
Empirical Comparison of Incremental Reuse Strategies
in Genetic Programming for Keep-Away Soccer

William H. Hsu, Scott J. Harmon, Edwin Rodríguez, and Christopher Zhong

Department of Computing and Information Sciences
Kansas State University

Abstract. Easy missions approaches to machine learning seek to synthesize
solutions for complex tasks from those for simpler ones. In genetic program-
ming, this has been achieved by identifying goals and fitness functions for
subproblems of the overall problem. Solutions evolved for these subproblems
are then reused to speed up learning, either as automatically defined functions
(ADFs) or by seeding a new GP population. Previous positive results using
both approaches for learning in multi-agent systems (MAS) showed that in-
cremental reuse using easy missions achieves comparable or better overall fit-
ness than monolithic simple GP. A key unresolved issue dealt with hybrid re-
use using ADF plus easy missions. Results in the keep-away soccer domain (a
test bed for MAS learning) were also inconclusive on whether compactness-
inducing reuse helped or hurt overall agent performance. In this paper, we
compare monolithic (simple GP and GP with ADFs) and easy missions reuse
to two types of GP learning systems with incremental reuse: GP/ADF hybrids
with easy missions and single-mission incremental ADFs. As hypothesized,
pure easy missions reuse achieves results competitive with the best hybrid ap-
proaches in this domain. We interpret this finding and suggest a theoretical
approach to characterizing incremental reuse and code growth.

Introduction
One of the primary challenges to scalability of genetic programming is the evolu-

tion of primitive functions that are general enough to be reusable. In GP-based rein-
forcement learning [SV00a], this problem is related to the general one of discovering
intermediate representations [FB85]. Koza found [Ko94] that in speedup learning,
automatically-defined functions (ADFs) can be used to achieve reuse in GP – par-
ticularly more compact representations and fast evolution of complex solutions.
Early research on characterizing reuse in ADFs was conducted primarily by manual
or very basic automatic static analysis. For example, functions that could be seen to
solve simpler subtasks were frequently evolved and reused by GP systems for sym-
bolic regression problems f(x) = 4x or f(x) = x4 and for large multiplexer problems
[Ko94]. In some domains, such as the multi-agent systems (MAS) intelligent control
[SV00b] task we discuss here, the nature of reuse through ADFs is not clear.

One way to control reuse is through explicit specification of easier subtasks that
the GP system is designed to acquire in stages. This method of incremental reuse
works by migrating the individuals evolved to solve intermediate subtasks into a GP

for the harder overall problem. Similar approaches were independently explored by
deGaris (as behavioral memory [De90]), Asada et al. (as learning from easy mis-
sions [ANTH98]), and Gustafson (as an adaptation of a hierarchical learning ap-
proach [St00, Gu00]). These have shown that policies can be evolved incrementally.

Previous work on reinforcement learning in homogeneous, multi-agent team prob-
lems [LS96] such as keep-away soccer [SS01, HG02] has demonstrated reuse in
incremental evolution. For this test bed, the approach of learning from easier sub-
tasks finds reusable solutions faster and more reliably than GP using ADFs with a
monolithic task definition.

A key unresolved issue in previous work is why easy missions reuse achieve
higher average fitness than ADFs in this domain. Gustafson [Gu00] found that
slightly larger trees in the ADF-based solutions were significantly higher in fitness,
but that the entire population tended to collapse into either a group of smaller trees
(“Bad”) or larger ones (“Good”). “Good” ADF cases achieved better fitness than the
average for easy missions, but occurred in a minority of cases and could not be per-
fectly identified. This result also seems to contradict the hypothesis that limited tree
size as induced by ADF reuse is beneficial in this domain and similar MAS domains.

In this paper, we therefore explore the “spectrum” from ADF-based reuse, which
tends to induce compactness, to unrestricted easy missions reuse, which results in
somewhat larger trees. We compare (1) monolithic GP with a single fitness crite-
rion, with and without ADFs, against (2) the easy missions reuse approach previ-
ously shown to achieve better fitness [Gu00], (3) GP/ADF hybrids with easy mis-
sions, and (4) single-mission incremental ADFs. We refer to our adaptation of 2-3
as GP-ISLES (Genetic Programming – Incrementally Staged Learning from Easier
Subtasks) and our implementation of 4 as monolithic, incremental ADFs. Just as
ADFs provide reusable code and subroutine structure [Ko94], GP-ISLES provides a
way to build solutions using a layered approach [St00, SV00a]. The difference be-
tween ADF learning and incremental approaches such as easy missions, using GPs
or other methods, is that ADFs describe a way to implement structure in the agent
representation while easy missions describes a way to train a learning intelligent
agent. Both approaches achieve reuse, but ADF reuse is more automated in that it
trades the ability for the GP designer to specify easy missions (intermediate fitness
criteria) against the potential of discovering more generic, reusable ADFs.

Incremental evolution can be used to break down MAS learning tasks by first
evolving solutions for smaller fitness cases [ANTH98], for smaller groups of agents,
and for agents with a more primitive fitness criterion [SS01]. In our test bed, we
focus on developing a fitness criterion for training agents to play on a team of 3
players based upon their cooperative performance in an easier subtask (passing be-
tween 2 players [MNH97]) with no adversary. The evolved individuals are used to
seed a population of agents to be further improved. This new population and the
associated GP form the second layer of an incremental system. The product of GP-
ISLES is an agent that is evolved using highly fit primitive agents for the easier sub-
task as raw material. The overall solutions, however, typically contain material from
these agents that has been crossed over and mutated within subroutines. By contrast,
GPs using ADFs produce primitive anonymous functions (i.e., macros). They may

replace them within individuals or discard them from the population, but ADF trees
are held apart. Their initialization and crossover are strictly controlled and their
arities are pre-determined.

This paper describes experiments with new hybrid variants of GP-ISLES in the
keep-away soccer domain. The problem is to better understand reuse in ADFs and
in incremental approaches, both monolithic (single mission-based) and easy mission-
based. Our approach was to compare speedup learning among the variants, using
simple GP and monolithic ADFs experimental controls and the 3-on-1 keep-away
task as the benchmark. Our hypothesis was that hybrid approaches would outper-
form the controls and approach the performance of non-ADF GP-ISLES (called lay-
ered learning GP in [HG02]). The purpose of these comparisons was to characterize
the impact of different types of reuse on solution quality and on code size.

Reuse Strategies for GP
This section describes the MAS test bed, keep-away soccer. It then reviews the

design and implementation of GP reuse strategies using ADFs, basic GP-ISLES with
no ADFs, hybrid variants with ADFs, and incremental ADFs. It also reviews find-
ings from the literature using basic GP-ISLES, which are extended in this work.

Multi-Agent Learning Test Bed

k-versus-t (k-on-t or kvt) keep-away soccer is the subproblem of robotic soccer of
keeping the ball away from t players called takers who are attempting to capture it
from k players called keepers. We chose keep-away soccer as an MAS learning test
bed because it can be easily abstracted [SSS00, HG02], is scalable [SS01], captures a
compositional element of teamwork [LS96], admits a symmetric (zero-sum) rein-
forcement for takers and keepers, and has adjustable opponent difficulty.

Incremental learning provides a logical methodology for implementing a hierar-
chical approach to teamwork. In order to evolve more complex teamwork, we may
be able to take advantage of the compositionality of behaviors involving larger sub-
teams. For example, a low-level primitive in soccer is passing the ball, an activity
among any number of keepers for which a single episode can be isolated to two
keepers at a time. Passing is incorporated into several multi-agent activities: guard-
ing the ball; moving the ball downfield; setting up for a goal attempt; etc. In this
paper, we shall explore GP solutions with reuse (ADF and GP-ISLES) for multi-
agent systems (MAS) problems using the 3-on-1 keep-away problem using homoge-
neous (identical) keeper policies.

Despite the compositionality of 3-on-1 keep-away, learning to pass the ball effec-
tively is only part of the GP application. In real soccer, human keepers learn to
minimize the number of turnovers to the taker by passing accurately, move to receive
a pass, and make themselves open to receive a pass, and control the ball effectively.
For 3 or more keepers to coordinate effectively, each must be able, when in posses-
sion of the ball, to: select a teammate to pass to, time the pass appropriately, and
maintain at least one open passing lane.

Evolutionary Computation in Java (ECJ) and Simulator

All GP experiments were all conducted using Luke’s Evolutionary Computation
in Java (ECJ) package [Lu02]. A set of operators was developed in Java for the 3-
on-1 keep-away task and is described in the Experiment Design section.

Where specified, ECJ defaults [Lu02] were overridden. These overrides, in turn,
follow Gustafson’s original implementation using an earlier version of ECJ [Gu00].
All variations (simple GP, ADF-GP, GP-ISLES, and incremental ADF-GP) use
ramped half-and-half initialization, tournament selection with tournament size 7.
The genetic crossover operator generates 90 percent of the next generation; tourna-
ment selection generates the other 10 percent. [Ko92] The GP variations use no
mutation, permutation, over-selection, or elitism.

Fitness evaluations are made using Gustafson’s 20-by-20 grid-based abstract
simulator for keep-away soccer [Gu00]. Previous work by Stone and Sutton [SS01]
and by Hsu and Gustafson [HG02] on the 3-on-1 task defined minimization of turn-
overs (change in possession) as the objective function for the full keeper policy. Let
us define this problem specification as 3-on-1-turnovers and easier subtasks, based
upon the number of passes completed, as k-on-t-passing (for k ≤ 3, t ≤ 1).

For standardization, all runs use a generational GP with population size 4000 and
101 generations. Experiments with population size 1000, 2000, 4000, and 8000 and
with fewer (51) and more (201) generations showed the above parameters to be effec-
tive for this test bed, as Gustafson also reports [Gu00].

Monolithic Simple GP and ADF-GP

As a baseline for comparison, we used SGP and ADF-GP with the single mono-
lithic, or non-incremental, objective of minimizing the number of turnovers that
occur in a simulation.

The ADF-GP is initialized with maximum size 6 for initial random programs.
Hybrid variations also use this constraint, but have no restrictions on ADF seeding
(as documented in the next sections). ADF-GP allows each tree for kicking and
moving to have two additional trees that represent ADFs, where the first ADF can
call the second, and both have access to the full function set available for SGP.

The next three sections describe incremental reuse: first using easy missions (GP-
ISLES), then using single-mission incremental ADFs.

Basic GP-ISLES and Related Work

A basic version of GP-ISLES is described by Gustafson and called layered learn-
ing GP (LLGP) [Gu00]. Hsu and Gustafson initially experimented with the 3-on-0-
passing subtask [HG02], training a GP system for g1 ∈ [0, 90] generations with the
passing fitness measure, then transferring the entire resultant population to a GP for
evolving 3-on-1-turnover solutions and training for g2 = 101 - g1 generations.
Validation experiments testing different values of g1 found 10 to be the best value for
this implementation of 3-on-1 keep-away. By running these experiments at various
scals, Hsu and Gustafson found that g1 can be automatically controlled [HG02].

To modify standard GP for incrementally staged learning, we must develop a
learning objective for each layer, i.e., the fitness at each layer that selects ideal indi-
viduals for the easier subtask. The GP-ISLES system focuses on automatically dis-
covering how to compose passing agents into keep-away soccer agents. GP-ISLES
has two layers; the fitness objective for the first layer is to maximize the number of
accurate passes (a two-agent task evaluated over teams of three copies of the same
individual, on the same size field as the keep-away soccer task), while fitness objec-
tive for the second layer is to minimize the number of turnovers.

In comparing this incremental approach to the monolithic systems (using a simple
GP and a GP with ADFs), Gustafson found that it outperformed both GP and ADF-
GP on average, achieving a best-of-run fitness of 5.8 turnovers in a 200-time step
simulation [Gu00]. In analyzing specific ADF-GP runs, however, he found that
populations tended to contain trees in one of two clusters: some runs averaging less
than 110 nodes, the other averaging more than 120. Populations of larger trees had
a markedly better (lower) best-of-run fitness (6.8) compared to those of smaller ones
(16.6), which underperformed even the simple GP (9.0).

This result left open the question of whether post-filtering solutions evolved using
ADF-GP, on the basis of code size, could result in solutions that were competitive
with the staged incremental approach. That is, the “larger” solutions found by the
monolithic 3-on-1-turnover ADF were not distinguishable to a high degree of statis-
tically significance from the solutions found by the best 3-on-0-passing-3-on-1-
turnover incremental GP (g1 = 10).

Hybrid GP-ISLES

The results from GP-ISLES posed the question of whether pre-filtering by code
size could be used as a termination criterion for the ADF-GP, or in conjunction with
a parsimony-based fitness criterion. In our reimplementation of the incremental
system, GP-ISLES, we found that while tree sizes were larger (averaging 250 nodes
versus 230 for simple GP and 110 for ADF), incremental reuse appeared to be more
beneficial to overall fitness in the keep-away task.

Our hypothesis was that there was some limitation of compact reuse in ADFs that
did not occur among the incremental solutions. Therefore, we observed not only
mean fitness (on easy missions and on the overall task) but also variance in fitness.
We designed ADF/simple GP hybrids and relate them to stages of solution develop-
ment in GP-ISLES.

We implemented two hybrid versions of GP-ISLES:
1. GP-to-ADF: A simple GP in the first layer, with results encapsulated into

ADFs and random trees generated in the second layer

2. ADF-to-GP: A GP with ADFs in the first layer, with ADF crossover and
creation suppressed in the second layer

3. ADF-to-ADF: A GP with ADFs in both layers

Justification for these two variants is as follows:
1. GP-to-ADF: This type of reuse corresponds to delayed definition of macros

(ADFs) in speedup learning. That is, individuals – candidate solutions to

the easy mission – are allowed to evolve freely the until they have reached
some minimum level of reusable complexity. We expected this approach to
yield results similar to GP-to-GP (the basic GP-ISLES technique), but with
potentially more compact individuals due to late reuse.

2. ADF-to-GP: This type of reuse corresponds to seeding a GP-ISLES popula-
tion with solutions to the easy mission that may contain ADFs. We hy-
pothesized that this approach makes a worse tradeoff than GP-to-ADF be-
cause it commits to the ADFs early (possibly too early) and then does not
have the means to perform separate crossover on the ADF trees.

3. ADF-to-ADF: This type of reuse corresponds to starting with easy missions
using a GP with ADFs and seeding into a GP with the overall criterion. We
hypothesized that the fitness for this approach would be comparable to or
worse than that for the monolithic, non-incremental ADF.

All variations were implemented by using command-line overrides of the ECJ pa-
rameters (configuration file). In each csae, we used a 10-generation GP for the first
layer with 3-on-0-passing as the easy mission (fitness criterion), and a 91-generation
GP for the second layer with 3-on-1-turnover as the fitness criterion. 3-on-0-passing
is implemented by switching the taker off and measuring the number of successful
passes subject to zone constraints (keepers must maintain distance or the ball posi-
tion will be reset). This is similar to the simultaneous attraction and repulsion
(STAR) fitness measure developed by Stone and Veloso [SV98].

In all experiments, we migrated the full population (4000 individuals). Gustafson
reports [Gu00] that this approach achieved better results than seeding the best-of-run
individual throughout the second stage, by preserving diversity. Our preliminary
experiments confirmed that full migration consistently outperforms best-of-run indi-
vidual migration.

Monolithic Incremental ADF-GP

Two final variants we implemented are the monolithic, ADF-to-ADF and GP-to-
ADF incremental GP. In both of these versions, only the 3-on-1-turnover target is
used, but population seeding occurs. We expected that results for this approach
would also be comparable to monolithic, non-incremental ADF, though the early
packaging of subroutines into first-layer ADFs may pose a tradeoff.

Experiment Design
The main objective of this work was to identify the best hybrid incremental reuse

strategies for GP in the MAS domain of keep-away soccer. Furthermore, we sought
to derive a plausible explanation for the performance of the basic GP-ISLES versus
ADF-GP, both non-incremental and incremental. The long-term purpose of this
research is to move towards a more general theory of incremental reuse by ADFs
versus seeding, that accounts for code size and code growth.

Our approach was to compare the three hybrid versions above with our reimple-
mentation of Gustafson and Hsu’s basic GP-ISLES [Gu00, HG02]. The new ap-
proaches were predicted to perform better than or equal to ADF-GP, with the better

hybrid strategies achieving equal or better overall fitness than basic GP-ISLES. We
sought to explain this phenomenon by comparing the fitness curves of all stategies
and examining them in the context of descriptive statistics, such as average tree size,
that are related to reuse.

We adapted the grid-based simulation developed by Gustafson [Gu00] for keep-
away soccer, which abstracts some of the low-level details of agents playing soccer
from the TeamBots [Ba01] and SoccerServer [An98] environments. Abstractions of
this type allow the keep-away soccer simulator to be incorporated later to learn
strategies for more fine-grained environments. In SoccerServer and TeamBots,
players push the ball to maintain possession. To kick the ball, the player needs to be
within a certain distance. For keep-away soccer, we eliminate the need for low-level
ball possession skills and allow offensive agents to have possession of the ball. Once
an agent has possession, it can only lose possession by kicking the ball, i.e., by
evaluating its kick tree. Because we use vectors that have direction and magnitude,
this implementation would allow for dribbling actions to be learned, where the agent
simply passes the ball a few units away. This abstraction greatly simplifies the prob-
lem and still allows for a wide range of behaviors to be learned.

Table 1: Terminals (egocentric vec-
tors)

Terminal Description
Defender Opponent (taker)
Mate1 First teammate
Mate2 Second teammate
Ball Ball

Table 2: Keep-away soccer function
set

Func (arity) Description
Rotate90(1) Current vector 90°

counter-clockwise
Random(1) New vector ∈[0, arg]
Negate(1) Reverse direction
Div2(1) Divide magnitude by 2
Mult2(1) Multiply magnitude by 2
VAdd(2) Add two vectors
VSub(2) Subtract two vectors
IFLTE(4) if ||v1|| < || v2|| then v3

else v4

At each simulation step that allows agents to act, if the agent has possession of the
ball – i.e., the agent and ball occupy the same grid position – the agent’s kick tree is
evaluated. The kick tree evaluates to a vector that gives the direction and distance to
kick the ball. Otherwise, the agent’s move tree is evaluated. Both trees are com-
posed of terminals listed in Table 1 and functions listed in Table 2.

For GP-ISLES experiments, the first 10 percent1 of the maximum number of gen-
erations are spent in Layer 1 learning accurate passing without a defender present.
To evaluate accurate passes, we count the number of passes that are made to a loca-
tion within 3 grid units of another agent. The fitness function for this intermediate
objective is then (200 – passes), where there are 200 time steps per simulation; a

1 Hsu and Gustafson report a 10% / 90% division of generations between stages (with equal

population size) to achieve the best results [Hs02].

fitness of 0 is best and one of 200 is worst. The remaining 90 percent of the genera-
tions are spent in Layer 2 with a fitness value that is inversely proportional to the
number of turnovers that occur with a defender present. This is the team objective.
The defender uses a hand-coded strategy, based upon one of the standard TeamBots
[Ba01] defensive agents, that always moves towards the ball to cause a turnover.

Each evaluation of an individual in the simulator takes 200 time steps, where the
ball can move on each step, the defender moves on every other time step, and all
offensive agents move together on every fourth time step. The initial configuration
of the simulation places the defensive agent in the center of a 20-by-20 unit grid.
The field is then partitioned into three sections: the top half and the bottom left and
right quadrants. One offensive agent is placed randomly in each section, and the
ball is placed a few units from one of the offensive agents, chosen at random.

Table 1 summarizes the terminal set used, consisting of vectors that are egocen-
tric, or relative to the agent whose tree is being evaluated. Table 2 summarizes the
function set used, where all functions operate on and return vectors. Both sets are
similar to those used in [Lu98] and [AT99].

Results

Mean Adjusted Fitness

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Generations

Monolithic GP Monolithic ADF ADF-ADF ADF-GP GP-ADF GP-GP

Figure 1. Mean adjusted fitness (10 replications) – higher is better

Each experiment was replicated 10 times, with the mean and variance taken
across these runs. Table 3 reports experimental results on 20-by-20 keep-away task
for monolithic GP and ADF-GP, the four GP-ISLES variants (three hybrid and one
basic2 with no ADFs), and GP-to-ADF. For 6 of the 8 methods, the mean adjusted

2 For comparison and context, we also experimented with multi-deme parallel GP-

ISLES (implemented by concatenating .individuals files from ECJ [Lu02]), where

fitness curve is plotted in Figure 1; the tree size, in Figure 2; and the max tree depth,
in Figure 3. (All of these are mean values over 10 replications.) The monolithic
incremental statistics are similar to that for GP-to-ADF.

Table 3. Mean adjusted fitness, tree size, and max tree depth

Method Mean Ad-
justed Fitness

Mean Tree Size Mean Tree
Depth

Basic GP-ISLES 0.0178 ± 0.004 201.1 14.1
ADF-to-GP 0.0162 ± 0.004 165.1 13.4
Monolithic GP 0.0155 ± 0.003 174.3 13.7
ADF-to-ADF 0.0131 ± 0.003 113.1 7.5
GP-to-ADF 0.0119 ± 0.001 73.2 7.0
Mon ADF 0.0117 ± 0.001 52.5 5.7

Having found that the 10-91 GP-ISLES exhibited a better learning speed curve,

Hsu and Gustafson [HG02] repeated the incrementally staged experiment with popu-
lation size 4000 and found that it was able to match the best 10 of 20 runs of ADF
performance, converged at least as quickly as any other GP, and resulted in lower
mean-of-run and best-of-run fitness values found (fewer than 6 turnovers per simula-
tion). We found that the mean adjusted fitness was ranked as follows, in best-to-
worst order: basic GP-ISLES, ADF-to-GP, monolithic GP, ADF-to-ADF, GP-to-
ADF, monolithic ADF-to-ADF, monolithic GP-to-ADF, and monolithic ADF. Bold
methods are GP-ISLES variants and underlined ones are incremental. The best-of-
run fitness was achieved by ADF-to-GP (best adjusted fitness 0.073 ± 0.038) vs.
monolithic GP (0.071 ± 0.045), but the confidence intervals for the best of run indi-
vidual overlap greatly, so they are not significantly distinguishable on that basis in
the above experiments. However, the last four variants in the above list have stan-
dard deviation less than 0.003 and are thus significantly outperformed by the first
four. Standard deviation for mean adjusted fitness is much lower (0.004 or lower),
as shown in Table 3, and so the ordinal ranking of GP-ISLES, ADF-to-GP, mono-
lithic GP (the three best performers) is better supported by the data, though the con-
fidence intervals still overlap slightly.3

More important than the minor improvement over basic GP-ISLES is the empiri-
cal property we observe in Figure 2: that ADF-to-GP nearly tracks monolithic GP in
code size and has smaller trees than basic GP-ISLES. In this sense, it is a “best of

the tasks in layer were either monolithic (3-on-1-turnover with two demes in the first
layer) or GP-ISLES (multi-deme 3-on-0-passing). The monolithic multi-deme paral-
lel GP resulted in significantly worse performance than either SGP or GP-ISLES.
Slightly better results are obtained using single-deme, three-layer GP-ISLES (3-on-0-
passing, 3-on-1-passing, 3-on-1-turnover), but the improvement is not statistically
significant. This minor improvement seems to be due to the relative simplicity of the
passing-under-interference subtask compared to the full keep-away task.
3 Continuing replications (in batches of 100) of these experiments, now in progress, are ex-

pected to reduce this sample variance significantly and corroborate the above finding.

both worlds” tradeoff, as it achieves slightly better fitness and slightly lower code
size. We note that our hypothesis that it would be better to start with GP rather than
ADFs in the easy mission is disconfirmed: in fact, ADFs in the second phase consis-
tently perform worse. A likely interpretation is that this reflects more thorough and
diverse exploration of the “hard mission” (turnover) search space for the by GP-
ISLES than by ADF-GP. This explanation is consistent with the poorer performance
by small-tree ADFs that both we and Gustafson [Gu00, HG02] found. Langdon and
Poli note that diffusion is often a fitness-based driver of code growth [LP97], and the
trends in tree size for all GP-ISLES variants indicate that this is a main cause of
growth.

Averaged number of nodes per tree

0

50

100

150

200

250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Generation

A
ve

ra
g

e
n

u
m

b
er

 o
f

n
o

d
es

Monolithic GP

Monolithic ADF

ADF-ADF

ADF-GP

GP-ADF

GP-GP

Figure 2. Average tree size (10 reps)

Averaged Tree Depth per individual

0

2

4

6

8

10

12

14

16

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Generation

A
ve

ra
ge

 T
re

e
D

ep
th Monolithic GP

Monolithic ADF

ADF-ADF

ADF-GP

GP-ADF

GP-GP

Figure 3. Max tree depth (10 reps)

Summary and Continuing Work
Using incrementally staged learning, genetic programming can evolve intelligent

agents for a cooperative MAS task such as keep-away soccer more quickly, with
better fitness. The keep-away soccer problem is a good test bed for abstracting away
the complexities of simulated soccer and allows for different incremental GP meth-
ods to be evaluated and their relative merits compared. It is also easily extended to
the full game of robotic soccer, and is highly portable across platforms because
Gustafson’s simulator [Gu00] and ECJ [Lu02] are both written in Java.

GP-ISLES allows for a natural decomposition of the MAS learning problem into
easier subtasks. Experiments using four variants of GP-ISLES corroborated the
result for basic GP-ISLES obtained by Hsu and Gustafson [HG02] and improved on
them slightly using a hybrid variant, ADF-to-GP, that preserved compactness some-
what (as a tradeoff). This is an interesting characteristic of incremental reuse and it
serves as another demonstration of how compact reuse does not necessarily increase
fitness in incremental learning problems. We believe that constrained compactness
can hurt fitness and that a formal theory for this phenomenon is needed.

For future investigation of this hypothesis, we are developing a system for visual-
izing code growth and especially reuse descriptors for ADFs and subtrees, in order to
determine the effectiveness of reuse. This will help to assess scalability and to
measure the usefulness of parsimony (as a means of limiting code growth) and em-

pirical termination criteria for evolution. Another potentially useful utility for ECJ
is a validation system, using a Hoeffding race, for termination of evolution or selec-
tion of the migration point. A related question is the degree to which GP-ISLES
reuses code versus refining it in higher layers. We believe that the code growth
monitoring system provides a first step towards code-size-driven termination criteria
and a general technique for assessing scalability. Our future work includes refining
this tool and using it to diagnose code growth by classifying it among the types (in-
tron hitchhiking, defense against crossover [NB95], removal bias [SF98], and diffu-
sion [LP97]) surveyed by Luke [Lu00]. As mentioned above, we believe the code
growth in GP-ISLES for MAS learning to be due primarily to diffusion rather than to
other causes.

We have considered several extensions to this research. One of these is to devel-
oping a full-scale team for the RoboCup competition [Ki97] using GP-ISLES. While
this could be a good way to test its abilities more thoroughly, the focus in this paper
was on evaluating the scalability of the incremental solution, characterizing code
size in ADF-GP and GP-ISLES, and design of hybrid incremental reuse. Results
concerning incremental transfer are likely to transfer to other MAS learning domains
besides keep-away soccer. We intend to look at other teamwork and coordination
problems such as network optimization and insect colony simulations. Equally im-
portant is the problem of reuse in compositional problems such as symbolic regres-
sion and modular circuit synthesis. We hypothesize that easy missions approaches
can generalize to some of these domains, as well.

References

[ANTH98] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda. Purposive Be-
havior Acquisition for a Real Robot by Vision-Based Reinforcement Learning. Ma-
chine Learning 23:279-303, 1998.
[AT99] D. A. Andre and A. Teller. Evolving Team Darwin United. In RoboCup-
98: Robot Soccer World Cup II (Lecture Notes in Artificial Intelligence Vol. 1604).
Springer-Verlag, New York, NY, 1999.
[Ba01] T. Balch. TeamBots software and documentation. Available through the
World-Wide Web at http://www.teambots.org, 2001.
[De90] H. deGaris. Genetic Programming: Building Artificial Nervous Systems
Using Genetically Programmed Neural Network Modules". In B. W. Porter et al,
editors, Proceedings of the Seventh International Conference on Machine Learning
(ICML-90), p. 132-139, 1990.
[Gu00] S. M. Gustafson. Layered Learning in Genetic Programming for A Coop-
erative Robot Soccer Problem. M.S. thesis, Department of Computing and Informa-
tion Sciences, Kansas State University, 2000.
[HG02] W. H. Hsu and S. M. Gustafson. Genetic Programming and Multi-Agent
Layered Learning by Reinforcements. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-2002), New York, NY, 2002.

[Ki97] H. Kitano. The RoboCup Synthetic Agent Challenge 97. In Proceedings of
the International Joint Conference on Artificial Intelligence, Nagoya , Japan, 1997.
[Ko92] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, 1992.
[Ko94] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, MA, 1994.
[LP97] W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdry, R. Roy,
and K. R. Pant, eds., Soft Computing in Engineering Design and Manufacturing, p.
13-22. Springer-Verlag, Londok, UK, 1997.
[LS96] S. Luke and L. Spector. Evolving Teamwork and Coordination with Genetic
Programming. In Genetic Programming 1996: Proceedings of the First Annual
Conference. J. Koza et al, eds. p. 141-149. MIT Press, Cambridge, MA, 1996.
[Lu00] S. Luke. Issues in Scaling Genetic Programming: Breeding Strategies, Tree
Generation, and Code Bloat. Ph.D. Dissertation, Department of Computer Science,
University of Maryland, College Park, MD, 2000.
[Lu02] S. Luke. Evolutionary Computation in Java v9. Available from URL:
http://www.cs.umd.edu/projects/plus/ec/ecj/.
[Lu98] S. Luke. Genetic Programming Produced Competitive Soccer Softbot Teams
for RoboCup-97. In Proceedings of the 3rd Genetic Programming Conference
(GP98). J. Koza et al, eds. p. 204-222. Morgan Kaufmann, Los Altos, CA, 1998.
[MNH97] H. Matsubara, I. Noda, K. Hiraku. Learning of Cooperative Actions in
Multi-agent Systems: A Case Study of Pass Play in Soccer. In Adaptation, Coevolu-
tion, and Learning in Multiagent Systems, AAAI Technical Report SS-96-01, p. 63-
67. AAAI Press, Menlo Park, CA, 1996.
[NB95] P. Nordin and W. Banzhaf. Complexity compression and evolution. In
Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA-
95), p. 310-317. Morgan Kaufmann, Los Altos, CA, 1995.
[SS01] Scaling Reinforcement Learning toward RoboCup Soccer. In Proceedings of
the 18th International Conference on Machine Learning, Williamstown, MA, 2001.
[SF98] T. Soule and J. A. Foster. Removal bias: a new cause of code growth in tree
based evolutionary programming. In Proceedings of the IEEE International Confer-
ence on Evolutionary Computation (ICEC-1998), p. 781-786. IEEE Press, 1998.
[SSS00] P. Stone, R. S. Sutton, and S. Singh. Reinforcement learning for 3 vs. 2
keepaway. In P. Stone, T. Balch, and G. Kraetszchmar, eds., RoboCup-2000: Robot
Soccer World Cup IV. Springer-Verlag, Berlin, 2000.
[St00] P. Stone. Layered Learning in Multiagent Systems: A Winning Approach to
Robotic Soccer. MIT Press, Cambridge, MA, 2000.
[SV00a] P. Stone and M. Veloso. Layered Learning. In Proceedings of the Elev-
enth European Conference on Artificial Intelligence (ECAI). 2000.
[SV00b] P. Stone and M. Veloso. Multiagent Systems: A Survey from a Machine
Learning Perspective. Autonomous Robots, 8(3): 345-383. Kluwer, 2000.
[SV98] P. Stone and M. Veloso. A Layered Approach to Learning Client Behaviors
in the RoboCup Soccer Server. Applied Artificial Intelligence (AAI) 12(3):165-188.
Taylor and Francis, London, UK, 1998.

