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Abstract

This paper describes two innovative projects
that the investigators are undertaking for the
Highways Agency network operator. Both
projects use genetic programming to de-
velop traffic management systems. The first
project addresses the reliable prediction of
motorway journey times for high-flow low-
speed conditions, i.e. congested periods. The
second project concerns the detection of mo-
torway incidents in low-flow high-speed con-
ditions, i.e. late at night. Genetic program-
ming manipulates traffic readings from the
Motorway Incident Detection and Automatic
Signaling system to arrive at solutions to
both real world problems.

1 Introduction

The UK Highways Agency (HA) has invested heavily
in the Motorway Incident Detection and Automatic
Signaling (MIDAS) system primarily for the purpose
of queue protection. Its secondary function is to pro-
vide, at zero cost, one-minute averaged traffic data
from sites spaced at 500m intervals. On the M25
motorway which encircles London, MIDAS produces
readings of traffic velocity, flow, occupancy, headway
and flow categorized by vehicle length. These quan-
tities are measured directly by loop sensors which are
incorporated into the road surface in each motorway
lane.

Ideally, a traffic system would be controlled by obtain-
ing a comprehensive understanding of its dynamics.
For example, by modelling driver behaviour character-
istics in different traffic states, and by using number
plate recognition to monitor lane changing. However,
a detailed understanding requires an extensive devel-

opment cycle which is incompatible with the HA’s de-
mand for short delivery times. Rather than seck a
thorough understanding of the traffic system, compu-
tational techniques are being investigated to develop
control functions that learn and operate on the avail-
able MIDAS data, e.g. artificial neural networks and
genetic programming (GP).

2 Journey Time Prediction

The HA needs to produce highly accurate short-term
journey time predictions to: allow tactical control sys-
tems such as ramp metering to be pro-actively de-
ployed; give motorists advance warning of when and
where a tactical control system will be operational
on the network; improve the performance of real-time
route assignment models; and signal predicted journey
times to motorists.

This GP investigation aimed to discover mathemati-
cal and logical relationships between predicted jour-
ney times and recent MIDAS measurements. For this
purpose the journey time, JT, was defined as the aver-
age time taken by a driver already on the motorway to
cover the distance between two junctions, e.g. junction
A merging and junction B diverging.

2.1 Forecasting options

Two alternative strategies for journey time prediction
were investigated:

e the direct prediction of journey time.

e the prediction of velocity at each site along the
journey. The journey time was then computed
by integrating these velocity predictions along the
path of the virtual journey into the future.

More GP evolution work was involved in the latter
strategy because velocity predictions were carried out



at each site of the virtual journey. In contrast, the for-
mer strategy makes one forecast for the entire journey.

The latter strategy required a forecasting period to
be chosen which was commensurate with the maxi-
mal expected JT. This allowed the predicted veloc-
ity at the terminating site to always be available and
thus the time of the complete journey to be calculated.
However, predictions were less accurate when the fore-
casting period was increased. Hence, a balance was
achieved by setting the period to 15 minutes and by
using a naive prediction (defined in Section 2.4) when
JT exceeded this period.

Both strategies processed present and past traffic
quantities for current and downstream sites. It was
crucial to use downstream information to anticipate
the future traffic state at the current site. This was
especially important during high-occupancy periods
because traffic queues building downstream tended to
produce congestion waves which propagated upstream.

2.2 Transforming MIDAS data into a GP

terminal set

MIDAS records minute-averaged traffic quantities ¢3!
for site s on lane [ at minute ¢:

fl = (V;fSla Oflv FtSl)

where V& is velocity in km/h, O! is the percentage
lane occupancy and Fj! is the flow rate in vehicles per
minute. A correction algorithm was devised to inter-
polate missing MIDAS data. This was invoked when
measurements were simply absent and when no vehi-
cles happened to pass a MIDAS sensor for at least
one minute. In the latter case, the values F' = 0
and O;' = 0 were valid, but V;* must be estimated to
avoid discontinuities with the neighbouring measure-
ments (in time and location).

Lanes are numbered from the offside fast lane'. The
prediction inputs combined quantities across the off-
side and the two adjacent lanes as follows. The veloc-
ities at each site were averaged across the lanes and
weighted by the flow in each lane:

Ve = Ftsl‘/tsl +Fts2vts2 +Ft83VtS3

t Ftsl _|_Ft52 +Ft33
The input flow was the total across the lanes and the
input occupancy was averaged:
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1Sites between diverging and merging junctions have
three lanes while all other sites have four lanes. The fourth
lane is used to enter and exit the motorway.

Figure 1: Examples of raw and box-averaged input
windows. Time is shown horizontally and site is shown
vertically. The grey cells are at the current time or the
current site. Each square represents either a raw value
or a box-averaged value.

The lane-independent traffic quantities were trans-
formed into a GP terminal set by defining a window
comprising previous minutes and downstream sites.
At minute t and site s, the window spanned back to
minute t —T and down to site s+.5. Journey time pre-
dictors simultaneously processed all sites in the jour-
ney, i.e. S = 27, and typically used T' = 15. Velocity
predictors typically used S = 7 and a wide variety of
T values were investigated.

Figure 1 illustrates the different types of input win-
dows. Clearly, when T and S were increased the size
of the GP terminal set could become excessive and re-
sult in an over-complicated search space. Thus data
reduction techniques were investigated. The most ef-
fective was found by dividing the input window into
boxes of size b; X bs, and averaging the raw values in
each box to give a single value per box for each traffic
quantity.

The most recent data was found to possess a stronger
predictive power, as expected, but time windows which
extended tens of minutes into the past were also found
to be beneficial. To strike a balance between these ex-
tremes, overlapping boxes which extended further into
the past were investigated as shown in Figure 2. Fach
box reached back from minute t to ¢t — b; where b; was
initialized to 1 and then increased for each subsequent
box. This produced superimposed multiscale time
windows which gave a crisp short-term view but ev-
ermore blurred longer-term views. This box-averaging
technique produced among the best predictors.

Data reduction was also investigated by fusing quan-
tities based on flow-velocity plot descriptors, namely
the flow-velocity gradient G or the flow-velocity mag-
nitude M.

Some experiments also investigated feeding previous
velocity predictions, V', back in as input data. Fig-
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Figure 2: Multiscale input windows superimposed in
the time dimension. The window size b; increased
based on the Fibonacci sequence.

Figure 3: Velocity prediction Atiw which uses the 14
former predictions of velocity, shown as dark grey cells.

ure 3 illustrates this special case where (Vtil...f/tiu)
was used in a form of autoregressive prediction. Jour-
ney time predictors could also exploit the recent known
JT values, e.g. the JT of the most recent journey com-
pleted by time t. The experiments investigated which
data types gave the most predictive power from:

oo
¢ = <V,O,F,M:(F2+V2),G:%,V)

Two years of historical MIDAS data was inspected on
the counter-clockwise carriageway of the M25 between
junctions 15 and 11. This identified days when the
sensors were fully operational and the traffic involved
congestion waves. Figure 4 illustrates the MIDAS data
showing different traffic quantities on different lanes.
The sub-image for each given quantity and lane shows
progressive time as left to right and progressive sites as
top to bottom. Brighter cells represent lower quantity
values, e.g. congestion appears as low speed and high
occupancy. Journey times between junctions 15 and
11 take between 6 minutes to over 25 minutes. For the
experiments reported in this study, GP processed the
period 1300h to 2200h.

2.3 Experimental GP study

Many GP runs explored different evolution options:
a velocity predictor; a velocity-gradient predictor; a
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Figure 4: MIDAS data:
September 1999, M25 counter-clockwise carriageway,
junctions 15 to 11. From left to right: velocity, flow
and occupancy. From top to bottom: offside (fast)
lane, offside-1 lane and offside-2 lane.

journey time predictor. The first two options were
driven by velocity errors or JT errors via the fitness
function. The third option could only be driven by JT
error.

Each option involved at least 15 independent GP runs
continued for 50 generations. They used the steady-
state GP method with a typical population size of 2000
individuals, 90% cross-over, 10% mutation, a breed
tournament size of 4, a kill tournament size of 2 and
the function set: +, —, *, protected division, min, max
and if-less-then-else.

Both root mean square error, || - ||, and max error,
max(-), were applied to measure absolute error, eg,
and relative error, e,.. However, the experiments in-
vestigated various fusions of || - || and max(-) errors
of ¢, the quantity whose error was to be minimized?.
The errors were calculated as follows, where gg was the
evolved prediction and e, was the error relative to a
naive prediction, ¢p:
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Various fitness measures, f, were investigated:
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Predictors were compared based on JT prediction er-
rors, regardless of whether the evolution was driven
by JT or by velocity errors. Case-wise JT predic-
tion errors were obtained for the 10 fittest predictors
from each GP run. The following four error calcu-
lations were then used to quantify the overall JT er-
rors: max(e,), max(e,), |leq]| and [le,||. This posed
a multi-objective optimization problem in four dimen-
sions and thus a Pareto ranking scheme was used to
compare the different predictors. Pareto ranking was
first performed on the max(e,) and |e,|| dimensions.
A second independent Pareto ranking process was then
performed on the max(e,) and ||e,|| dimensions. Pre-
dictors were then ordered according to e, rank and
then e, rank. The best predictor for the experiment
was then subjectively designated from the top ranking
predictors, and the associated JT errors were tabu-
lated.

2.4 Naive predictions

Computational solutions find it challenging to perform
markedly better than naive predictions. For example,
it is difficult to beat the rule “the journey time in the
future will be the same as the time of the journey just
completed”. A method to overcome this problem is to
target the predictors at specific traffic states, and this
method is currently under investigation.

Thus, five naive formulae were used to judge the per-
formance of the GP evolved predictors. The simplest
naive formula was (;ASH_I, = ¢; where p is the prediction
period. This formula produced the best naive pre-
dictions and hence the presented naive results pertain
only to this formula.

¢ was either velocity at the current site or JT of the
most recent journey completed by time t. For example,
let the virtual journey which commenced 9 minutes
ago take JT; g minutes to complete, and that which
commenced 8 minutes ago take JT;_g minutes to com-
plete. If JT;_g = 8.5 and JT;_g = 8.1 then ¢; was set
to JTi_g. However, if instead JT;_g = 7.9 then ¢; was
set to JT;_s.

The prediction period, p, was 15 minutes for velocity
predictors as discussed in Section 2.1. JT predictors
were required to predict the time of the journey start-
ing on the next minute and thus p = 1.

Table 1: JT errors for naive and evolved predictors
of velocity and journey time. Absolute errors are in
seconds.

Scheme lleall | llex|l | max(es) | max(e,)
naive Vii1s 99.4 | 0.121 343.3 0.499
evolved Viygs 78.7 | 0.099 | 256.3 0.35
naive JTyyq 110.6 | 0.122 352 0.463
evolved JTiyq 65.5 | 0.074 250.7 0.25

2.5 Results summary

More than 100 sets of experiments were run under dif-
ferent options. Each run processed traffic from 4 week-
days in August 1998. Table 1 shows the JT errors for
the best prediction schemes, where Vi 15 is the predic-
tion of velocity in 15 minutes time, and J7;4q is the
direct prediction of the time of the journey starting
on the next minute. It can be seen that the evolved
predictors consistently gave better accuracy than the
naive predictors, for both the prediction of velocity
and JT. Furthermore, the evolved JT predictor gave
the lowest error for each error type, despite the naive
JT predictor being marginally worse than the naive
velocity predictor.

The following general recommendations were drawn
from the overall comparative study.

Predictor type: Predicting JT;; gave lower JT er-
rors than predicting Viy15. JT predictors were
also much faster to evolve and apply than veloc-
ity predictors because velocity must be predicted
at each site in the journey. However, JT predic-
tors may not generalize across journeys traversing
a different number of sites.

Data type: All traffic quantities (V, O and F') were
required whereas the fused quantities (M and G)
gave greater errors. Feeding intermediate predic-
tions, V, back into the input tended to reduce
prediction accuracy, probably because this “au-
toregression” complicated the search space by in-
creasing the size of the terminal set. Box averag-
ing proved to be the most beneficial data reduc-
tion method.

Error drivers: Recall that various prediction errors
drove the evolution via the fitness function. JT er-
rors were better drivers than velocity errors. Both
absolute and relative errors were needed and || - ||
errors had to be weighted stronger than max(-)
errors.



Table 2: JT errors for naive and evolved .JT:4;1 pre-
dictors on training and test data. Absolute errors are
in seconds.

Training: 4853 cases over 15 weekdays

bs lleall | ller]] | max(e,) | max(e,)
(naive) || 68.4 | 0.086 358 0.503
9 45.5 | 0.057 213.2 0.229
3 51.3 | 0.066 228.2 0.271
Testing: 2008 cases over 5 weekdays

bs lleall ler|| | max(eq) | max(er)
(naive) || 65.1 | 0.089 269.4 0.546
9 45.9 | 0.06 217.9 0.269
3 52.3 | 0.072 229.3 0.398

The JT;41 predictor was scaled-up by using more data
from August 1998 and the results are shown in Ta-
ble 2. Box averaged inputs were used with various by
(Section 2.2) and by = 9 proved to be the optimum.
The naive predictions are indicated by the b, column
in the table. It can be seen that the evolved predic-
tor comnsistently gave better accuracy than the naive
predictor. Furthermore, comparison of the results on
training and testing shows that the evolved predictor
generalized well.

3 Incident Detection

The HA’s MIDAS system uses the HIOCC algorithm
(Collins et al., 1979) to detect incidents. The HIOCC
(high occupancy) algorithm is essentially a queue de-
tection algorithm. It is very capable of detecting in-
cidents during the peak and interpeak periods, but it
gives poor results at night because the traffic flows
are too low to allow queues to form. HIOCC or Cal-
ifornia (Payne et al., 1975) algorithms cannot detect
late-night incidents because of the low-occupancy traf-
fic states.

The Staged GP (Howard and Roberts, 1999) method
had proved successful in the detection of objects of
large variability in poorly specified domains. For
this reason, Staged GP was selected to detect sub-
tle anomalies in the late-night MIDAS data, in order
to warn for the presence of poorly specified incidents.
Success would be much cheaper than alternative ap-
proaches such as the capital cost required for upgrades
to the traffic monitoring infrastructure.

The sought incident detector should detect the inci-
dent as early as possible to allow the human MIDAS
operator to take action. For example, the operator
could react by positioning a motorway camera to ex-

amine the scene of the incident, or by alerting the po-
lice who need a maximal response time. Late-night
incidents have many causes, e.g. driver fatigue, road-
works, bad weather or animals on the motorway, re-
sulting in a high variability in the characteristics of the
incident onsets.

GP was used in a supervised learning role. Hence,
it required a “truth” from which to learn to detect
incident onsets. Unfortunately, until now very few in-
cidents had been archived, and even where they had
their reasons were not always correctly recorded. This
investigation manually scrutinized the MIDAS data
and marked up an incident “truth”. The data was an-
alyzed by inspecting the velocity in all lanes and iden-
tifying the approximate time and site of each incident
onset. Incidents were then graded by a subjective mea-
sure of their significance. Grade 1 incidents were the
most obvious type, corresponding to serious accidents
which resulted in sustained lane closures. Grade 5 in-
cidents were the most subtle type and appeared only
as blips in the viewed MIDAS data. Major incidents
were rarer than minor incidents and thus the signif-
icance grading was incorporated into the GP fitness
measure, to counteract the bias towards detecting sim-
ply the most common types of incident (Howard and
Roberts, 1999).

The detection task was tackled by a two-stage evolu-
tion strategy (Howard and Roberts, 1999). The first
stage evolved for itself which traffic data best charac-
terized an incident onset, by distinguishing data prox-
imate to incidents from a sample of non-incident data.
The second stage was then required to minimize the
false alarm rate whilst retaining at least a single de-
tection point per incident.

3.1 Traffic data input to GP

Currently we are evolving an incident detector with a
training, validation and test set that we have painstak-
ingly derived from three years worth of MIDAS data.
However, in this paper we report on a smaller earlier
study. Traffic data was taken from 60 consecutive sites
along the M25 between sites 4727 and 5010. Both car-
riageways were used for 7 nights in August 1998, which
comprised 32 incidents of grade 1 to 4. Grade 5 inci-
dents were ignored.

3.2 Fitness measure

A GP chromosome was said to have detected an inci-
dent when it output a positive value. In other words,
the traffic data being processed at the given time and
site was deemed to represent an incident. If an actual



incident had occurred then the output was called a
true positive, otherwise it was called a false positive or
a false alarm. After a chromosome had processed all
the training cases, let TP denote the number of result-
ing true positives and FP denote the number of false
positives.

The task was to distinguish incidents of grade 1 to 4
from non-incidents. Furthermore, lower numbered in-
cident grades were more important than higher num-
bered grades. These issues were captured by the fol-
lowing fitness measure which drove the evolution runs,

. TPS

fitness = 7 pg, T GFP) (1)
where T'PS was the score for the incidents detected
and TPS,,.. was the score obtained when all inci-
dents were detected. T'P.S was calculated as follows to
weight the incidents according to grade.

i<TP
TPS = Z 5 — grade of incident; (2)

i=0

The variable 8 was used to balance the importance
of incident detection against the expense of detecting
false alarms. For example, as 3 tended to zero the
number of false alarms became irrelevant.

The figure of merit (FOM) was used to compare differ-
ent GP runs. The FOM is the same as the fitness when
[ = 1. Note that the minimum FOM is 0 for the case
when no incidents are detected or when the number
of false alarms approaches infinity, and the maximum
FOM is 1 when all incidents are detected with no false
alarms.

3.3 Evolving first stage detectors

Even though incidents happen at a single time and lo-
cation, the incidents generally manifest themselves in
the traffic data over multiple minutes and a number
of sites (more upstream sites than downstream). Con-
sequently GP was trained to detect the onset of each
incident by sweeping from 5 minutes before to 5 min-
utes after the incident time, and by sweeping from 4
upstream sites to 4 downstream sites for each minute.
However, an incident was said to be detected if a GP
chromosome returned a positive output for any one of
these times and locations. Therefore, TP represented
the number of incidents detected and had a maximum
value of 32. Non-incident training data was sampled at
10 minute steps using all possible sites at each minute,
giving a total of 21,181 non-incident training cases.

The GP terminal set was taken from an input win-
dow similar to those illustrated in Figure 1. How-
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Figure 5: Incident score against false alarm rate for

the first stage detectors.

ever, the window encompassed only local traffic data
by using T' < 8 previous minutes and one downstream
site, i.e. S = 1. Furthermore, the input data consisted
of the lane-specific MIDAS quantities: velocity, flow,
occupancy, headway and flow categorized by vehicle
length.

Approximately 60 GP runs were conducted for the first
stage each using T = 3. A first stage detector’s task
was to detect all incident onsets whilst producing a
minimal false alarm rate. The fitness variable 3 was
thus set to low values and the range 0.01 to 0.1 tended
to give the best results. Higher settings caused in-
cidents to be missed whilst lower settings tended to
give an excessive false alarm rate. The population size
was set to 1000 and the other GP parameters were the
same as those listed in Section 2.3.

3.4 Validating first stage detectors

The evolved first stage detectors were validated on the
32 incidents and a maximum score of 67 was achieved
if all incidents were detected (i.e. TPSy,q = 67). The
detectors processed all non-incident traffic data in val-
idation which totalled to 200,010 cases. Figure 5 plots
the incident score against false alarm rate for the 10
fittest detectors from each GP run.

The lowest false alarm rate when all incidents were
detected was 987 out of the 200,010 non-incident cases.
However, another first stage detector was judged to
be the best because it produced 142 hits distributed
across 30 incidents and it gave only 382 false alarms,
and sacrificed only two grade 4 incidents in order to
achieve this (i.e. TP = 30 and TPS = 65). Even by
careful manual inspection it was difficult to determine
whether these grade 4 incidents were actually true.
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Figure 6: Incident score against false alarm rate for
the second stage detectors.

3.5 Evolving second stage detectors

Second stage detectors were trained to reduce the false
alarms whilst retaining at least a single hit per inci-
dent. Note that T'P.S,,q. reduced to 65 because of the
two grade 4 incidents missed by the first stage detec-
tor.

The parameters § and T' were optimized by conducting
at least 50 GP runs for various settings. The detec-
tion performance was largely insensitive to T between
values of 2 and 8. The results showed that g must ex-
ceed 0.1 in order to achieve no false alarms, and that a
good balance between maximizing detected incidents
and minimizing false alarms was achieved by setting 3
to 0.5.

More GP runs were conducted with g = 0.5 and a
population size of 4000. Figure 6 plots the resulting
incident scores against false alarm rate for the best
detector from each GP run for various T values.

Recall that two grade 4 incidents were missed at the
first stage and so a second stage detector could identify
a maximum of 30 incidents with a TPS of 65. This
was achieved at the expense of giving 6 false alarms,
i.e. less than a single false alarm per night on average.
These false alarms are arguably grade 5 incidents and
two of them actually refer to the same event which was
detected at adjacent minutes and sites. The maximum
FOM was achieved when two further grade 4 incidents
were missed to bring TPS down to 63, but this detector
abolished all false alarms.

The incidents detected by the best second stage de-
tector (i.e. the one which gave the maximum FOM)
are shown in Table 3. The lag column gives the lag
in minutes between the marked incident onset and the

Table 3: Incidents detected by the best second stage
detector. The lag is in minutes and the number of
detections per incident is given.

date | time | site | grade | lag | no. of hits
3 2320 | 4989a 1 -1 5
4 0319 | 4927a 4 0 1
9 2253 | 4912a 3 0 4
10 | 0203 | 4935a 3 0 1
11 | 2200 | 4742a 1 0 3
11 | 2232 | 4762a 2 0 1
12| 0540 | 4912a 3 1 1
28 | 0035 | 4932a 3 0 1
5 2334 | 4955b 3 2 1
5 2337 | 4940b 4 -1 1
6 0040 | 4757b 2 1 2
6 0336 | 4955b 4 ) 1
6 0515 | 4955b 4 2 2
9 2243 | 4945b 4 0 3
10 | 0015 | 4935b 3 0 2
11 | 0346 | 5002b 4 0 1
11 | 0431 | 4949b 2 5 1
11 | 2258 | 4949b 2 1 1
11 | 2340 | 4949b 2 1 1
12 | 0050 | 4945b 3 0 1
12 | 0128 | 4752b 3 3 1
12| 0227 | 4949b 3 -4 4
26 | 2346 | 4888b 2 -5 1
26 | 2352 | 4797b 2 ) 1
27 | 0227 | 4949b 4 0 1
27 | 0311 | 5002b 3 0 1
27 | 2151 | 4832b 1 0 6
28 | 0436 | 4737b 2 3 1

time of detection. This was negative when the incident
started to manifest itself in the traffic data before the
manually marked onset, e.g. because of a gradual on-
set spread across lanes. The column shows that most
incidents were detected within two minutes. The last
column gives the number of hits per incident and shows
that grade 1 incidents received multiple hits but higher
grades tended to be hit only once.

3.6 Results summary

The task was to detect incidents on the M25 at peri-
ods of low traffic occupancy. This was approached by
training GP to detect the onset of incidents which oc-
curred during the night (approximately between 2200h
and 0600h) whilst producing a near-zero false alarm
rate.



The precise onset of incidents was often poorly defined
and so the task was tackled by a two-stage evolution
strategy. The first stage evolved for itself which traffic
data best characterized an incident onset by distin-
guishing data proximate to incidents from a sample
of non-incident data. The second stage was then re-
quired to minimize the false alarm rate whilst retaining
at least a single detection per incident.

The best first stage detector missed two grade 4 inci-
dents (the least obvious incidents) and gave 382 false
alarms from 7 nights worth of data using both car-
riageways. The best second stage detector missed an-
other two grade 4 incidents but abolished all the false
alarms. Other second stage detectors retained all in-
cident detections but gave 6 false alarms.

3.7 Current work

The activity of manually marking more than 1000 in-
cidents over three years worth of traffic data has shed
light into the nature of the incidents, which in turn
has increased the subjective threshold as to what con-
stitutes an incident. This has improved the quality of
the “truth” in the scaled-up project, and it is hoped
that this will be reflected in the detection performance.
Tests are currently being undertaken to assess the gen-
eralization of the detection performance. Other mod-
elling parameters such as the effect of weather, e.g. rain
and fog measurements, may be incorporated as inputs
to future detectors.

4 Conclusions

This paper describes two projects that apply genetic
programming to real world problems proposed by the
UK Highways Agency. The first project evolved mo-
torway journey time predictors which were required
to be reliable during high-flow low-speed conditions.
These peak travel periods contained the most vari-
able traffic characteristics and notably included con-
gestion waves. The evolved predictors processed lane-
independent traffic quantities and improved on the ac-
curacy of equivalent naive predictors. Naive predic-
tions are typically difficult to out-perform due to the
inherent irregularities in the traffic data during con-
gested periods.

The second project evolved motorway incident detec-
tors for low-flow high-speed conditions, i.e. late at
night. A Staged GP method was employed to identify
the subtle anomalies which correspond to late-night
incident onsets. The evolved detectors processed lane-
specific traffic quantities and achieved near-zero false
alarm rates whilst only missing very few minor inci-

dents. Work is currently underway to scale this project
up to extensive traffic data sets and to assess detection
generalization.

It is hoped that an insight can be gained into the prin-
ciples underlying the two projects by interpreting the
structures of the evolved processors. Further under-
standing could be obtained by analyzing the behaviour
of the evolved processors in different traffic states.
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