michalewicz 1996)

The population contains initially poor and randomly created solutions to
the problem. These are then evaluated using a fitness function, with the fittest
selected and mated to create a new population. To create offspring (problem
solutions) for the new population, the best solutions of the current population
are subjected to crossover recombination. These solutions can be thought of as
points of a landscape called the solution space, where each point has a certain
fitness associated with it. Selecting the fittest individuals push these points
”uphill” to areas of higher fitness (Kauffman 1995). Mutation can also occur to
introduce further variation and prevent over crowding of a solution space. This

3The Hitch-Hiker’s Guide to Evolutionary Computation (FAQ for comp.ai.genetic)
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Figure 2.2: Flow chart of the evolutionary algorithm process.

also helps avoid a population becoming stuck near local optima and introduces
attributes that may not have been present in the initial population.

Recombination and mutation may result in offspring with superior fitness
over their ancestors. A regime following the often coined term “survival of the
fittest” ensures the best solutions, or parts of them, progress to the next gener-
ation. Through iterated generations better solutions are repeatedly found and
those attributes which contribute to a high fitness accumulate. This evolution
however is bounded by the ideal solution to the problem, or the global optimum
in the solution space.

Figure 2.2 shows a flow chart of the evolutionary algorithm process. The
population is initially created, all individuals then have their fitness evaluated
and then it is compared to the required fitness. If the fitness of the best in-
dividual meets this minimum required fitness then the process ends and the
individual is returned as a result of the evolutionary algorithm. Otherwise the
best individual(s) is taken and used to generate a new population which then
allows the process to repeat. Sometimes the stopping condition is replaced with
a counter for the number of generations that have passed.

Sometimes evolutionary process are misunderstood as a purely random search
through the solution space, which leads to justifiable doubt over the usefulness
of evolution. There is obviously random aspects in evolutionary processes, such
as mutation and the location at which recombination occurs, but the important
point is that attributes representing high fitness are accumulated over genera-
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tions. Offspring are created based on already proven attributes (Dawkins 1996).
Ultimately, the definition of fitness and the fitness function, whether artificial
or natural, are important in guiding the progression of evolutionary processes.

Novamente implements a classifier system that uses genetic programming
to create individual solutions (each a function tree) capable of differentiating
between classes. These are known as Genetic Programming Classifiers (GPCs).

Fitness Function

The fitness function determines how closely a candidate matches the ideal so-
lution. Generally the fitness function is a rank based fitness assignment (Baker
1985), or a proportion of the average fitness of the population (Goldberg 1989).

As generations pass, the best solution converges towards the ideal. This is
reflected in the fitness difference between the fittest candidate and the ideal
solution approaching zero.

Novamente uses a fitness function based on the number of incorrectly clas-
sified training examples:

fitness =
1

1 + n
(2.1)

(2.2)

Where n is the number of incorrectly classified examples. This limits the
fitness of a candidate in the range [0, 1], with a fitness of 1 representing the
ideal solution: a classifier that makes no mistakes in classifying the training
data.

Population Size

The population size is the number of individual solutions present during any
particular generation. This is usually kept constant over all generations for
simplicity. If constant population size is maintained, then the number of new
individuals created during each new generation is dependant on the survival of
the offspring’s parents.

Some evolutionary methods allow individuals to mate to create new individ-
uals for the next generation, before being “killed”. While others select a per-
centage of individuals with high fitnesses and place them in the next generation,
filling the remaining spaces with their offspring. Allow parents to survive limits
the amount of available positions for offspring, or new solutions to the problem,
and can result in a population being caught on local optima (Kauffman 1995)
when parents become too similar. Similarity prevents cross-over from creating
sufficiently unique individuals to explore alternative solutions. However, allow-
ing parents to survive can avoid oscillation of the population’s maximum fitness
which could lead to a final solution being less fit then it could have been.

Novamente uses a model in which certain randomly selected individuals in
a subgroup compete and the fittest individual is selected. This is called tourna-
ment selection and is the form of selection we see in nature. For instance, stags
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Gene Value
A 0.9
B 0.2
C 0.1

Figure 2.3: Each individual in a population of genetic programming solutions is
a function tree. The tree’s leaf nodes take inputs from the data and can contain
constants, the rest of the nodes contain operators which recieve input from their
children nodes. Evaluating a function tree results in a value at the root node
(in this case 0.15). During training this value is compared to the desired value
in order to calculate the individual’s fitness.

rut to vie for the privilege of mating with a herd of hinds, and the winner gets
to pass their genes to the following generation.

Novamente also employs the concept of elitism. This is where the fittest
individual from a generation is allowed to live on in the next generation. This
combats possible oscillations in maximum fitness, but prevents being caught in
local optima as the offspring are free to pursue alternative solutions.

Function Trees

Each individual in a genetic programming system represents a binary function
tree which is much like the trees created by some rule-based classification sys-
tems. Each node in the tree can contain an operator from a predetermined
set (such as multiply, add, maximum, minimum etc.), recieve an input from a
specific feature in incoming examples, or be a constant value (see Figure 2.3).

Traditionally cross-over recombination and mutation have been defined on a
linear chromosome (due to the biological origins of these processes), and it is not
immediately clear how these procedure would occur on a tree. Tree cross-over
is facilitated by randomly selecting a node within the one tree and exchanging
it, and its children nodes, with a randomly selected node in another tree.

A mutation on a tree selects a random node and either changes the operator,
the feature to take input from, or its value if it is a constant.

When using genetic programs for classification, each function tree created
represents a class that it is being evolved to recognise. A tree is evaluated against
an example by setting all of its input nodes to the values of the specified features
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in the example. Each node then performs its operation, taking input from its
children. If the children also have operations associated with them then they are
first evaluated. This occurs until nodes with either feature values or constants
are reached (these are always leaf nodes), then the values are processed by
their parents and the results propagate up through the tree until ultimately the
root node is evaluated. The value that the root node outputs by performing its
operation is the final output of the tree (unless the entire tree only consists of the
root node, in which case either the direct value of a feature or a constant value
is returned). This output is limited to the range [0. . . 1], with 1 representing a
positive classification and 0 a negative one.

Usually the depth of the trees are predetermined, and this affects the number
of feature inputs that can be incorporated into the classifier. For example, if
we have examples with 500 features, then we would need at least 500 leaf nodes
in the tree. Since we are dealing with binary trees the minimum depth can be
expressed as:

depth = ceil(
logN

log 2
) (2.3)

where N is the number of features, and the function ceil(x) returns the first
integer greater than x. For 500 features this works out to a depth of 9.

The tree depth has a major impact on training speed since each tree needs
to be evaluated for its fitness and each increase in depth doubles the number of
leaf nodes. This increases the number of operations needed for tree evualation
and the relationship can be seen in Figure 2.4

operations = 2d−2 + 2d−3 + ... + 20 (2.4)

Equation 2.4 determines the number of operations a function tree performs,
where d is the depth of the tree. The series starts at 2d−2 because the first depth
is represented by 20 and the 2d−1 leaf nodes are inputs rather than operators.
Equation 2.4 simplifies to

operations = 2d−1
− 1 (2.5)

Convergence

Convergence is process of an individual’s fitness reaching its highest possible
value given the constraints of the function trees. Often the optimal solution and
its associated fitness is unknown however. If the highest fitness for a population
remains stable for large number of generations it is assumed to be the optimal
solution. However, it may only be a local optima, preventing the population
from exploring alternative possibilities.

Genetic program classifiers are adversely affected by excessive irrelevent fea-
tures, because a mutation on an input node is less likely to attach it to a useful
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Figure 2.4: The number of operations required to evaulate a function tree of
depth d.

feature. This increases the number if mutations required before a relevent fea-
ture is selected and therefore the number of generations to train a classifier to
a certain accuracy also increases.

This is a important problem when dealing with gene expression data, be-
cause each sample often contains thousands of features, most of which are not
associated with the classes that are trying to be differentiated. Feature selec-
tion can reduce the amount of irrelevent features and reduce the amount of time
required to train a genetic program classifier to a tractable amount.

2.3.4 Feature Selection

Feature selection is the process of removing features from a dataset while trying
to maintain the highest possible level of classification accuracy. There are several
reasons to conduct such a process, one of which was discussed in relation to
GPCs in section 2.3.3. Another, is in an attempt to overcome overfitting.

Overfitting occurs when the number of features is large while the number
of training examples is comparatively small, and produces classifiers that can
accurately classify the training examples, but perform poorly on real data. It
is essentially the classifier matching the training data too well, such that will
not recognise examples that have slightly differences. Overfitting can be over-
come by either using the training techinique of regularisation (Vapnik 1998),
or reducing the dimensionality of the data. The latter of which is used in this
project.
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To reduce the dimensionality of the data, we have several options. Firstly
we can project the features onto a few principal dimensions. In this way new
features are obtained that are linear combinations of original features (Duda
& Hart 1973). This method however has the disadvantage that none of the
original features are discarded. Secondly, we can employ one of a number of
pruning methods which eliminate features from the data set. Pruning has prac-
tical importance to diagnostic tests for cancer (or other diseases) as it improves
cost effectiveness of searching for marker sites, and eases verification of gene
relevence. Pruning is what this report refers to when feature selection is men-
tioned. See (Kohavi & John n.d.) for a review of different feature selection
methods.

If we have a small number of features, it is conceivable for us to exhaustively
search through all subsets of features and evaluate each model bsed on selection
criterion (Kearns et al. 1997). This is of course impractical for gene expres-
sion datasets with thousands of features due to the combinatorial explosion of
subsets.

Feature Selection by Correlation Coefficient

Features can be invididually selected based on how much they contribute to the
seperation of classes can produce a simple feature ranking. Golub et al. used a
correlation coefficient defined as:

wi =
(µi(+) − µi(−))

(σi(+) + σi(−))
(2.6)

where µi and σi are the mean and standard deviation of the gene expression
values of gene i for all instances of the positive (+) and negative (-) classes,
i = 1..n. This results in large positive values for genes correlated with the
positive class and large negative values for those correlated with the negative
class. Golub et al. used this coefficient to select equal amounts of positive and
negatively correlated genes during selection. Since then the absolute value of
wi has been used as a ranking criterion (Furey et al. 2000) and Pavlidis et al.
have used a similar coefficient:

wi =
(µi(+) − µi(−))2

(σi(+)2 + σi(−)2)
(2.7)

These selection methods eliminate noisy features but can result in redundant
genes being kept, and are unable to recognise complementary features that
individually do not seperate the data well.

Recursive Feature Elimination

Recursive Feature Elimination (RFE) is a computationally efficient greedy fea-
ture selection algorithm introduced by Guyon et al.. It recursively removes
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features with the smallest absolute weights in a hyperplane produced by an
SVM.

The RFE algorithm is:

1. Train an SVM to distinguish between classes using all remaining features.

2. Calculate the ranking criterion, w2

i
, for each feature. Where w2

i
is the

square of the hyperplane component that feature i contributes.

3. Remove the feature with lowest ranking criterion.

4. Continue to 1 unless only the desired number of genes remain.

RFE allows more than one feature to be removed per iteration, although
this may lead to a subset of features which is not optimal. Unlike correlation
coefficients, RFE recognises gene interactions and can remove redundant genes
(Guyon et al. 2002). RFE does require an SVM to be trained for every iteration
though.

2.3.5 One Vs. All

The problem of combining binary classifiers has been studied in the computer
science literature (Allwein 2000) (Guruswami & Sahai 1999) from a theoreti-
cal and empirical perspective. However, the literature is inconclusive, and the
best method for combining binary classifiers for any particular problem is open
(Ramaswamy 2001).

To allow binary classifiers to handle multiple classes there are two major
approaches, One Verses All (OVA) and All Pairs (AP). Using the One vs. All
methodology it is possible to combine multiple binary classifiers into a multi-
class classifier. A separate binary classifier is trained for each class by treating
exemplars belonging to the class as positive exemplars and all others as neg-
ative. When classifying a new example the winning class is the one with the
largest margin. How this margin is created is dependant on the classification
method and can also be thought of as a signed confidence measure.

For N classes we have N binary OVA classifiers, (f1 . . . fN ), each of which
output a margin value. The class is then determined by:

class = maxi=1...N (fi) (2.8)

For any new instance being classified through the OVA approach we can
assign a confidence measure to its classification. This is determined by the
difference from the margin, fi, of the selected class to the next highest margin
of another class.

SVM

For SVMs the margin value of a classification has direct meaning. This margin
is the distance of a sample to the seperating hyperplane between the two classes.
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Figure 2.5: The margins of a 14 binary classifiers that together form an OVA
classifier from this report. These margins are for a Breast cancer sample.

An example of an OVA SVM classifier is shown in figure 2.5. This figure
shows the Breast classifier strongly matching an example, and due to the large
difference between it and the next highest margin it is match of strong confi-
dence.

Genetic Algorithms

The output from the Novamente genetic programming classifier is a value in the
range [0 . . . 1]. Where 1 reflects a strong match and 0 a rejection. This value
can be taken directly and used as the margin.
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Chapter 3

Technical Details

3.1 Dataset

The dataset consisted of 218 tumor samples, spanning 14 common tumor classes
(see A.2). Each sample had 16063 gene expression values associated with it.

Ramaswamy divided 144 of these samples into a training set and 54 into a
test set (including 8 which were from metastasic samples). The rest were poorly
differentiated and added to a seperate test set. The same division of tumour
samples is used in this study, however the poorly differentiated test set was not
used.

See (Ramaswamy 2001) for a detailed methodology of how the microarrays
used in this study were constructed, including the sources of the tissue samples.

3.1.1 Preprocessing

Preprocessing operations are those that occur to a dataset prior to more detailed
analysis in order to make it more suited to the analysis methods or research ques-
tion. The three preprocessing operations often used in application to microarray
data are (Holland 1975):

• Thresholds - Thresholds are upper and lower numerical limits applied to
outlier values. Negative expression values are thought to be unreliable and
cannot easily be understood in physiological terms (Mutch et al. 2001).
To overcome these negative values low expression values are rounded to
an arbitary lower limit of between 20 and 100 expression units.

• Filters - filters remove certain genes from a dataset. This can help to
eliminate noise and reduce the size of the dataset, as well as inhibit over-
fitting (see section 2.3.4). Filters are also used to limit genes based on
some form of biological criterion, such as which chromosome they lie on.

• Transformations - transformations globally change a dataset with math-
ematical operations. An example is the logarithmic transform, which is
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especially useful when applied to microarray data because variance has
been observed to be proportional to signal intensity. Gene expression val-
ues at high signal intensities are less reproducable than lower intensities
(Nadon & Shoemaker 2002)

All the gene expression values in the dataset used in this report had a thresh-
old of 20 to 16000 applied, before being logarithmicly transformed. Each feature
(gene) was then linearly mapped to the range [0..1] with the minimum at 0 and
the maximum at 1.

3.2 Implementations

3.2.1 Support Vector Machine

A modified version of SVMTorch (Collobert & Bengio 2001) was used to generate
SVM models. The modifications1 enabled recursive feature elimination to be
carried out.

(Ramaswamy 2001) showed that a linear kernel could create a hyperplane
able to fully seperate the training data when all 16063 features were incorporated
into the model. (Ramaswamy 2001) justified the choice of a linear kernel by the
dataset consisting of relatively few data points in a large number of dimensions.
Similarly in this report, a linear SVM was used.

A Lagrange multipliers limit value of 100 was specified and an epsilon value
of 0.5 used for tolerance2.

3.2.2 Feature Selection

The least significant 60% of features were removed at each iteration of RFE.
RFE was performed within the modified version SVMTorch for SVM clas-

sifiers. At the end of an RFE run in SVMTorch a summary of the features
removed at each step was created. This summary was then passed to a purpose
built Java application to create data files for classification by GPC3. Each file
represented a step in the RFE process.

Each binary classifier in an OVA scheme is independant of the others, so
in RFE they select the features which are most significant in that particular
class versus all others. This creates a seperate hierarchy of feature sets for each
binary classifier.

For the feature selection approach using a correllation coefficient, the defi-
nition by (Pavlidis et al. n.d.) was chosen:

wi =
(µi(+) − µi(−))2

(σi(+)2 + σi(−)2)
(3.1)

1Partly implemented by Bernardo P. R. Carvalho of Biomind (bernardo@vettatech.com)
2As suggested by the SVMTorch manual.
3Framework code for parsing the WICGR RES file format supplied by Lúcio de Souza

Coelho (lucio@vettatech.com)
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Data files were created using this measure for the corellation coefficient and
a similar Java application to that used for RFE data file creation. The same
number of features as for each iteration of RFE (removing the least significant
60%) were selected for each file.

The correllation coefficient for each feature changes with the each binary
classifier within an OVA group, because each class alters the mean and standard
deviation of the positive and negative groups. Therefore, feature selection by
corellation coefficient, like RFE, results in a hierarchy of feature sets for each
binary classifier within an OVA scheme.

3.2.3 Genetic Program Classifier

The code for the GPC implemented within Novamente was altered to allow invi-
didual OVA classifiers to each use their own hierarchy of features as determined
by feature selection.

Each GPC was created with a population of 50 individuals, and a mutation
rate of 0.005. Elitism was disabled, with new generations created from the
winners of tournament selection.

The depth of trees within the population was set by the following formula:

depth = ceil(
logN

log 2
) + 1 (3.2)

3.3 Platform

All experiments were conducted in Linux on either workstations with either
Athlon XP1800+ or Intel Pentium 4 (2.40GHz) CPUs, and 512Mb RAM.

3.4 Testing Pipeline

The following steps outline the procedure for the experiments:

• Preprocess raw microarray data and save into SVMTorch format.

• Run SVMTorch with RFE for each OVA classifier saving summaries and
classifying test data at each iteration.

• Preprocess raw microarray data again, but take into account RFE sum-
mary and save into Novamente format.

• Evolve GPCs within Novamente, on each iteration of RFE data.

• Preprocess raw microarray data again, calculating corellation coefficients
to create feature subsets. Save subsets into Novamente format.

• Evolve GPCs within Novamente, on each iteration of corellation coeffiecient
selected data.
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Chapter 4

Experimental Results

4.1 Hypothesis

Two hypothesis were investigated to test the feature selection with GPCs.

Hypothesis 1 RFE feature selection will give higher accuracy classification in
GPCs.

Hypothesis 2 Feature selection will reduce convergence time of GPCs.

4.2 Accuracy of Support Vector Machines

This section reports the results of SVM accuracy with feature selection and
compares them with the original study by (Ramaswamy 2001). While not di-
rectly related to the hypotheses, the results from these experiments questions
specific details of the original study’s methodology.

Each OVA SVM classifier (14 individual binary classifiers) took an amount
of time proportional to the number of features being used. In general however,
they took from 10-30 minutes each to create.

Figure 4.1 shows the effect of RFE on SVM classification accuracy when the
data is used raw without preprocessing and when preprocessing is used. The
accuracy of SVMs applied to preprocessed data is generally better than on raw
data.

Comparing the curves to the graph presented by (Ramaswamy 2001) (Figure
4.2) it suggests that the original study did not use data preprocessing. Their
report states that preprocessing was used but was ambiguous as to whether it
was specifically used with RFE.

The effect of sub-optimal feature selection due to removing large sets of
features every iteration can be seen between Figures 4.2 and 4.1. The results
of this study show much lower accuracy than Ramaswamy at low amounts of
features. This is likely due to Ramaswamy removing the least significant 10%
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Figure 4.1: The effect on classification accuracy with increasing numbers of
features (N)

of features rather than the 40% removed in this study. Removing more features
at every iteration, results in less optimal subsets being created.
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Figure 4.2: Classification accuracy of SVMs in study by Ramaswamy, also shown
are results for k Nearest Neighbour and Weighted Voting classifiers. Graph from
http://www.pnas.org/cgi/content/full/98/26/15149
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Figure 4.3: The effect on GPC classification accuracy with increasing numbers
of features (N)

4.3 Genetic Program Classifiers

Here we examine the the validity of the two hypotheses from Section 4.1.

4.3.1 Accuracy

The feature selection method that results in the best GPC accuracy depends on
the number of features present at a particular iteration, as shown in Figure 4.3.
At low numbers of features (< 20), the corellation coefficient selection method
results in the best accuracy. Whereas higher numbers of features (> 20) give
better accuracy when selected with RFE.

This is possibly due to depth of tree being limited at lower feature numbers
preventing complex rules evolving which are needed for the combined signifi-
cance of RFE selected features to emerge.

Thus, Hypothesis 1 is correct for more than twenty features present, but for
less than this, the corellation coefficient feature selection method is best. This
validation is made with the reservation that shallow trees at a low number of
features may be preventing the significance of RFE selected genes being utilised.

4.3.2 Convergence

To investigate the convergence of GPCs, the accuracy of individual binary clas-
sifiers within an OVA group were analysed, as well as the average fitness for
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OVA groups.
Between binary classifiers in an OVA group we often observe large jumps

in fitness (see Figure 4.4. These probably represent a significant gene, along
with its relation to the class, being included in the GPC function trees. For
particular classes, markedly sharp increases in fitness occured. These “jumps”
in fitness may indicate a particular gene being found that is heavily involved in
the development of that cancer type. The most marked jumps were observed in
Colorectal, and also to a lesser extent in Bladder.

There is variation in fitness levels for the various GPC binary classifiers (and
consequently their ability to distinguish between cancer types), which may give
an idea of the relative difficulty of distinguishing cancer classes. For example,
Leukemia and Lymphoma both have relative low fitness, whereas Renal cancer
and Melanoma have high fitnesses. This may indicate that that Renal and
Melanoma have distinct patterns that classifiers can pick up, while the patterns
for Leukemia and Lymphoma may be more subtle.

Another observed phenomenom is that some classes reach a “plataeu”, or
converge, faster than others. The Leukemia, Uterus, and Bladder classes show
this behaviour.

The sharp peaks that occur in the binary clasifier fitnesses indicate that the
most fit individual was not involved in tournament selection and hence did not
continue to the next generation.

Figure 4.5 presents the fitness of an OVA classifier based on the average
fitness across all its binary classifiers. Fast convergence is observed for a low
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Figure 4.6: Average fitness across OVA classifiers for 10000 generations with
161 features.

number of features, and this supports hypothesis 2.
However, this may be a result of varying the tree depth of GPCs. More

complex rules can be created by deeper trees, but this complexity will take
longer to emerge through evolutionary selection. Convergence to an optimal
value would be quicker for shallow trees.

The results presented so far don’t indicate whether an ideal solution is
reached. To investigate the timing required to search the solution space for
an ideal classifier, a OVA GPC was run for 10000 generations with a eventual
accuracy of 51.9% on the test set. The rate of fitness increase slows (see Figure
4.6) and seems to approach an asymtope which presumably represents the ideal
solution. The fitness does not reach a constant value in the number of gener-
ations observed. There is also a sharp increase just before 9000 generations,
indicating that fundamental changes are still being made late in the process,
therefore it hasn’t reached optimal solution despite taking over 60 hours to
execute.

4.4 Selected Features

Table 4.1 displays the five most significant RFE selected genes, based on their
contributions to the SVM hyperplane.

It should be noted that many of the genes appear more than once. Specif-
ically hum alu at (and hum alu at-2) and L06499 at, the latter being a Ribo-
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Table 4.1: The five most significant genes for each cancer class as determined
by RFE.

Cancer Class RFE selected genes
Bladdder L06499 at M62895 s at

AA422123 f at D79205 at
Z12962 at

Breast L06499 at Z12962 at
U57847 s at X16869 s at
M62895 s at

CNS hum alu at-2 X16869 s at
AA422123 f at AFFX-HSAC07/X00351 3 at-2
AFFX-HSAC07/X00351 3 at

Colorectal hum alu at-2 hum alu at
U57847 s at AFFX-HSAC07/X00351 3 at-2
AFFX-HSAC07/X00351 3 at

Leukemia hum alu at-2 hum alu at
L06499 at M62895 s at
U57847 s at

Lung hum alu at-2 hum alu at
L06499 at M62895 s at
X57351 s at

Lymphoma AFFX-HSAC07/X00351 M at-2 AFFX-HSAC07/X00351 M at
AFFX-HSAC07/X00351 5 at-2 AFFX-HSAC07/X00351 5 at
AFFX-HUMGAPDH/M33197 5 at-2

Melanoma hum alu at-2 hum alu at
L06499 at M62895 s at
Z12962 at

Mesothelioma M17885 at X17206 at
L06499 at X69150 at
HG3214-HT3391 at

Ovary hum alu at-2 hum alu at
X57351 s at M62895 s at
AA422123 f at

Pancreas L06499 at X17206 at
M17885 at U14973 at
AFFX-HSAC07/X00351 M at-2

Prostate hum alu at-2 hum alu at
L06499 at M62895 s at
U57847 s at

Renal V00594 s at hum alu at
hum alu at-2 AFFX-HSAC07/X00351 3 at-2
AFFX-HSAC07/X00351 3 at

Uterus Adeno hum alu at-2 hum alu at
L06499 at M62895 s at
U57847 s at
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Table 4.2: Description of the genes found significant by RFE.

Gene name Description
L06499 at RPL37A Ribosomal Protein L37A
M62895 s at Annexin II (lipocortin II) pseudogene 2
AA422123 f at zv26h12.r1 Soares NhHMPu S1 Homo sapiens

cDNA clone 754823 5’ similar to contains Alu repetitive
element; mRNA sequence (from GenBank)

D79205 at Ribosomal protein L39
Z12962 at EEF1A1 Translation eolongation factor 1-alpha-1
U57847 s at Ribosomal protein S27 (metallopanstimulin 1)
X16869 s at Eukaryotic translation elongation factor 1-alpha-1
AFFX-HSAC07/X00351 3 at-2 none
AFFX-HSAC07/X00351 3 at
hum alu at-2
hum alu at
X57351 s at RPS3 Ribosomal protein S3
AFFX-HSAC07/X00351 M at-2 none
AFFX-HSAC07/X00351 M at
AFFX-HSAC07/X00351 5 at-2 none
AFFX-HSAC07/X00351 5 at
AFFX-HUMGAPDH/M33197 5 at-2 Glyceraldehyde-3-phosphate dehydrogenase
M17885 at RPLP0 Ribosomal protein, large, P0
X17206 at Ribosomal protein L26
X69150 at Ribosomal protein S18
HG3214-HT3391 at Metallopanstimulin 1
U14973 at Ribosomal Protein S29
V00594 s at Metallothionein isoform 2

27



somal protein. Indeed, it seems that a majority of the selected genes have an
association with the Ribosome (Table 4.2). The Ribosome is a cellular organelle
predominantly involved in protein synthesis from mRNA. This process is called
translation, and two genes (X16869 s at and Z19262 at) involved in translation
are also present in our set of RFE selected genes.

Of particular interest are the four sequences of unknown function belonging
which were determined to significant in determining Lymphoma. These could
be further researched in an attempt to discover more about their function in
relation with Lymphoma.
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Chapter 5

Discussion

The results for convergence are likely to be influence by the depth of trees used
in creating the GPCs. The varying tree depths are necessary to allow the GPC
to take into consideration all of the features if it needs to. To investigate this,
the experiments should be repeated with a constant tree depth. This depth
should be large enough to accomodate all the features of the largest feature
subset used.

The time taken for training GPCs is much longer than SVMs. This is due
to two factors, the number of generations and tree depth, both of which need
to be large in order to get useful classification. The time taken will be partly
influenced by Novamente using processor time to maintain its system and per-
form MindAgent activities. Although SVMs are much quicker, GPCs result in
a decision tree that Novamente can absorb.

It was also realised that the absence of evolutionary elitism was likely to be
slowing the speed at which GPC fitness increases, since fit solutions can be lost
through random picking of individuals to compete in tournament selection.

5.1 Further Work

Alot more work presents itself in the domain of machine learning applied to
classification of gene expression data. This is reflected by the large number of
related articles currently being published in the literature.

Areas of particular interest to this study follow.

5.1.1 Rejection calls

As a natural consequence of using an OVA methodology, a measure of confidence
for any particular classification can be made.

This is done by finding the difference between the two highest margin values
of the OVA binary classifiers. This difference can be thought of the confidence
of classification.
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Table 5.1: Rercursive Feature Selection with exhaustive search and model se-
lection (RFEX) compared to plain Recursive Feature Selection (RFE)

RFEX RFE
Class # Features Accuracy # Features Accuracy

Leukemia 2 100% 64 98%
Colon 4 98% 4 86%

If machine learning methods are used as a diagnosis tool for oncologists, then
it would be useful to have a threshold of confidence. Where any classification
with a confidence less than this threshold is rejected, the oncologist could then
either redo the gene expression sample or fall back to traditional methods of
diagnosis.

5.1.2 Alternatives to GPC

Although the use of genetic algorithms to classify cancer based on gene expres-
sion is particularly poignant, GPCs are slow. Since the motivation for using
GPCs was to create a classifier in a form Novamente can absorb and use with
the rest of its system, other methods of creating classifiers may be investigated.

Rule induction methods generalise the training set into rules that can be
used to classify new examples, which make them ideal alternatives to GPCs.
In particular, ID3 (Quinlan 1986) is a rule-based method that reduces a set of
training examples to a decision tree.

The decision tree of ID3 is produced in a top-down fashion. Beginning at the
root node, attributes are chosen to discriminate between classes with each value
of the attribute producing a subnode. ID3 continues choosing attributes to dis-
criminate on at each node until all the examples that node have the same class.
A commercial version of ID3 called C4.5 (Quinlan 1993) supports continuous
value domains (which are produced by microarrays), by partitioning the range
of possible values. C4.5 also includes tree pruning which prevents overfitting
and could thus perform a similar function to feature selection.

5.1.3 Feature Selection Methods

There are many methods of selecting features from within a dataset, and these
may result in selected features that are better for classification by GPCs.

One such method that is based on RFE combined with an exhaustive search
of feature combinations along with model selection (Guyon et al. 2001). They
report that it eliminates gene redundancy, and yields better and more complex
gene subsets. Table 5.1. shows the number of genes selected by this method
and their accuracy in classification of cancer types based on gene expression.
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5.1.4 Gene Clusters

Clustering is a form of unsupervised learning that where it is assumed the classes
of samples are initially unknown. This technique could be useful for grouping
similar genes, and for discovering sub-groups within a cancer class.

One method of clustering is the Self Organasing Map (SOM), where one
randomly chooses the geometry of a grid (e.g., a 2 x 4 grid) and maps it into
the N -dimensional feature space. Initially the features are randomly mapped to
the grid but during training the mapping is iteratively adjusted to better reflect
the structure of the data (Eisen et al. 1998).

5.1.5 Regulatory Network Inference

Microarrays give a glimpse of the expression levels of thousands of genes, and can
be considered as the state of a system or network as overviewed by (Pitt 2003).
As long as we have a time series of expression levels it is possible to try and infer
a network of how the genes involved interact. Some may promote other genes,
while others inhibit them. This is known as an “inverse problem” where the
dynamics of a system are trying to be elucidated from data (Crutchfield 1989).

Regulatory network inference (RNI) entails working out which genes repress
one another and how they can cascade and cause chain reactions. For example,
if gene A is being expressed, what effect is that likely to have on gene B’s
expression in the future? Often these networks are incredibly complex, especially
when they involve thousands of genes.

The Biomind LLC (Limited Liability Corporation), whom use Novamente as
a tool to analyse biological data, have to some extent already investigated using
Novamente for RNI (Biomind 2003). It has not been compared to other methods
of RNI yet, and this is primarily due to other methods not being tested on real
data. In order to test how accurate a method is, one has to know the underlying
network to compare to the one the method generates. Currently no real data of
such genetic regulatory networks exist, and so networks are randomly generated
and simulated to create output similar to that of a microarray.

It should be noted that RNI is an extension of trying to predicting values
based on the past behaviour of a gene’s expression. As any network that is
inferred should have prediction power, as well as a host of other characteristics
as outlined by (Wessels et al. 2001).
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Chapter 6

Conclusion

This study has investigated using feature selection on gene expression data in
order to make the use of Genetic Programming Classifiers (GPCs) feasible.
The results presented suggest that feature selection using coefficient corellation
ranking is best for reducing the number of features to small number (< 20) of
features. For greater numbers of features Recursive Feature Elimination via the
use of Support Vector Machines is preferential as it gives higher accuracy.

The accuracy given by GPCs is not sufficient for practical use in the diag-
nosis of patients, but may still suggest relationships amoung genes that may
interesting to study further. An alternative method for creating structures for
Novamente to reason may be sought by using ID3 to create decision trees.

The effect of feature selection on the convergence time was also examined.
The conclusion being drawn that a smaller number features means a plateau of
fitness values is reached faster than with a large number of features.

Both of the conclusions of this report are dependant on the depth of GPC
function trees increasing with the number of features. Since it is likely that
this on its own would also give the observed results, it is suggested that further
investigation be pursued.
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Appendix A

Dataset

The dataset used in this report is available for public download from http://

www-genome.wi.mit.edu/MPR/GCM.html. A list of samples within the training
and test datasets is displayed in Tables A.1 and A.2.

A.1 Training Samples

Class Sample Name Pathology
Breast mBRT1 (8697) Adenocarcinoma, Invasive Lobular

mBRT2 (9078) Adenocarcinoma, Invasive Lobular

95 I 029 Adenocarcinoma

94 I 155 Adenocarcinoma, Moderately to Poorly Differentiated

92 I 078 Adenocarcinoma

9912c068 CC Infiltrating ductal, Moderately Differentiated

93 I 250 Mucinous Adenocarcinoma, Moderately to Poorly Differentiated

94 I 159 Mucinous Adenocarcinoma

Prostate 94 I 052 Adenocarcinoma, High Grade

95 I 249 Adenocarcinoma, High Grade

LocalCaP1T Adenocarcinoma

LocalCaP10T Adenocarcinoma

P 0025 Adenocarcinoma

P 0030 Adenocarcinoma

P 0033 Adenocarcinoma

P 0036 Adenocarcinoma

Lung 004 B Adenocarcinoma

009 C Adenocarcinoma

93 I 226 Adenocarcinoma

93 I 146 Adenocarcinoma

HCTN LUT1 (18702 A1F) Adenocarcinoma, Poorly Differentiated

HCTN LUT4 (18870 A1C) Adenocarcinoma, Moderately to Poorly Differentiated
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94 I 196 Adenocarcinoma

H 20387 Adenocarcinoma, Moderately to Poorly Differentiated

Colorectal mCRT1 (8936) Adenocarcinoma, Moderately Differentiated

mCRT2 (9752) Adenocarcinoma

95 I 057 Adenocarcinoma

HCTN CRT1 (18851 A1B) Adenocarcinoma, Moderately Differentiated

0001c038 CC Adenocarcinoma, Moderately to Poorly Differentiated

0001c040 CC Adenocarcinoma

9912c055 CC Adenocarcinoma, Moderately to Poorly Differentiated

HCTN 19339 Adenocarcinoma, Well Differentiated

Lymphoma L B CELL S93 20626 Y Lymphoma, Large B-cell

L B CELL S98 8825 Y Lymphoma, Large B-cell

L B CELL S93 04233 Y Lymphoma, Large B-cell

L B CELL S94 17150 R Lymphoma, Large B-cell

L B CELL S98 12569 R Lymphoma, Large B-cell

L B CELL S98 12453 R Lymphoma, Large B-cell

L B CELL S98 17557 R Lymphoma, Large B-cell

L B CELL S94 22323 G Lymphoma, Large B-cell

FSCC S98 11020 Lymphoma, Follicular

FSCC S98 10416 Lymphoma, Follicular

FSCC S98 5894 Lymphoma, Follicular

FSCC S98 14359 Lymphoma, Follicular

FSCC S93 13188 Lymphoma, Follicular

FSCC S93 20082 Lymphoma, Follicular

FSCC S93 14386 Lymphoma, Follicular

FSCC S93 23356 Lymphoma, Follicular

Bladder 11520 Transitional Cell Carcinoma,

Granular and Squamous Differentiation

9858 Transitional Cell Carcinoma, Poorly Differentiated

94 I 229 Transitional Cell Carcinoma

07-B 003E Transitional Cell Carcinoma

B 0001 Transitional Cell Carcinoma, Papillary

B 0002 Transitional Cell Carcinoma

B 0003 Transitional Cell Carcinoma, Papillary, Poorly Differentiated

B 0004 Transitional Cell Carcinoma

Melanoma 94 I 149 Melanoma, Poorly Differentiated

94 I 191 Melanoma

0-9652 Melanoma

93 I 262 Melanoma

96 I 166 Melanoma

11337 Melanoma

MGH 10427 Melanoma

MGH 11511 Melanoma

Uterus 92 I 073 Adenocarcinoma, Moderately to Poorly Differentiated

4203 Adenocarcinoma
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3663 Adenocarcinoma

2967 Adenocarcinoma

5116 Adenocarcinoma

3226 Adenocarcinoma

4915 Adenocarcinoma

2552 Adenocarcinoma

Leukemia AML (1,PK) BM Leukemia, Acute Myelogenous

AML (2,PK) BM Leukemia, Acute Myelogenous

AML (3,PK) BM Leukemia, Acute Myelogenous

AML (5,PK) BM Leukemia, Acute Myelogenous

AML (6,PK) BM Leukemia, Acute Myelogenous

AML (7,PK) BM Leukemia, Acute Myelogenous

AML (12,PK) BM Leukemia, Acute Myelogenous

AML (13,PK) BM Leukemia, Acute Myelogenous

ALL (16415) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (19881) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (9186) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (9723) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (17269) BM Leukemia, Acute Lymphocyitc, T-cell

ALL(14402) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (17638) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (22474) BM Leukemia, Acute Lymphocyitc, T-cell

ALL (19769) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (23953) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (28373) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (9335) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (9692) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (14749) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (17281) BM Leukemia, Acute Lymphocyitc, B-cell

ALL (19183) BM Leukemia, Acute Lymphocyitc, B-cell

Renal 92 I 126 Renal Cell Carcinoma, Moderately to Poorly Differentiated

Carc 609TO Renal Cell Carcinoma

Carc 628TG Renal Cell Carcinoma

Carc 614TS Renal Cell Carcinoma

Carc 614TO Renal Cell Carcinoma, Moderately to Poorly Differentiated

Carc 623TS Renal Cell Carcinoma

Carc 623TO Renal Cell Carcinoma

5291 Renal Cell Carcinoma

Pancreas 95 I 298 (I) Adenocarcinoma, Moderately Differentiated

Pan 1T Adenocarcinoma, Poorly Differentiated

Pan 2T Adenocarcinoma

Pan 3T Adenocarcinoma

Pan 4T Adenocarcinoma

Pan 6T Adenocarcinoma

Pan 7T Adenocarcinoma
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Pan 16T Adenocarcinoma

Ovary mOVT1 (8691) Adenocarcinoma, Mixed Serous and Transitional

mOVT2 (I) (9334) Adenocarcinoma, Serous Papillary, Poorly Differentiated

93 I 081 Adenocarcinoma

HCTN 19155 Adenocarcinoma, Endometroid

HCTN 0002c011N Adenocarcinoma, Serous Papillary

07-B 001B Adenocarcinoma, Papillary, Poorly Differentiated

07-B 014G Adenocarcinoma, Serous Papillary

H (400)6346 Adenocarcinoma, Clear Cell

Mesothelioma 161 T6 Mesothelioma, Pleural

31 T10 Mesothelioma, Pleural

169 T7 Mesothelioma, Pleural

165 T5 Mesothelioma, Pleural

228 T4 Mesothelioma, Pleural

235 T6 Mesothelioma, Pleural

74 T6 Mesothelioma, Pleural

215 T5 Mesothelioma, Pleural

CNS GlioB 1 Glioblastoma

GlioB 2 Glioblastoma

GlioB 3 Glioblastoma

GlioB 4 Glioblastoma

GlioB 5 Glioblastoma

GlioB 6 Glioblastoma

GlioB 7 Glioblastoma

GlioB 8 Glioblastoma

M29 A91 Medulloblastoma

M22 A50 Medulloblastoma

M42 A10 Medulloblastoma

M20 A56 Medulloblastoma

M49 A2 Medulloblastoma

M06 D92 Medulloblastoma

M02 D16 Medulloblastoma

M50 D7 Medulloblastoma

A.2 Test Samples

Class Sample Name Pathology
Breast 93 I 192 Adenocarcinoma

09-B 005A Adenocarcinoma, Infiltrating Ductal, Moderately Differentiated

09-B 003A Adenocarcinoma, Invasive Ductal

Prostate 95 I 256 Adenocarcinoma

P 0062 Adenocarcinoma, Poorly Differentiated

Lung H 20154 Adenocarcinoma, Moderately Differentiated

LT14 Adenocarcinoma
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95 I 117 Adenocarcinoma, Moderately to Poorly Differentiated

Colorectal HCTN 19389 Adenocarcinoma

0001c026 CC Adenocarcinoma

95 I 175 Adenocarcinoma, Moderately Differentiated

Lymphoma L B CELL S94 6696 G Lymphoma, Large B-cell

L B CELL S97 27534 G Lymphoma, Large B-cell

L B CELL S98 1217 R Lymphoma, Large B-cell

FSCC S93 11021 Lymphoma, Follicular

FSCC S99 9100 Lymphoma, Follicular

FSCC S99 5073 1 Lymphoma, Follicular

Bladder B 0007 Transitional Cell Carcinoma, Moderately to Poorly Differentiated

B 0008 Transitional Cell Carcinoma

104-64931 Transitional Cell Carcinoma

Melanoma MGH 8907 Melanoma

MGH 7974 Melanoma

Uterus 4075 Adenocarcinoma

4840 Adenocarcinoma

Leukemia AML (14,PK) BM Leukemia, Acute Myelogenous

AML (16,PK) BM Leukemia, Acute Myelogenous

ALL (92 571) BM Leukemia, Acute Lymphocytic, T-cell

ALL (87 52) BM Leukemia, Acute Lymphocytic, T-cell

ALL (20414) BM Leukemia, Acute Lymphocytic, B-cell

ALL (21302) BM Leukemia, Acute Lymphocytic, B-cell

Renal 6775 Renal Cell Carcinoma

5382 Renal Cell Carcinoma

6727 Renal Cell Carcinoma

Pancreas Pan 29T Adenocarcinoma

Pan 17T Adenocarcinoma

97 I 077 Adenocarcinoma

Ovary 0001c086 Adenocarcinoma, Papillary Serous, Poorly Differentiated

H 6206 Adenocarcinoma, Endometrioid

HCTN 19120 Adenocarcinoma, Papillary Serous, Poorly Differentiated

Mesothelioma 166 T4 Mesothelioma, Pleural

224 T5 Mesothelioma, Pleural

300 T Mesothelioma, Pleural

CNS GlioB 9 Glioblastoma

GlioB 10 Glioblastoma

M51 D34 Medulloblastoma

M33 Medulloblastoma

Ovary 9912c062cc Rb Metastases to Peritoneum, Adenocarcinoma

Colorectal HCTN 19274 Metastases to Liver, Adenocarcinoma, Moderately Differentiated

Lung H 20300 Metastases to Liver, Adenocarcinoma

Prostate MetCaP1 Metastases to Bone, Adenocarcinoma

Prostate MetCaP109 Metastases to Bone, Adenocarcinoma

Prostate MetCaP125 Metastases to Bone, Adenocarcinoma
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Prostate MetCaP128 Metastases to Bone, Adenocarcinoma

Breast MGH 4934 Metastases to Lymph Node
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